
Scalable Computing Software Lab, Illinois Institute of Technology 1

The Sluice Gate Theory:

Have we
found a solution for memory wall ?

Keynote, HPC China, Nov. 12, 2015

Xian-He Sun
Illinois Institute of Technology

Chicago, Illinois

sun@iit.edu

mailto:sun@iit.edu

Outline

 Rethinking of Memory Systems

 The Concurrent-AMAT (C-AMAT) Model

 Application Case Studies

 The Memory Sluice Gate Theory

 Conclusion

Scalable Computing Software Lab, Illinois Institute of Technology 2

Reduced
Complexity

& Cost

Higher Quality
of Service

Increased
Productivity

Increased
Efficiency

The Surge of Cloud & Big Data

Improved
Resiliency

Computing become data intensive

Scalable Computing Software Lab, Illinois Institute of Technology 4

1

10

100

1,000

10,000

100,000

1980 1985 1990 1995 2000 2005 2010

Year
P

e
rf

o
rm

a
n
c
e

Memory

Uni-rocessor

Multi-core/many-core processor

The Memory-wall Problem

 Processor performance

increases rapidly

 Uni-processor: ~52% until

2004, ~25% since then

 New trend: multi-core/many-

core architecture

 Intel TeraFlops chip, 2007

 Aggregate processor

performance much higher

 Memory: ~9% per year

 Processor-memory speed gap

keeps increasing

Source: Intel

Source: OCZ

25%

52%

20%

9%

60%

9%

Scalable Computing Software Lab, Illinois Institute of Technology 5

Addressing the HPC Data Challenges

 Understanding system, application, and algorithm relevant to

data access

 Optimizing data access and memory systems

 Developing new (memory) system architectures

 Focus on the memory-wall problem

Trends indicate that the “data tsunami” and “memory-wall”

will continue

Need rethinking from data-centric view in:

Big-Data problem is a HPC problem:

 High Performance Data Processing

(data-intensive HPC)

CPU Registers

<8KB

<0.2~0.5 ns, 500~800 GB/s/core

Cache

<50MB

1-10 ns, 50~150GB/s/core

Main Memory

Giga Bytes

50ns-100ns 5~10GB/s/channel

Disk

Tera Bytes, 5 ms

100~300MB/s

Capacity
Access Time, Bandwidth

Tape

Peta Bytes or

infinite

sec-min

Registers

Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Staging
Xfer Unit

prog./compiler
1-8 bytes

cache cntl

32-128 bytes

OS

4K-4M bytes

user/operator

Mbytes

Upper Level

Lower Level

faster

Larger

Current Solution: Memory Hierarchy

Multi-core

Multi-threading

Multi-issue

Multi-banked Cache

Multi-level Cache

Multi-channel

Multi-rank

Multi-bank

CPU

Cache

Memory

Out-of-order Execution
Speculative Execution
Runahead Execution

Pipelined Cache

Non-blocking Cache

Data Prefetching
Write buffer

Also: (mostly hiding) Memory Concurrency

Parallel File System
Input-Output (I/O)

Disks

Pipeline

Non-blocking

Prefetching
Write buffer

1 2 4 4 10 20

100

400

0

50

100

150

200

250

300

350

400

450

ALU

Inst

FP

Cmp

FP

Mul

L1

Access

FP Div L2

Access

L3

Access

MM

Access

Extremely Unbalanced

Operation Latency

C
y
c
le

s

IO Access 5~15M cycles

Assumption of Current Solutions

 Memory Hierarchy: Locality

 Concurrence: Data access pattern
o Data stream

Performances vary

largely

Existing Memory Metrics

 Miss Rate(MR)
o {the number of miss memory accesses} over {the number of total memory accesses}

 Misses Per Kilo-Instructions(MPKI)
o {the number of miss memory accesses} over {the number of total committed Instructions ×

1000}

 Average Miss Penalty(AMP)
o {the summary of single miss latency} over {the number of miss memory accesses}

 Average Memory Access Time (AMAT)
o AMAT = Hit time + MR×AMP

 Flaw of Existing Metrics

o Focus on a single component or

o A single memory access

Missing memory parallelism/concurrency

The Introduction of APC

 Access Per Cycle (APC)

 APC = A/T

 APC is measured as the number of memory accesses per

memory active cycle or Access Per Memory Active Cycle

(APMAC)

 Benefits of APC (APMAC)

 Separate memory evaluation from CPU evaluation

 Each memory level has its own APC value

 A better understanding of memory system as a whole, and at each layer

 A better understanding of the match between computing capacity and

memory system performance

X.-H. Sun and D. Wang, "APC: A Performance Metric of Memory Systems",

ACM SIGMETRICS Performance Evaluation Review, Volume 40 , Issue 2, 2012.

APC Measurement

 Measure T based on memory (active) cycle

 Can be measured for each layer of a memory hierarchy

 Measure A based on the overlapping mode

 When there are several memory accesses co-existing during the same

clock cycle, T only increases by one

 Difficulty in measure memory cycle A & T

 Hundreds of memory accesses co-exist the memory system

 Hardware cost: one bit

 Concurrence and Data-Centric (memory active cycles) view

D. Wang, X.-H. Sun "Memory Access Cycle and the Measurement of Memory Systems",

IEEE Transactions on Computers, vol. 63, no. 7, pp. 1626-1639, July.2014

APC & IPC: Changing Cache Parallelism

 Changing the number of MSHR entries (121016)

 APC still has the dominant correlation, with average value of 0.9656

 AMAT does not correlate with IPC for most applications

 APC record the CPU blocked cycles by MSHR cycles

 AMAT cannot records block cycles, it only measure the issued memory requests

Concurrent-AMAT: step to optimization

 The traditional AMAT(Average Memory Access Time) :

AMAT = HitCycle + MR×AMP.

 MR is the miss rate of cache accesses; and AMP is the average miss

penalty

 Concurrent-AMAT (C-AMAT):

C-AMAT = HitCycle/CH+ pMR×pAMP/CM = 1/APC

 CH is the hit concurrency; CM is the pure miss concurrency

 pMR and pAMP are pure miss rate and average pure miss penalty

 A pure miss is a miss containing at least one cycle which does not

have any hit activity

X.-H. Sun and D. Wang, "Concurrent Average Memory Access Time",

in IEEE Computers, vol. 47, no. 5, pp. 74-80,May 2014.(IIT Technical Report,

IIT/CS-SCS-2012-05)

What Does C-AMAT Say?

 C-AMAT is an extension of AMAT to consider concurrency

 The same as AMAT, if no concurrency present

 C-AMAT introduces the Pure Miss concept:

 Only pure miss causes performance penalty

 High locality may hurt performance

 High locality may lead to pure miss

 Balance locality and concurrency with C-AMAT

 C-AMAT uniquely integrates the joint impact of locality

and concurrency for optimization

Recursive in Memory Hierarchy

 AMAT is recursive

 AMAT = HitCycle1 + MR1×(HitCycle2 + MR2×AMP2)

 C-AMAT is also recursive

Where

1

1
1 1 1 2- -

H

H
C AMAT pMR C AMAT

C

2 2

2 2
2 2-

H M

H pAMP
C AMAT pMR

C C

1

1

 1
1

1

m

M

CpAMP

AMP C

X.-H. Sun, “Concurrent-AMAT: a mathematical model for Big Data access,” HPC-Magazine, May 12, 2014

With Clear Physical Meaning

Impact of C-AMAT

 New dimensions for optimization: concurrency and balancing

C-AMAT = HitCycle/CH+ pMR×pAMP/CM

 Can apply at each layer of a memory hierarchy

 Existing mechanisms are readily to be extended

 Every AMAT based optimization has a corresponding C-AMAT extension

to include concurrency

 Concurrency as penalty reducer: Accurate measure the concurrency

contribution

1

1

 1
1

1

m

M

CpAMP

AMP C

1

1
1 1 1 2- -

H

H
C AMAT pMR C AMAT

C

Application: Parameters can be measured at runtime

Xian-He Sun 17

Feedback-based optimization on scheduling and on reconfigurable

architecture

H

CH

pMR

CM

pAMP

LPMR

…

p1

p2

p3

p(n-2)

p(n-1)

pn

Application: Utilizing Memory Concurrency

 Recall C-AMAT is recursive

Where

1

1
1 1 1 2- -

H

H
C AMAT pMR C AMAT

C

2 2

2 2
2 2-

H M

H pAMP
C AMAT pMR

C C
 1

1

 1
1

1

m

M

CpAMP

AMP C

 Rearranging the recursive expressions, we have

1

1

- ()
n

i
i

i i

H
C AMAT a

C

1

2 1 1

3 1 2 1 2

1 1

1 1

1

n n

n i i

i i

a

a pMR

a pMR pMR

a pMR

Case I: Utilizing Memory Banks

 Optimize the rearranged C-AMAT under given hardware

constraints (an optimization problem for each task)

 Memory concurrency is measured in the number of

memory banks

 Focus on on-chip caches (memory)

 Transform concurrency optimization into scheduling

 e.g. for L2, task 1 optimal is 18, task 2 optimal is 1, with only 8

hardware memory banks, then the optimal bank scheduling is

 Task 1 gets 7 and task 2 gets 1

 Readily to be used

Y. Liu, X.-H. Sun, “Smart-C: Optimizing Memory Concurrency at Each Memory Layer in a Multi-

Tasking Environment”, IIT/CS-SCS2015-10, Oct., 2015

Case I: The Smart-C Algorithm

20

L1 L2 L3

C1

C2

M1

M2

C6

M3

NoC NoC

...

...

...

 Memory bank scheduling

Performance Improvement

21

 On two SPEC CPU 2006 benchmarks “mcf” and “provray”

 Stall time reduction is 5.2 fold

18.14

9.17

6.20

4.75
3.93 3.50

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6

Different allocation schemes

D
at

a
st

al
l

ti
m

e

Application: Layered Performance Matching

22

Main memory

ALU&FPU

L1 cache

Last level cache

Request rates

of computing

components

Supply rates

of L1 cache

Request rates

of L1 cache

Request rates of

Last level cache

Supply rates of

Last level cache

Supply rates of

main memory

APC1

APC2

APC3

Yu-Hang Liu, Xian-He Sun, “LPM: Concurrency-driven Layered Performance Matching,”

in ICPP2015, Beijing, China, Sept. 2015.

Idea: Match the Request with Supply

23

 Match at each memory layer

 Adjust the supply performance with concurrency

1

1

Request rate from L cache
LPMR(L ,LLC)

Supply rate by LLC

1

1

 &
(& ,)

Request rate from ALU FPU
LPMR ALU FPU L

Supply rate by L cache

(,)
Request rate from LLC

LPMR LLC MM
Supply rate by main memory

Quantify Mismatching: with C-AMAT

24

1

1
exe memIPC f

LPMR
APC

1
2

2

exe memIPC f MR
LPMR

APC

1 2
3

3

 exe memIPC f MR MR
LPMR

APC

 C-AMAT measures the request and supply at each layer

 C-AMAT can increase supply with effective concurrency

 Mismatch ratio directly determines memory stall time

Xian-He Sun 25

The LPM Algorithm

Optimize only L1 layer to

reduce LPMR1, and

update all metrics

Optimize both L1 and L2

layer to reduce LPMR1 and

LPMR2, and update all

metrics

LPMR1 < T1

LPMR2 < T2

END

Yes

Yes

BEGIN

No

Measure LPMR1 and

LPMR2

Reduce hardware

overprovision, and

update all metrics

No

LPMR1 + ∆ <

T1

Yes

No

Stop when stall time less than 1%

Case study II: find the best configuration

26

Configuration A B C D E

Pipeline issue width 4 4 6 8 8

IW size 32 64 64 128 96

ROB size 32 64 64 128 96

L1 cache port

number
1 1 2 4 4

MSHR numbers 4 8 16 16 16

L2 cache

interleaving
4 8 8 8 8

LPMR1 16.1 12.8 4.2 2.4 2.8

LPMR2 19.3 18.3 6.1 3.2 5.9

LPMR3 12.6 16.2 11.6 4.6 8.2

Increased data access performance for more than 150 times with

the LPM algorithm

LPM Optimization on Reconfigurable Architecture

Case II Discussion

 GEM5 and DRAMSim2 are integrated with added C-AMAT

component

 410.bwaves benchmark from SPEC CPU 2006

 Stall time was > 60%, optimized to < 1%

 Stall time reduction (memory performance improvement) is 150 times

Execution time speedup 2.5 (100/40)

 If beginning is 70%, then speedup is 230 times (0.7/0.003)

 If beginning is 90%, then speedup is 900 times (0.9/0.001)

 The stall time reduction

 Application dependent

 Including computing and data access overlapping

 LPM can be used in task scheduling in a heterogeneous environment

 Can be used to determine the optimal number of layers

Memory-wall

Removed !!!

28

Sluice Gate Theory for Data Transfer
 Data transfer in a memory hierarchy is staged

 Different stages have different capacities
o Bump and delay at the stage change (gate)

 Not all data go to the next step

 More like water transfer in sluice than water flow in river

29

Sluice Gate Theory for Data Transfer
 C-AMAT is the sluice gate calculator

Match request/supply at each stage and of the system (Case II)
o Remove the bump and delay

o Hardware (software) improvement

 Best effort match under a given hardware configuration (Case I)
o Utilizing the underlying hardware

30

The Sluice Gate Theory

With the C-AMAT sluice gate calculator, sufficient

hardware resources and software efforts, the data

transfer in a memory hierarchy can be Matched at

each memory layer for a given application

Registers

Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

The Sluice Gate Theory: Match

Main memory

ALU&FPU

L1 cache

Last level cache

Request rates

of computing

components

Supply rates

of L1 cache

Request rates

of L1 cache

Request rates of

Last level cache

Supply rates of

Last level cache

Supply rates of

main memory

APC1

APC2

APC3

 The Pyramid, up-side-down Pyramid, sluice data transfer,

sluice gate calculator, and the sluice data transfer match

32

The Sluice Gate Theory

you have solved the

memory-wall problem?

WOW!
Are you saying

33

The Sluice Gate Theory

 It is a hypothesis, but a reasonable one
o We have a working example

o Match can be achieved through many different ways, concurrency

is only one of them

 It has a tacit assumption, the architecture is elastic
o Need to build a general purpose computer

o Even for a given application may have different data access

patterns

 It is a big step toward to solve the memory-wall

problem
o Do not need to wait for technology improvement

o Can guide technology improvement

 The Sluice Gate Theory, as it is claimed, is

mathematically correct

34

The Contribution of Sluice Gate Theory

 The Concept of Sluice
o Memory Sluice is designed to send data to computing

o It is totally different with the concept of the known dataflow

architecture, where data trigger computing

o Determine high level design choices

 The Concept of Gate
o Focus on removing and mitigating the performance gap between

CPU and memory device during data transfer

o Sluice is built to mask the gap of performance

 It claims a matching is possible and provides a way

of matching and optimization
o A end-to-end global view for optimization

o Optimization with two pillars, data locality and concurrency

 An architectural solution for solving the memory

wall problem

35

Possible Ways to Match

 Reduce request
o Improve locality, etc

 Improve supply
o Improve data access concurrency , etc

Mask the difference
o Overlapping computing with data access delay (pure miss)

Hardware technology, compiler technology,

application algorithm design, system scheduling

Technique Impact Analysis (with C-AMAT)

Classes Items IssueRatio MR pMR AMP pAMP CH CM AMAT C-AMATstall

Hardware

techniques

Pipelined cache access + ⊕ − ⊕ ⊕ − ⊕
Non-blocking caches + ⊕ ⊕ ⊕ ⊕
Multi-banked caches + ⊕ ⊕ ⊕ ⊕ ⊕

Large IW & ROB, Runahead + ⊕ ⊕ ⊕ ⊕ ⊕

SMT + − − ⊕ ⊕ ⊕ − ⊕

Compiler

techniques

Loop Interchange + ⊕ + ⊕
Matrices blocking + ⊕ + ⊕

Data and control dependency related

optimization
⊕ ⊕ ⊕

Application

techniques

Copy data into local scalar variables

and operate on local copies
+ ⊕ + ⊕ + ⊕

Vectorize the code + ⊕ + ⊕ + ⊕
Split structs into hot and cold parts,

where the hot part has a pointer to

the cold part
+ ⊕ + ⊕ + ⊕

+ or ⊕ means that the technique improves the factor, − means hurts the factor, and blank means it has no necessary impact. These notions are used in

the same manner as that of Hennessy and Patterson [6].

 + means from AMAT (included by C-AMAT too), means from C-AMAT

C-AMAT unifies the combined impact of locality and concurrency, and

makes concurrency contribution measureable

Scalable Computing Software Lab, Illinois Institute of Technology 37

Conclusion

 The memory Sluice gate Theory is introduced

 Concurrent-AMAT (C-AMAT) is the sluice gate calculator

 Matching at sluice gate may remove the memory wall impact

 Matching is Application-aware, a Co-Design process

 Matching needs a rethinking in all aspects, potential is huge

