
A Hadoop-Based Visualization and Diagnosis
Framework for Earth Science Data

Shujia Zhou1, Xi Yang2, Xiaowen Li3,5, Toshihisa Matsui 4,5, Si Liu2, Xian-He Sun2, Weikuo Tao5

1 Northrop Grumman Information Technology, McLean, VA 22102
2 Illinois Institute of Technology, Chicago, IL 60616

3 Morgan State University, Baltimore, MD 21251
4 University of Maryland, College Park, MD 20742

5NASA Goddard Space Flight Center Greenbelt, MD 20771
1 shujia.zhou@ngc.com

 2 {xyang34, sliu89}@hawk.iit.edu, sun@iit.edu
5{xiaowen.li, Toshihisa.Matsui-1, wei-kuo.tao-1}@nasa.gov

Abstract—With rapidly growing computing power, ultra
high-resolution Earth science simulations with a long period of
time are feasible. However, it is still very challenging to distribute
and analyze a huge amount of simulation results, which could be
over 100TB. One key reason is that typical Earth science data are
represented in NetCDF, which is not supported by the popular
and powerful Hadoop Distribute File System (HDFS) and
consequently cannot be analyzed with tools based on HDFS. In
this paper, we propose a Hadoop-based visualization and
diagnosis framework for visualizing and analyzing Earth science
data. It has a data model to transform data from the format of
NetCDF to CSV (Comma Separated Value) that is supported by
HDFS. With this model, data can be processed with the
operations such as maximize, sum, and subset through HIVE and
Cloudera Impala and, therefore, typical diagnoses can be
performed. In addition, the framework has a technique to
visualize and diagnose HDFS-resident data with the popular
visualization and diagnosis tool, IDL. To speed up this process, a
concurrent reader is developed to obtain HDFS-resident data.
Moreover, a dynamic reader to transfer data from a parallel file
system (PFS) to HDFS is developed to efficiently visualize and
diagnose PFS-resident data. The cloud resolve mode simulations
are used for testing and evaluating this framework.

Keywords—Hadoop; MapReduce; Visualization; NetCDF;
Cloud Resolve Model

I. INTRODUCTION
With rapidly growing computing power, a high-

performance computer with hundreds of thousands of
computer processors is available for performing ultra-high
resolution and long-time Earth science simulations. For
example, NASA simulated CO2 global transport from May
2005 to June 2007 with NASA GEO-5 model on a 7km grid.
The simulation produced nearly four petabytes (million billion
bytes) of data [1].

Of climate and weather simulations, one challeng is how to
model cloud. A cloud-resolving model (CRM) is an
atmospheric numerical model that can numerically resolve
clouds and cloud systems at 0.25~5km horizontal grid spacings
such as Goddard Cumulus Ensemble (GCE) [2] [3] [4] and NU

WRF [5].The main advantage of the CRM is that it can allow
explicit interactive processes between microphysics, radiation,
turbulence, surface, and aerosols without subgrid cloud
fraction, overlapping and convective parameterization.
However, it is still very challenging to distribute and analyze
huge amount of simulation results which could be over 100TB.
For example, a 5-day simulation of 1km GCE model with the
resolution of 256x256x104 produce a single output data size of
~60GB and ~7.2TB in total. With ultra high resolution,
4096x4096x104, a 2-3 day simulation produces one single-
precision variable data file of ~7GB and 125TB in total with all
the relevant variables.

Because of their fine resolution and complex physical
processes, it is challenging for the CRM community to 1)
visualize/inter-compare CRM simulations, 2) diagnose key
processes for cloud-precipitation formation and intensity, and
3) evaluate against NASA’s field campaign data and L1/L2
satellite data products due to large data volume and complexity
of CRM’s physical processes. Hence, we need to develop tools
to combine those distributed/local arrays for analysis. In
addition, analyzing large data (~TB) with a desktop computer
is not practical. Furthermore, distributing those large data sets

Figure 1 Illustration of Hadoop-based visualization and
diagnosis framework. Data resident in PFS or HDFS are read
into memory and processed to be ready for MapReduce
applications and visualization and diagnosis applications.

through downloading from a website is problematic. If a user
can quickly visualize and diagnose the targeted data,
movement of voluminous data can be avoided. Similar
problems also exist for other Earth science simulations.

MapReduce is a distributed computing framework for
large-scale data analysis. It has gained growing interest in
geoscience communities due to its merits of easy
programming, automatic parallelism, and fault tolerance.
Hadoop framework is the most popular open-source
implementtion of MapReduce, which consists of Hadoop
MapReduce and Hadoop Distributed File System (HDFS) [6].

 However, the first challenge in applying Hadoop in Earth
science is how to allow Hadoop to read climate and weather
simulation as well as observation data, which are often in
NetCDF [7], HDF [8], or binary format, manipulate those data
sets in a flexible way, and allow a user to intelligently choose
data that a user is interested in.

The second challenge is to access data efficiently. The
model simulation output data often are generated under High
Performance Computing (HPC) environments and saved on
Parallel File Systems (PFS), such as General Parallel File
System (GPFS) [9], Lustre [10], and PVFS [11], which are not
accessible by the Hadoop framework. Hence, a data movement
phase, transferring target data from PFS to HDFS, is inevitable.
Current data movement is executed with “copy”.

 There are few open-source Hadoop tools intending to
visualize Earth science data resident in HDFS. For example,
Hue [12] is an open source Web interface for analyzing data
with any Apache Hadoop. It currently has 2D XY plot and
histgram plot. However, visualization in Earth science
applications demand more sophisticated visualization similar to
IDL [13]. At the time of writing this paper, there is no IDL
support to directly access HDFS-resident data. R [14] has quite
powerful visualization and statistical analysis tools. However,
we find its bridge to HDFS, rhdfs [15] , cannot handle a large
CSV file (~ 1GB).

In this paper, we propose a Hadoop-based visualization and
diagnosis framework for Earth science data as illustrated in
Figure 1. It has (1) a data model to index data, (2) a
transformer to change the data format from NetCDF to CSV
(Comma Separated Value) [16], which is supported by HDFS.
With this data model, data can be processed with common
operations such as maximize, sum, and subset through HIVE
[17] and Cloudera Impala [18] and consequently typical data
diagnoses can be performed. In addition, HIVE allows a user to
implement User-Defined Functions (UDFs), (3) a technique to

visualize and diagnose HDFS-resident data with the popular
visualization and diagnosis tool, IDL, (4) a concurrent Hadoop
reader to speed up the process of reading HDFS-resident data
for visualization and diagnosis, (5) a dynamic Hadoop reader
to transfer data from PFS to HDFS so as to dynamically
visualize and diagnose the PFS-resident data. The cloud
resolve mode simulation outputs are used for testing and
evaluating this framework.

The rest of paper is organized as follows. Section II
introduces data model as well as data transformation. Section
III presents our Hadoop-based visualization and diagnosis tools
and their performance. Section IV discusses unresolved issues
and Section V summarizes the results.

II. DATA MODEL AND TRANSFORMER

A. Data Model
Since NetCDF4 supports HDF and binary data format can

be converted to NetCDF or CSV, we will focus on NetCDF in
this paper. Our data model is as follows: Read a NetCDF file,
write it out in a text (CSV) format and provide a file with the
relevant metadata (e.g., unit and time stamp) for reconstructing
it into CFMC-NetCDF in the future. (CFMC-NetCDF is a
NetCDF compliant with Climate and Forecast Metadata
Convection.) A subset data file will be available in CFMC-
NetCDF.

 The style of one variable, one time frame per file is used
for a large simulation file (e.g., 1GB for one variable per time
frame) while one variable, multiple time frames per file is used
for a small simulation output (e.g., 10MB for one variable per
time frame). For the tools built on top of HDFS such as HIVE,
Impala, or Hadoop Stream “cat” function, all files in an HDFS
directory are processed as a whole. As long as a data item
(e.g., temperature) is indexed (e.g., time, layer, latitude,
longitude), data can be processed independent of whether they
are in a file or a directory. In this way, data output from an
individual subdomain (e.g., MPI subdomain) can be assembled
and processed as a whole.

B. Data Transform
A parallel data transformer has been developed to convert

NU-WRF/GCE simulation output data from the format of
NetCDF to CSV with Climate and Forecast Metadata
Convection (CFMC) [19] according to our above data model.
The parallelism is implemented with MPI [20]. As shown in
Figure 2, this transformer currently supports two kinds of
simulation outputs: (1) one small domain. This is used in a
long-time simulation with a large number of WRF/GCE output

This work is sponsored by the NASA Advanced Information Systems
Technology

 Figure 2 A parallel NetCDF to CSV format transformer: (a) Support one small domain. (b) Support one large domain that consists
of subdomains.

CRM output
CRM output
CRM output

CRM output
thread

thread
thread
thread

output

output
output
output

CRM output

thread

thread
thread
thread

output

for each layer

files, (2) one large domain consisting of subdomains. This is
used in a short-time simulation with a high resolution grid.

III. VISUALIZATION AND DIAGNOSIS IN HADOOP

A. Test Planforms
Our NASA NCCS Hadoop cluster has 34 nodes with

InfiniBand FDR interconnect. Each node has 16 cores (not
hyperthreaded) of Intel CPU E5-2670@2.6GHz, 16GB RAM,
and 2TB disk. Each core has 2.6 GB memory. Cloudera 5.4.1
is used. In addition, we use 17 nodes at the IIT cluster: one
master node and eight slave nodes for Hadoop and other eight
nodes as OrangeFS [21] server nodes. We use OrangeFS
version 2.8.6 that is the commercial version of PVFS2. Each
node is equipped with two 2.3GHz Opteron quad-core
processors, 8GB memory, and a 250 GB 7200 RPM SATA
hard drive. All nodes are connected through one Gigabit
Ethernet. Both Hadoop 1.0 and Hadoop 2.5.2 are used.

B. Data
In this paper, we use the cloud-resolving weather

simulation output from a NU-WRF model with a 600x552x60
grid of 3km resolution and 48 hour simulation time. The output
is hourly and has 10 variables. Its original output is in NetCDF.
Each file has one variable and one time stamp. Its data format

has 6 columns: row id, time stamp, layer, latitude, longitude,
variable. With our parallel NetCDF-to-CSV transformer, one
CSV file has 999,380,097 bytes. For one varialbe, there are 48
files. For all 10 variables, there are 480 files with about
465GB in total.

In this paper, we will report the experiment results with one
variable, rain (qr), in 48 output files.

C. Visualization with IDL
IDL is a powerful and widely used visualization and

diagnosis tool, especially in geoscience applications. A
significant number of IDL tools have been developed by
researchers and other users. So reusing those tools for
visualizing and diagnosing HDFS-resident data is highly
desirable. At the time of writing this paper, there is no IDL
support to directly access HDFS-resident data.

We have developed a prototype to use Java to read HDFS-
resident data and save as a Java object. In addition, we
developed an IDL wrapper to read data out of that Java object
and pass them to an IDL code for visualization and diagnosis.
Although this approach is feasible, it incurs data conversion
overhead from Java to IDL. In addition, such a wrapper has to
be rewritten for a different IDL application.

 After investigating the existing IDL data input features, we

Figure 3 Illustration of visualization and subsetting. These four plots show rain (qr) of the surface layer in four
different time frames. A small red box encloses the data subset around the maximum qr value. It varies among
four time frames.

have developed a solution: (1) Use Hadoop Streaming “cat”
function to read the HDFS-reside data and write into the
standard output (terminal), (2) Use IDL to read this standard
output and visualize and diagnose the data. In this way, we
only need to modify the input function of an existing IDL code
so as to read the data through the standard input. Our initial
experiments show that is a general and feasible approach. For
example, it takes ~14 minutes to visualize 2D data and create
an animation (movie) of 48 HDFS-resident CSV files with
~48GB in total. On average, each file takes 17.5 seconds to
read and visualize, of which 15 seconds is for reading each file
out of HDFS. For the same visualization with Linux “cat”, it
takes 17 minutes at NASA Discover supercomputer where the
data files is stored in IBM GPFS files sytem.

D. Subset and diagnosis
With our data model, HDFS-resident data items with the

corresponding indexes can be processed straightforwardly
with HIVE and Impala. In particular, we can perform
subsetting and other common diagnosis calculations such as
maximize, sum, and average. To illustrate this approach, we
develop a HIVE script on one file with one time frame to (1)
Get the maximum value of a variable (qr) of the surface layer,
(2) Get the coordinate (latitude, longitude) with that maximum
qr value, (3) Subset a box of data points around that maximum
qr point. The box is constructed with one-degree extension in
four directions of that maximum qr point. After that, we
develop a bash shell script to run through all 48 files (e.g., 48
time frames). Without any optimization, it takes about 104
minutes to complete this subsetting process. To speed it up,
we develop a similar code for Impala. The same subsetting
processing takes about 13 minutes without any optimization.
In future, we plan to optimize the performance. For example,
partition on “layer” is expected to improve the performance
since the target data are a subset within a layer.

One interesting observation is that it only takes a few
hours for an inexperienced HIVE and Impala researcher to
develop codes for this adaptive subsetting. We believe that
productivity using HIVE and Impala for subsetting and
common diagnosis is higher than using traditional parallel
programming such as MPI.

E. Concurrent Hadoop reader
Currently we use one node in Hadoop cluster to perform

visualization and analysis with IDL. IDL has multi-thread and
multi-node features for handling a large domain. We will
explore that feature in the future.

In the case of one visualization node in HDFS, one
visualization job can have multiple tasks, and each task
visualizes one file. When creating an animation (movie) of a
time-series simulation output, the visualization has to perform
on each file in the same order as the simulation time sequence.
In addition, typical visualization is on a whole file rather than
blocks stored in HDFS. Therefore reading data out of HDFS
is one bottleneck for typical visualization applications.

We have developed a solution to address this issue. Figure
4 show the procedure of proposed visualization mechanism. To
accelerate the read process, we deploy concurrent read to

improve the read throughput. Since HDFS distributes data
blocks across the multiple data nodes, the blocks of a file will
be read concurrently from multiple data nodes and aggregated
into a whole file. The visualization task starts only when one
file has been fully read.

The number of concurrent read threads are controlled. This
is because (1) memory capacity is limited; (2) access to data
nodes could increase I/O interference and bursty gathering
communication could cause I/O contention, which eventually
leads heavy latency for a visualization task. As shown in
Figure 4, after visualizing File 1, the corresponding memory
resource is released for next concurrent read operation that will
aggregate a whole file in memory. While File 2 is being
visualized, multiple threads are reading blocks and aggregating
them into File 3. 15 concurrent threads are used for measuring
I/O events since 15 blocks of 64MB just covers one data file of
999,380,097 bytes. This processing flow can be pipelined. In
adition, memory usage has to be tuned accordingly for optimal
performance.

Figure 4 The process flow of visualizing time-series data files
resident in HDFS. HDFS-resident data are read concurrently.
Once a target file is fully aggregated, visualizing that file starts.

Figure 5 The performance of concurrent read. Each file is about
1GB and there are 48 files in total. The baseline is a sequential
read.

The performance of concurrent read is shown in Figure 5.
The experiment is conducted under eight HDFS data nodes

Visualization node

Memory

Visualization
function

File 1 File �

Concurrent read

Read and visualize data in a pipelined manner

HDFS

Image.1 Image.2

…"

File 3

0
100
200
300
400
500
600
700

12 4 8 16 32 48

T
im

e
(s

ec
on

ds
)

Number of Files

Concurrent Read Sequential Read

environment. The reader (initiated at one node) reads input file
one by one but concurrently reads blocks. It takes 367 seconds
and 641 seconds for concurrent reads and sequential reads,
respectively. It is ~57% speedup.

F. Dynamic Hadoop reader
Typically high-performance computing applications output

and store their data in PFS. Some simulation data files can be
huge (e.g., over 100TB). In addition, only some events in
those data files are sufficiently interesting for further analysis.
For example, only a small region around the center of
Hurricane or tornado is very important for detailed analysis.
Therefore, an efficient approach is to first perform
visualization and diagnosis on part of data resident in PFS to
search and identify those interesting events before copying
those files onto HDFS. To address this issue, we have
developed a dynamic Hadoop reader, so-called PortHadoop, to
fetch user-specified data files from PFS to the memory of a
Hadoop cluster.

PortHadoop supports multiple PFS implementations
including PVFS2 and CephFS [22]. PortHadoop does not
intend to reconcile PFS and HDFS. Instead, it supports direct
data access between these two file systems. PortHadoop reads
PFS data directly from a (remote) PFS and stores the data onto
PortHadoop memory system. Both the interface of PFS and
HDFS are unchanged. To access and process a file resident in
PFS, a user only needs to add “PFS:” in front of the directory
where the target file is located. To achieve those goals, we
have modified multiple existing components in Hadoop
system and created several new components, ensured data
alignment and data integrity, developed a data prefetching
mechanism to further utilize the bandwidth between PFS and
Hadoop, and finally developed a fault tolerant mechanism. We
elaborate design and implementation details in a separate
paper[23].

Visualization and diagnosis often require an entire file.
Therefore, we configure each map task to process one entire
file rather than a block. In our experiment, 48 files are used.
Each file is about 1GB.

Figure 6 The performance of dynamic Hadoop reader. Data is
first read directly from remote PFS and then processed with Map
function of a MapReduce application (i.e., WordCount). Start
time indicates the time when a read event begins. Elapsed time is
the duration for a whole event.

Eight nodes are used for PFS (OrangeFS) while other eight
nodes are used for Hadoop slave nodes. Each Hadoop slave
node is configured with three concurrent map tasks. OrangeFS
is configured to enable Hadoop slave nodes as clients to
access data resident in PFS. In this experiment, we focus on
measuring the IO event time. Therefore, we only turn on Map
function. With simultaneously calling Hadoop “put” command,
concurrently copying 48 files from PFS to HDFS with one
replication takes 61 minutes. However, it takes less than 13
minutes with our dynamic Hadoop reader for reading data
from PFS and processed with Map function. On average, a
map operation takes about 5 minutes for processing a file of
1GB.

 Figure 6 shows the performance of our dynamic reader
where I/O events are concurrent. Contention for bandwidth
and interference in data accesses cause heavy latency. At the
beginning, reading a file takes ~170 seconds. However, it
tasks about 10 seconds after the initial stage, where only a few
concurrent I/O requests to remote PFS.

Conventional MapReduce adopts backup tasks to
accelerate the overall completion time for a job, namely
speculative execution. When only a few tasks remain and
computation resources idle, the speculative execution is
triggered. In our experiment, there are about 63 I/O events
rather than 48 I/O events. This is because speculative map
tasks require extra I/O events. Although disabling speculative
execution reduces total number of I/O events, we found that
overall performance becomes worse in our dynamic reader.

IV. DISCUSSION
We have developed a method to enable R to read a large

file on HDFS with functions in rhdfs. rhdfs provides two read
functions: hdfs.read() and hdfs.line.reader(), both of which
have limitations on the size of a file to be read. For
hdfs.read(), the default value of read size is 64KB. However,
it can only read 64KB regardless of an assigned value of read
size. For hdfs.line.reader(), its default value of read size is
1000 lines, which can be changed to read more lines with the
available memory of JVM. Thus, through executing multiple
times of hdfs.line.reader(), we can read a CSV file up to
12GB in a Hadoop node with 16GB memory. We will test
this solution with multiple Hadoop nodes.

The current visualization strategy uses one visualization
data node and input data are stored across data nodes.
Visualization is serial. We plan to utilize the IDL features of
multi-thread per node and multiple nodes to make it parallel.
This becomes very important in processing a large file with
over 30 GB.
 In our current dynamic reader, PFS-resident data is fetched
to memory of Hadoop cluster so that MapReduce application
such as Word Count can process. We plan to develop interface
for high-level Hadoop tools such as HIVE to facilitate
processing the PFS-resident data. In addition, we also plan to
add a reformat tool to enable HIVE to process NetCDF files.
 Converting from NetCDF to CSV takes computing
resource and uses more disk space. We will investigate the

0

50

100

150

200

0

200

400

600

800

0 20 40 60 80 E
la

ps
ed

T
iim

e
(s

ec
on

ds
)

St
ar

tT
im

e
(s

ec
on

d)

I/O Events

Start Time Elapsed Time

techniques to allow Hadoop tools such as HIVE to directly
process NetCDF files resident in Hadoop.

V. SUMMARY
 We have developed a Hadoop-based framework for
visualizing and diagnosing Earth science data. Its data model
allows for transforming data from NetCDF to CSV with
indexes. Consequently, Earth science data can be stored in
HDFS and straightforwardly processed by Hadoop-based tools
for subsetting and diagnosis. In addition, its IDL tool is able to
visualize and diagnose HDFS-resident data accessed through
Hadoop streaming “cat”. Moreover, its concurrent Hadoop
reader is shown to speed up the process of reading data from
HDFS. Finally, its dynamic Hadoop reader is capable of
fetching PFS-resident data and making them ready for
MapReduce applications including subsetting and diagnosis.

ACKNOWLEDGMENT
We would like to thank the NASA Center for Climate

Simulation (NCCS) for providing Hadoop cluster and Discover
supercomputing resources and Daniel Duffy, John Thompson,
Garrsion Vaughan, and Michael Bowen for sharing their
insight on Hadoop technology. We also would like to thank
Beau Legeer of Exelis for his help in prototyping the IDL code
for reading streaming data.

Tao, Matsui, Li, Zhou and Sun are supported by NASA
AIST 2014 and Yang, Liu and Sun are supported by NSF
under NSF grants CNS-0751200, CCF-0937877, and CNS-
1162540.

REFERENCES
[1] “NASA Web.” [Online]. Available:

http://www.nasa.gov/press/goddard/2014/november/nasa-computer-
model-provides-a-new-portrait-of-carbon-
dioxide/index.html#.VePLSd64N1L.

[2] W.-K. Tao and J. Simpson, “The Goddard cumulus ensemble model.
Part I: Model description,” Terr Atmos Ocean. Sci, vol. 4, no. 1, pp. 35–
72, 1993.

[3] W.-K. Tao, “Goddard Cumulus Ensemble (GCE) model: Application
for understanding precipitation processes,” in Cloud Systems,
Hurricanes, and the Tropical Rainfall Measuring Mission (TRMM),
Springer, 2003, pp. 107–138.

[4] W.-K. Tao, S. Lang, X. Zeng, X. Li, T. Matsui, K. Mohr, D. Posselt, J.
Chern, C. Peters-Lidard, P. M. Norris, I.-S. Kang, I. Choi, A. Hou, K.-
M. Lau, and Y.-M. Yang, “The Goddard Cumulus Ensemble model

(GCE): Improvements and applications for studying precipitation
processes,” Atmospheric Res., vol. 143, pp. 392–424, Jun. 2014.

[5] C. D. Peters-Lidard, E. M. Kemp, T. Matsui, J. A. Santanello, S. V.
Kumar, J. P. Jacob, T. Clune, W.-K. Tao, M. Chin, and A. Hou,
“Integrated modeling of aerosol, cloud, precipitation and land processes
at satellite-resolved scales,” Environ. Model. Softw., vol. 67, pp. 149–
159, 2015.

[6] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop
Distributed File System,” in 2010 IEEE 26th Symposium on Mass
Storage Systems and Technologies (MSST), 2010, pp. 1–10.

[7] “NetCDF.” [Online]. Available:
http://www.unidata.ucar.edu/software/netcdf/.

[8] M. Folk, A. Cheng, and K. Yates, “HDF5: A file format and I/O library
for high performance computing applications,” in Proceedings of
Supercomputing, 1999, vol. 99, pp. 5–33.

[9] F. B. Schmuck and R. L. Haskin, “GPFS: A Shared-Disk File System
for Large Computing Clusters,” in FAST, 2002, vol. 2, p. 19.

[10] S. Donovan, G. Huizenga, A. J. Hutton, C. C. Ross, M. K. Petersen, and
P. Schwan, “Lustre: Building a file system for 1000-node clusters,” in
Proceedings of the Linux Symposium, 2003.

[11] R. Ross and R. Latham, “PVFS: A Parallel File System,” in
Proceedings of the 2006 ACM/IEEE Conference on Supercomputing,
New York, NY, USA, 2006.

[12] “Hue.” [Online]. Available: http://gethue.com.
[13] “IDL.” [Online]. Available:

http://www.exelisvis.com/ProductsServices/IDL.aspx.
[14] “R-project.” [Online]. Available: https://www.r-project.org.
[15] “rhdfs.” [Online]. Available:

https://github.com/RevolutionAnalytics/rhdfs.
[16] “CSV.” [Online]. Available: https://en.wikipedia.org/wiki/Comma-

separated_values.
[17] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H.

Liu, P. Wyckoff, and R. Murthy, “Hive: A Warehousing Solution over a
Map-reduce Framework,” Proc VLDB Endow, vol. 2, no. 2, pp. 1626–
1629, Aug. 2009.

[18] M. Kornacker and J. Erickson, “Cloudera Impala: Real Time Queries in
Apache Hadoop, For Real,” Ht Tpblog Cloudera
Comblog201210cloudera-Impala-Real-Time-Queries--Apache-Hadoop-
-Real, 2012.

[19] “CFMC.” [Online]. Available:
https://earthdata.nasa.gov/standards/climate-and-forecast-cf-metadata-
conventions.

[20] M. Snir, MPI--the Complete Reference: The MPI core, vol. 1. MIT
press, 1998.

[21] M. Moore, D. Bonnie, B. Ligon, M. Marshall, W. Ligon, N. Mills, E.
Quarles, S. Sampson, S. Yang, and B. Wilson, “OrangeFS: Advancing
PVFS,” FAST Poster Sess., 2011.

[22] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long, and C. Maltzahn,
“Ceph: A scalable, high-performance distributed file system,” in
Proceedings of the 7th symposium on Operating systems design and
implementation, 2006, pp. 307–320.

[23] X. Yang, N. Liu, B. Feng, X.-H. Sun, and S. Zhou, “PortHadoop:
Support Direct HPC Data Processing in Hadoop,” in 2015 IEEE
International Conference on Big Data, Santa Clara, California.

