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Abstract—With rapidly growing computing power, ultra 
high-resolution Earth science simulations with a long period of 
time are feasible. However, it is still very challenging to distribute 
and analyze a huge amount of simulation results, which could be 
over 100TB. One key reason is that typical Earth science data are 
represented in NetCDF, which is not supported by the popular 
and powerful Hadoop Distribute File System (HDFS) and 
consequently cannot be analyzed with tools based on HDFS. In 
this paper, we propose a Hadoop-based visualization and 
diagnosis framework for visualizing and analyzing Earth science 
data.  It has a data model to transform data from the format of 
NetCDF to CSV (Comma Separated Value) that is supported by 
HDFS. With this model, data can be processed with the 
operations such as maximize, sum, and subset through HIVE and 
Cloudera Impala and, therefore, typical diagnoses can be 
performed. In addition, the framework has a technique to 
visualize and diagnose HDFS-resident data with the popular 
visualization and diagnosis tool, IDL. To speed up this process, a 
concurrent reader is developed to obtain HDFS-resident data. 
Moreover, a dynamic reader to transfer data from a parallel file 
system (PFS) to HDFS is developed to efficiently visualize and 
diagnose PFS-resident data. The cloud resolve mode simulations 
are used for testing and evaluating this framework.  

Keywords—Hadoop; MapReduce; Visualization; NetCDF; 
Cloud Resolve Model 

I.   INTRODUCTION  
With rapidly growing computing power, a  high-

performance computer with hundreds of thousands of 
computer processors is available for performing ultra-high 
resolution and long-time Earth science simulations. For 
example, NASA simulated CO2 global transport from May 
2005 to June 2007 with NASA GEO-5 model on a 7km grid. 
The simulation produced nearly four petabytes (million billion 
bytes) of data [1]. 

Of climate and weather simulations, one challeng is how to 
model cloud. A cloud-resolving model (CRM) is an 
atmospheric numerical model that can numerically resolve 
clouds and cloud systems at 0.25~5km horizontal grid spacings 
such as Goddard Cumulus Ensemble (GCE) [2] [3] [4] and NU 

WRF [5].The main advantage of the CRM is that it can allow 
explicit interactive processes between microphysics, radiation, 
turbulence, surface, and aerosols without subgrid cloud 
fraction, overlapping and convective parameterization. 
However, it is still very challenging to distribute and analyze 
huge amount of simulation results which could be over 100TB. 
For example, a 5-day simulation of 1km GCE model  with the 
resolution of 256x256x104 produce a single output data size of 
~60GB and ~7.2TB in total. With ultra high resolution, 
4096x4096x104, a 2-3 day simulation  produces one single-
precision variable data file of ~7GB and 125TB in total with all 
the relevant variables. 

Because of their fine resolution and complex physical 
processes, it is challenging for the CRM community to 1) 
visualize/inter-compare CRM simulations, 2) diagnose key 
processes for cloud-precipitation formation and intensity, and 
3) evaluate against NASA’s field campaign data and L1/L2 
satellite data products due to large data volume and complexity 
of CRM’s physical processes. Hence, we need to develop tools 
to combine those distributed/local arrays for analysis. In 
addition, analyzing large data (~TB) with a desktop computer 
is not practical. Furthermore, distributing those large data sets 

 

 
 

Figure 1 Illustration of Hadoop-based visualization and 
diagnosis framework. Data resident in PFS or HDFS are read 
into memory and processed to be ready for MapReduce 
applications and visualization and diagnosis applications. 



through downloading from a website is problematic. If a user 
can quickly visualize and diagnose the targeted data, 
movement of voluminous data can be avoided. Similar 
problems also exist for other Earth science simulations. 

MapReduce is a distributed computing framework for 
large-scale data analysis. It has gained growing interest in 
geoscience communities due to its merits of easy 
programming, automatic parallelism, and fault tolerance. 
Hadoop framework is the most popular open-source 
implementtion of MapReduce, which consists of Hadoop 
MapReduce and Hadoop Distributed File System (HDFS) [6]. 

 However, the first challenge in applying Hadoop in Earth 
science is how to allow Hadoop to read climate and weather 
simulation as well as observation data, which are often in 
NetCDF [7], HDF [8], or binary format, manipulate those data 
sets in a flexible way, and allow a user to intelligently choose 
data that a user is interested in. 

The second challenge is to access data efficiently. The 
model simulation output data often are generated under High 
Performance Computing (HPC) environments and saved on 
Parallel File Systems (PFS), such as General Parallel File 
System (GPFS) [9], Lustre [10], and PVFS [11], which are not 
accessible by the Hadoop framework. Hence, a data movement 
phase, transferring target data from PFS to HDFS, is inevitable. 
Current data movement is executed with “copy”. 

    There are few open-source Hadoop tools intending to 
visualize Earth science data resident in HDFS. For example, 
Hue [12] is an open source Web interface for analyzing data 
with any Apache Hadoop. It currently has 2D XY plot and 
histgram plot. However, visualization in Earth science 
applications demand more sophisticated visualization similar to 
IDL [13]. At the time of writing this paper, there is no IDL 
support to directly access HDFS-resident data. R [14] has quite 
powerful visualization and statistical analysis tools. However, 
we find its bridge to HDFS, rhdfs  [15] , cannot handle a large 
CSV file (~ 1GB).  

In this paper, we propose a Hadoop-based visualization and 
diagnosis framework for Earth science data as illustrated in 
Figure 1. It has (1) a data model to index data, (2) a 
transformer to change the data format  from NetCDF to CSV 
(Comma Separated Value) [16], which is supported by HDFS. 
With this data model, data can be processed with common 
operations such as maximize, sum, and subset through HIVE 
[17] and Cloudera Impala [18] and consequently typical data 
diagnoses can be performed. In addition, HIVE allows a user to 
implement User-Defined Functions (UDFs), (3) a technique to 

visualize and diagnose HDFS-resident data with the popular 
visualization and diagnosis tool, IDL, (4) a concurrent Hadoop 
reader to speed up the process of reading HDFS-resident data 
for visualization and diagnosis, (5) a dynamic Hadoop reader 
to transfer data from PFS to HDFS so as to dynamically 
visualize and diagnose the PFS-resident data. The cloud 
resolve mode simulation outputs are used for testing and 
evaluating this framework. 

The rest of paper is organized as follows. Section II 
introduces data model as well as data transformation. Section 
III presents our Hadoop-based visualization and diagnosis tools 
and their performance.   Section IV discusses unresolved issues 
and Section V summarizes the results. 

II.   DATA MODEL AND TRANSFORMER 

A.   Data Model 
Since NetCDF4 supports HDF and binary data format can 

be converted to NetCDF or CSV, we will focus on NetCDF in 
this paper. Our data model is as follows: Read a NetCDF file, 
write it out in a text (CSV) format and provide a file with the 
relevant metadata (e.g., unit and time stamp) for reconstructing 
it into CFMC-NetCDF in the future. (CFMC-NetCDF is a 
NetCDF compliant with Climate and Forecast Metadata 
Convection.) A subset data file will be available in CFMC-
NetCDF. 

 The style of one variable, one time frame per file is used 
for a large simulation file (e.g., 1GB for one variable per time 
frame) while one variable, multiple time frames per file is used 
for a small simulation output (e.g., 10MB for one variable per 
time frame). For the tools built on top of HDFS such as HIVE, 
Impala, or Hadoop Stream “cat” function, all files in an HDFS 
directory are processed as a whole. As long as a  data item 
(e.g., temperature) is indexed (e.g., time, layer, latitude, 
longitude), data can be processed independent of whether they 
are in a file or a directory. In this way, data output from an 
individual subdomain (e.g., MPI subdomain) can be assembled 
and processed as a whole. 

B.   Data Transform 
A parallel data transformer has been developed to convert 

NU-WRF/GCE simulation output data from the format of 
NetCDF to CSV with Climate and Forecast Metadata 
Convection (CFMC) [19] according to our above data model. 
The parallelism is implemented with MPI [20]. As shown in 
Figure 2, this transformer currently supports two kinds of 
simulation outputs: (1) one small domain. This is used in a 
long-time simulation with a large number of WRF/GCE output 
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 Figure 2 A parallel NetCDF to CSV format transformer: (a) Support one small domain. (b) Support one large domain that consists 
of subdomains. 
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files, (2) one large domain consisting of subdomains. This is 
used in a short-time simulation with a high resolution grid. 

III.  VISUALIZATION AND DIAGNOSIS IN HADOOP 

A.   Test Planforms 
Our NASA NCCS Hadoop cluster has 34 nodes with 

InfiniBand FDR interconnect. Each node has 16 cores (not 
hyperthreaded) of Intel CPU E5-2670@2.6GHz, 16GB RAM, 
and 2TB disk. Each core has 2.6 GB memory. Cloudera 5.4.1 
is used. In addition, we use 17 nodes at the IIT cluster: one 
master node and eight slave nodes for Hadoop and other eight 
nodes as OrangeFS [21] server nodes. We use OrangeFS 
version 2.8.6 that is the commercial version of PVFS2. Each 
node is equipped with two 2.3GHz Opteron quad-core 
processors, 8GB memory, and a 250 GB 7200 RPM SATA 
hard drive.  All nodes are connected through one Gigabit 
Ethernet. Both Hadoop 1.0 and Hadoop 2.5.2 are used. 

B.   Data 
In this paper, we use the cloud-resolving weather 

simulation output from a NU-WRF model with a 600x552x60 
grid of 3km resolution and 48 hour simulation time. The output 
is hourly and has 10 variables. Its original output is in NetCDF.  
Each file has one variable and one time stamp. Its data format 

has 6 columns: row id, time stamp, layer, latitude, longitude, 
variable. With our parallel NetCDF-to-CSV transformer, one 
CSV file has 999,380,097 bytes. For one varialbe, there are 48 
files. For all 10 variables, there are 480 files with  about 
465GB in total. 

In this paper, we will report the experiment results with one 
variable, rain (qr), in 48 output files. 

C.   Visualization with IDL 
IDL is a powerful and widely used visualization and 

diagnosis tool, especially in geoscience applications. A 
significant number of IDL tools have been developed by 
researchers and other users. So reusing those tools for 
visualizing and diagnosing HDFS-resident data is highly 
desirable. At the time of writing this paper, there is no IDL 
support to directly access HDFS-resident data.  

We have developed a prototype to use Java to read HDFS-
resident data and save as a Java object. In addition, we 
developed an IDL wrapper to read data out of that Java object 
and pass them to an IDL code for visualization and diagnosis. 
Although this approach is feasible, it incurs data conversion 
overhead from Java to IDL. In addition, such a wrapper has to 
be rewritten for a different IDL application.   

 After investigating the existing IDL data input features, we 

 
Figure 3 Illustration of visualization and subsetting. These four plots show rain (qr) of the surface layer in four 
different time frames. A small red box encloses the data subset around the maximum qr value. It varies among 
four time frames. 



have developed a solution: (1) Use Hadoop Streaming “cat” 
function to read the HDFS-reside data and write into the 
standard output (terminal), (2) Use IDL to read this standard 
output and visualize and diagnose the data. In this way, we 
only need to modify the input function of an existing IDL code 
so as to read the data through the standard input. Our initial 
experiments show that is a general and feasible approach. For 
example, it takes ~14 minutes to visualize 2D data and create 
an animation (movie) of 48 HDFS-resident CSV files with 
~48GB in total. On average, each file takes 17.5 seconds to 
read and visualize, of which 15 seconds is for reading each file 
out of HDFS. For the same visualization with Linux “cat”, it 
takes 17 minutes at NASA Discover supercomputer where the 
data files is stored in IBM GPFS files sytem. 

D.   Subset and diagnosis 
With our data model, HDFS-resident data items with the 

corresponding indexes can be processed straightforwardly 
with HIVE and Impala. In particular, we can perform 
subsetting and other common diagnosis calculations such as 
maximize, sum, and average. To illustrate this approach, we 
develop a HIVE script on one file with one time frame to (1) 
Get the maximum value of a variable (qr) of the surface layer, 
(2) Get the coordinate (latitude, longitude) with that maximum 
qr value, (3) Subset a box of data points around that maximum 
qr point. The box is constructed with one-degree extension in 
four directions of that maximum qr point. After that, we 
develop a bash shell script to run through all 48 files (e.g., 48 
time frames). Without any optimization, it takes about 104 
minutes to complete this subsetting process. To speed it up, 
we develop a similar code for Impala. The same subsetting 
processing takes about 13 minutes without any optimization. 
In future, we plan to optimize the performance. For example, 
partition on “layer” is expected to improve the performance 
since the target data are a subset within a layer. 

One interesting observation is that it only takes a few 
hours for an inexperienced HIVE and Impala researcher to 
develop codes for this adaptive subsetting. We believe that 
productivity using HIVE and Impala for subsetting and 
common diagnosis is higher than using traditional parallel 
programming such as MPI. 

E.   Concurrent Hadoop reader  
Currently we use one node in Hadoop cluster to perform 

visualization and analysis with IDL. IDL has multi-thread and 
multi-node features for handling a large domain. We will 
explore that feature in the future.  

In the case of one visualization node in HDFS, one 
visualization job can have multiple tasks, and each task 
visualizes one file. When creating an animation (movie) of a 
time-series simulation output, the visualization has to perform 
on each file in the same order as the simulation time sequence. 
In addition, typical visualization is on a whole file rather than 
blocks stored in HDFS.  Therefore reading data out of HDFS 
is one bottleneck for typical visualization applications.    

We have developed a solution to address this issue. Figure 
4 show the procedure of proposed visualization mechanism. To 
accelerate the read process, we deploy concurrent read to 

improve the read throughput. Since HDFS distributes data 
blocks across the multiple data nodes, the blocks of a file will 
be read concurrently from multiple data nodes and aggregated 
into a whole file. The visualization task starts only when one 
file has been fully read.  

The number of concurrent read threads are controlled. This 
is because (1) memory capacity is limited; (2)  access to data 
nodes could increase I/O interference and bursty gathering 
communication could cause I/O contention, which eventually 
leads heavy latency for a visualization task. As shown in 
Figure 4,  after visualizing File 1,  the corresponding memory 
resource is released for next concurrent read operation that will 
aggregate a whole file in memory. While File 2 is being 
visualized, multiple threads are reading blocks and aggregating 
them into File 3. 15 concurrent threads are used for measuring 
I/O events since 15 blocks of 64MB just covers one data file of 
999,380,097 bytes. This processing flow can be pipelined. In 
adition, memory usage has to be tuned accordingly for optimal 
performance. 

 
Figure 4 The process flow of visualizing time-series data files 
resident in HDFS. HDFS-resident data are read concurrently. 
Once a target file is fully aggregated, visualizing that file starts. 

 

 
Figure 5 The performance of concurrent read. Each file is about 
1GB and there are 48 files in total. The baseline is a sequential 
read. 
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environment. The reader (initiated at one node) reads input file 
one by one but concurrently reads blocks. It takes 367 seconds 
and 641 seconds for concurrent reads and sequential reads, 
respectively. It is ~57% speedup.  

F.   Dynamic Hadoop reader  
Typically high-performance computing applications output 

and store their data in PFS.  Some simulation data files can be  
huge (e.g., over 100TB). In addition, only some events in 
those data files are sufficiently interesting for further analysis. 
For example, only a small region around the center of 
Hurricane or tornado is very important for detailed analysis. 
Therefore, an efficient approach is to first perform 
visualization and diagnosis on part of data resident in PFS to 
search and identify those interesting events before copying 
those files onto HDFS. To address this issue, we have 
developed a dynamic Hadoop reader, so-called PortHadoop, to 
fetch user-specified data files from PFS to the memory of a 
Hadoop cluster.  

PortHadoop supports multiple PFS implementations 
including PVFS2 and CephFS [22]. PortHadoop does not 
intend to reconcile PFS and HDFS. Instead, it supports direct 
data access between these two file systems. PortHadoop reads 
PFS data directly from a (remote) PFS and stores the data onto 
PortHadoop memory system. Both the interface of PFS and 
HDFS are unchanged. To access and process a file resident in 
PFS, a user only needs to add “PFS:” in front of the directory 
where the target file is located. To achieve those goals, we 
have modified multiple existing components in Hadoop 
system and created several new components, ensured data 
alignment and data integrity, developed a data prefetching 
mechanism to further utilize the bandwidth between PFS and 
Hadoop, and finally developed a fault tolerant mechanism. We 
elaborate design and implementation details in a separate 
paper[23].  

Visualization and diagnosis often require an entire file. 
Therefore, we configure each map task to process one entire 
file rather than a block.  In our experiment, 48 files are used. 
Each file is about 1GB.  

 
 

Figure 6 The performance of dynamic Hadoop reader. Data is 
first read directly from remote PFS and then processed with Map 
function of a MapReduce application (i.e., WordCount). Start 
time indicates the time when a read event begins. Elapsed time is 
the duration for a whole event. 

Eight nodes are used for PFS (OrangeFS) while other eight 
nodes are used for Hadoop slave nodes. Each Hadoop slave 
node is configured with three concurrent map tasks. OrangeFS 
is configured to enable Hadoop slave nodes as clients to 
access data resident in PFS. In this experiment, we focus on 
measuring the IO event time. Therefore, we only turn on Map 
function. With simultaneously calling Hadoop “put” command, 
concurrently copying 48 files from PFS to HDFS with one 
replication takes 61 minutes. However, it takes less than 13 
minutes with our dynamic Hadoop reader for reading data 
from PFS and processed with Map function. On average, a 
map operation takes about 5 minutes for processing a file of 
1GB. 

  Figure 6 shows the performance of our dynamic reader 
where I/O events are concurrent. Contention for bandwidth 
and interference in data accesses cause heavy latency.  At the 
beginning, reading a file takes ~170 seconds. However, it 
tasks about 10 seconds after the initial stage, where only a few 
concurrent I/O requests to remote PFS.  

Conventional MapReduce adopts backup tasks to 
accelerate the overall completion time for a job, namely 
speculative execution. When only a few tasks remain and 
computation resources idle, the speculative execution is 
triggered. In our experiment, there are about 63 I/O events 
rather than 48 I/O events. This is because speculative map 
tasks require extra I/O events. Although disabling speculative 
execution reduces total number of I/O events, we found that 
overall performance becomes worse in our dynamic reader. 

IV.  DISCUSSION 
We have developed a method to enable R to read a large 

file on HDFS with functions in rhdfs. rhdfs provides two read 
functions: hdfs.read() and hdfs.line.reader(), both of which 
have limitations on the size of a file to be read. For 
hdfs.read(),  the default value of read size is 64KB. However, 
it can only read 64KB regardless of an assigned value of read 
size. For hdfs.line.reader(), its default value of read size is 
1000 lines, which can be changed to read more lines with the 
available memory of JVM. Thus, through executing multiple 
times of hdfs.line.reader(),  we can read a CSV file up to 
12GB in a Hadoop node with 16GB memory.  We will test 
this solution with multiple Hadoop nodes. 

The current visualization strategy uses one visualization 
data node and input data are stored across data nodes. 
Visualization is serial. We plan to utilize the IDL features of 
multi-thread per node and multiple nodes to make it parallel. 
This becomes very important in processing a large file with 
over 30 GB. 
      In our current dynamic reader, PFS-resident data is fetched 
to memory of Hadoop cluster so that MapReduce application 
such as Word Count can process. We plan to develop interface 
for high-level Hadoop tools such as HIVE to facilitate 
processing the PFS-resident data. In addition, we also plan to 
add a reformat tool to enable HIVE to process NetCDF files. 
      Converting from NetCDF to CSV takes computing 
resource and uses more disk space. We will investigate the 
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techniques to allow Hadoop tools such as HIVE to directly 
process NetCDF files resident in Hadoop. 

V.   SUMMARY 
    We have developed a Hadoop-based framework for 
visualizing and diagnosing Earth science data. Its data model 
allows for transforming data from NetCDF to CSV with 
indexes. Consequently, Earth science data can be stored in 
HDFS and straightforwardly processed by Hadoop-based tools 
for subsetting and diagnosis. In addition, its IDL tool is able to 
visualize and diagnose HDFS-resident data accessed through 
Hadoop streaming “cat”. Moreover, its concurrent Hadoop 
reader is shown to speed up the process of reading data from 
HDFS. Finally, its dynamic Hadoop reader is capable of 
fetching PFS-resident data and making them ready for 
MapReduce applications including subsetting and diagnosis.  
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