
PAC-PLRU: A Cache Replacement Policy to Salvage Discarded

Predictions from Hardware Prefetchers

Ke Zhang1,2,*, Zhensong Wang1,†, Yong Chen3, Huaiyu Zhu4, Xian-He Sun5
1 Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, P.R.China

2 Graduate University of Chinese Academy of Sciences, Beijing, 100049, P.R.China
3 Department of Computer Science, Texas Tech University, Lubbock, TX 79409, U.S.A.

4 Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A.
5 Department of Computer Science, Illinois Institute of Technology, Chicago, IL 60616, U.S.A.
zhangke@ict.ac.cn, zswang@ict.ac.cn, yong.chen@ttu.edu, hzhu10@illinois.edu, sun@iit.edu

Abstract—Cache replacement policy plays an important role in
guaranteeing the availability of cache blocks, reducing miss
rates, and improving applications’ overall performance.
However, recent research efforts on improving replacement
policies require either significant additional hardware or
major modifications to the organization of the existing cache.
In this study, we propose the PAC-PLRU cache replacement
policy. PAC-PLRU not only utilizes but also judiciously
salvages the prediction information discarded from a
widely-adopted stride prefetcher. The main idea behind
PAC-PLRU is utilizing the prediction results generated by the
existing stride prefetcher and preventing these predicted cache
blocks from being replaced in the near future. Experimental
results show that leveraging the PAC-PLRU with a stride
prefetcher reduces the average L2 cache miss rate by 91% over
a baseline system with only PLRU policy, and by 22% over a
system using PLRU with an unconnected stride prefetcher.
Most importantly, PAC-PLRU only requires minor
modifications to existing cache architecture to get these
benefits. The proposed PAC-PLRU policy is promising in
fostering the connection between prefetching and replacement
policies, and have a lasting impact on improving the overall
cache performance.* †

Keywords—cache replacement policy; high-performance
processors; computer architecture; memory wall

I. INTRODUCTION
With the advancement of microarchitecture and

semiconductor process technology, the performance gap
between processor and memory has been significantly
widened. To break this huge “Memory Wall” [28], a CPU
cache is commonly used to reduce the average time of
accessing the memory [9]. However, in modern
microarchitecture design, a cache miss may cost several
hundred CPU clock cycles to fetch the data from the
off-chip memory [16]. Due to the limitation of cache
capacity and in order to reduce the miss rate, cache
replacement policies evict unnecessary cache blocks for the
purpose of making good utilization of the silicon estate
devoted to the caches and keep the frequently used blocks

* This work was primarily performed while he was a visiting
student at Illinois Institute of Technology.
† To whom correspondence should be addressed.

within caches as well. In short, cache replacement policies
should kick out dead blocks and keep hot ones.

Least Recently Used (LRU), First In, First Out (FIFO)
and Random (RAND) are the three most elementary and
commonly used cache replacement policies [1]. During the
last two decades, substantial variants based on these three
basic policies and numerous other policies have been
proposed by architecture researchers from both academia
and industry. For example, Pseudo-LRU or Partial-LRU
(PLRU) [9, 20], Most Recently Used (MRU) [23], Least
Frequently Used (LFU) [17], Not Last Used (NLU) [9],
Modified LRU [27], and Self-Correcting LRU [14].
Recently, some other advanced cache replacement policies
incorporated prediction information. However, they needed
a dedicated predictor or prefetcher to identify the dead
blocks and evict them early [15, 11, 18], which would
complicate this kind of policy to be implemented in real
processors. Pseudo-LIFO [4] needs 2nlog2(n)+2n bits per
set for an n-way set associative cache. Re-Reference
Interval Prediction (RRIP) [13] requires 2n bits per set and
special logic circuits. In all of the above described work,
these solutions require either significant additional hardware
or major modifications to the organization of the existing
cache or complex control logic. To the best of our
knowledge, PLRU, LRU, RAND and FIFO are still the
most favorable choices among modern processors due to
their simplicity and acceptable performance.

In this paper, we propose a modified PLRU cache
replacement policy. Our Prediction-Aware
Confidence-based Pseudo LRU (PAC-PLRU) not only
utilizes but also judiciously salvages the prediction
information discarded from a widely-adopted stride
prefetcher. The reason of recycling prediction results is that,
if a block to be prefetched already lies in the cache, it
should be avoided evicting from the cache. Experimental
results show that leveraging the PAC-PLRU with a stride
prefetcher reduces the average L2 cache miss rate by 91%
over a baseline system with only PLRU policy, and by 22%
over a system using PLRU with an unconnected stride
prefetcher at the expense of increasing memory bus usage
by only 7.9%. As a result, PAC-PLRU can benefit from the
existing stride prefetcher without sacrificing performance or

2011 11th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

978-0-7695-4395-6/11 $26.00 © 2011 IEEE

DOI 10.1109/CCGrid.2011.27

265

adding an extra predictor or prefetcher.
We make two primary contributions in this paper:

� We observe that more than three quarters of predicted
blocks are discarded by the filtering mechanism inside a
stride prefetcher (Section II). By salvaging these
abandoned predictions, the basic PLRU replacement
policy becomes prediction-aware (Section III).

� We propose to convert the confidence level of these
discarded predictions into the priority of nodes in the
binary tree used by the basic PLRU policy, so that this
prediction information are not only incorporated into
but also judiciously utilized by our proposed
PAC-PLRU policy (Section IV). Therefore, PAC-PLRU
is prediction-aware as well as confidence-based.
The rest part of this paper is organized as follows:

Section V discusses our evaluation methodology and
analyzes simulation results of PAC-PLRU policy. Section
VI reviews and evaluates important related work from both
academic research and real industry products. Finally,
Section VII concludes this study and discusses potential
future work.

II. ANALYSIS OF PLRU REPLACEMENT POLICY AND STRIDE
PREFETCHER

2.1. Basic PLRU Replacement Policy
LRU replacement policy evicts the cache block which

has not been used for the longest time in a cache set. It
requires a stack to store the accessing sequence. For
high-associative caches, LRU is costly to implement in
hardware because a lot of storage bits are needed to
maintain this stack.

Pseudo LRU (PLRU) is a tree-based approximation of
the true LRU policy in that the block usage information is
maintained in a binary tree, thus reducing the hardware
overhead [9, 1]. For an N-way set associative cache, PLRU
policy arranges the cache blocks at the leaves of a tree with
(N-1) tree nodes pointing to the block to be replaced next.
Each node of the tree has a one-bit flag denoting “go left to
find a PLRU candidate” (flag bit = 0) or “go right to find a
PLRU candidate” (flag bit = 1). On a cache miss, the binary
tree of the relevant cache set is traversed to find a PLRU
candidate based on the flag values. On a cache access, the
tree is updated during the traversal: the node flags are set to
denote the direction that is opposite to the direction taken.

Compared with the true LRU policy, Pseudo LRU does
not always select the least-recently used block as the next
one to replace. Consider the access sequence (in ways)
A-B-C-D-A for a 4-way set associative cache, the block
selected for replacement is Cache Block C, not Block B as
is done in the true LRU algorithm. However, PLRU does
ensure that the block selected for replacement is either the
least-recently or the second least-recently used cache block.

Figure 1 illustrates PLRU behavior using a 4-way set
associative cache as an example. In Figure 1 (a), the three
flag bits Flag[2:0] form a decision binary tree. The Flag[0]
bit indicates whether two lower blocks A and B (Flag[0] =

1), or two higher blocks C and D (Flag[0] = 0) have been
recently used. The Flag[1] bit determines further which one
of two blocks A (Flag[1] = 1) or B (Flag[1] = 0) has been
recently used; Flag[2] keeps the access track between Block
C and D. In Figure 1 (b), on a cache hit, the tree nodes are
set according to Table 1. On a cache miss, Flag[0]
determines where to look for the least recently block (two
lower cache blocks or two higher cache blocks). Flag[1] or
Flag[2] determines the least recently used block. For the
same 4-way set associative cache, the truth table for
selecting replacement candidates on cache misses is shown
in Table 2.

(a)

(b)

Figure 1: (a) Binary Tree-based PLRU replacement policy for
one cache set in a 4-way set associative cache. (b) The process
of searching a replacement candidate in the PLRU policy.

Table 1: Truth table for updating flag bits in the decision
binary tree at cache hits.

Which cache
block is hit? Flag[0] Flag[1] Flag[2]

Cache Block A 1 1 no change
Cache Block B 1 0 no change
Cache Block C 0 no change 1
Cache Block D 0 no change 0

Table 2: Truth table for selecting replacement candidates
based on flag bits in the decision binary tree at cache
misses.

Flag[0] Flag[1] Flag[2] Replacement candidate
0 0 0 Cache Block A
0 0 1 Cache Block A
0 1 0 Cache Block B
0 1 1 Cache Block B
1 0 0 Cache Block C
1 0 1 Cache Block D
1 1 0 Cache Block C
1 1 1 Cache Block D

266

2.2. Behavior Analysis of Stride Prefetcher
Stride prefetching detects the stride patterns originating

from looping structures in data access streams [3]. This
detection of stride is accomplished by comparing successive
addresses used by load or store instructions. Most current
prefetchers in commercial processors from Intel, IBM and
AMD can predict stride pattern in data access streams [6, 10,
16, 24, 2]. For example, the Intel Core microarchitecture
utilizes a Program Counter-indexed hardware stride
prefetcher for L1 data cache [6].

Figure 2: Process flowchart of a general stride prefetcher.

Prefetcher utilizes the recent information of memory access or miss
stream from CPU core or upper level cache to predict the future
information by the Prediction procedure. Then, the process of
Filtering discards the Predicted Information of the predicted blocks
which already exist in cache, and sends the Prefetch Requests to
lower lever cache or Main Memory if the predicted blocks are not
present in cache. In this figure, the wider the arrows are, the larger the
amount of information is.

Figure 2 illustrates the process flowchart of a general
stride prefetcher with two cascaded procedures: prediction
and filtering. First, based on the accessing history, predicted
information of which cache blocks might be accessed in the
near future is generated during the process of prediction.
Then, if some predicted cache blocks are currently present
in the cache, this part of information will be discarded by
the filtering process because it is not necessary to fetch
something that already exists, and the redundant prefetch
requests can even increase the burden of memory bus.
Although the discarded information is useless to the
prefetcher, it could be the source of benefits of PLRU
replacement policy because the replacement policy would
harness this future information and keep the upcoming
accessed blocks in the cache.

Further analysis in Figure 3 shows that the prefetcher
discards a large amount of information by filtering. For all
29 SPEC CPU2006 benchmarks, an average of 76% of
predicted blocks already exist in L2 cache using a
traditional stride prefetcher. We believe that this discarded
information could be transformed into certain potential
benefits of replacement policy and further potential
improvement in cache performance. Notice that our
observation is that a large fraction of predictions hit in the

cache, not a large fraction of prefetches. The blocks that are
requested by the prefetches are fresh to the cache, and all
the prefetches should not hit in the cache; however, a part of
predictions are filtered before the prefetcher issues requests,
which is indicated by the fact that three quarters of
predicted blocks hit in L2 cache for most benchmarks in
Figure 3. As a result, a very large amount of information
that is potentially useful for replacement policy has been
filtered. Moreover, the larger the amount of discarded
information, the more potential benefits the PLRU
replacement policy could gain.

400
.pe

rlbe
nch

401
.bz

ip2
403

.gc
c

429
.m

cf

445
.go

bm
k

456
.hm

mer

458
.sje

ng

462
.lib

qua
ntu

m

464
.h2

64r
ef

471
.om

net
pp

473
.as

tar

483
.xa

lan
cbm

k

410
.bw

ave
s

416
.ga

mess

433
.m

ilc

434
.ze

usm
p

435
.gr

om
acs

436
.ca

ctu
sA

DM

437
.les

lie3
d

444
.na

md

447
.de

alII

450
.so

ple
x

453
.po

vra
y

454
.ca

lcu
lix

459
.Gem

sFDTD

465
.ton

to

470
.lbm

481
.wrf

482
.sp

hin
x3

Aver
age

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

D
is

tri
bu

tio
n

of
 p

re
di

ct
ed

 b
lo

ck
s Predicted blocks which are in cache

 Predicted blocks which are NOT in cache

Figure 3: Distribution of predicted blocks before filtered
for SPEC CPU2006 benchmarks

III. PREDICTION-AWARE PLRU REPLACEMENT POLICY

“One Man's Junk is Another Man's Treasure.”

Drawing on the wisdom in the above old saying, we
propose to incorporate the discarded prediction information
from a stride prefetcher into the PLRU replacement policy.

Prediction

Memory Access/Miss Stream from
CPU Core or Upper Level Cache

Prefetch Requests to Lower
Level Cache or Main Memory

Predicted blocks do
NOT exist in cache

Predicted
Information

Replacement
Logic

R
eplacem

ent R
equests

to C
urrent Level C

ache

Predicted
blocks exist

in cache

Tag PLRU Tree

... ...

Match? Yes

No

Figure 4: The Structure of our proposed
Prediction-Aware PLRU Replacement Policy.

The filtering mechanism in Figure 2 is shown as a Match operation in
this figure. If the predicted blocks do not exist in cache, Prefetch
Requests are issued as the same as that in Figure 2; if there is a match,
our method will modify the corresponding PLRU binary tree as the
red arrow indicates. The Replacement Logic examines the PLRU
trees during cache accesses. For simplicity, other main components in
the cache controller are omitted.

267

Figure 4 shows the structure of our proposed
Prediction-Aware PLRU Replacement Policy which is
implemented in a cache controller. The cache controller
determines whether or not a predicted address generated
from the predictor in a stride prefetcher exists in the cache
by simply looking it up in the cache tags just as a normal
access. The filtering mechanism in Figure 2 is shown as a
match operation in Figure 4. If the predicted blocks do not
exist in cache, prefetch requests are issued as the same as
that in Figure 2. When a match occurs, our proposal makes
changes to the node value of the cache block in its
corresponding PLRU binary tree during the process of
lookup. Thus, the PLRU binary tree turns into the medium
of information transmission over the connection between
the stride prefetcher and PLRU cache replacement policy.
As shown in Figure 4, our proposal does not require any
additional hardware overhead, but just some operations on
PLRU binary trees in this scenario.

Since the lookup of existence of a predicted address is
unavoidable, it is trivial to make changes to the nodes’ value
of PLRU binary trees during the process of lookup.
Therefore, the inspection of predicted addresses and the
change of PLRU binary trees can overlap and the time
overhead of our proposed prediction-aware PLRU
replacement policy is negligible.

IV. PAC-PLRU REPLACEMENT POLICY
Previous section shows how to incorporate prediction

information into the PLRU policy, and the PLRU tree is
modified during the inspection of predicted addresses.
However, it is not wise to boldly change the binary trees
because the predictions are not real accessing information.
In this section, we will tackle the problem of how to
judiciously salvage the prediction information discarded
from a stride prefetcher.
4.1. Priority in Binary Tree-based PLRU

As mentioned in Figure 1 (a), for a 4-way set associative
cache, PLRU policy has a two-level binary tree and three
nodes to represent the LRU status for 4 cache blocks in each
cache set. Based on the operation process of PLRU, we find
that different layers in the binary tree of PLRU have
different priorities. The higher level the nodes stay in, the
larger coverage they can control. For example, the root node
has the highest priority because modifying the value of the
root node can move the replacement candidate to the other
half of the cache blocks in the cache set. In contrast, leaf
nodes have the lowest priority. Toggling the value of a leaf
node can only move the replacement candidate to the
adjacent cache block in the cache set. It should be noted that
the basic PLRU replacement policy modifies every level in
the binary tree when there is an update due to a memory
access (hit or miss) that just happened. This is
understandable because for something that already took
place, we are 100% sure about its possibility, and we have
full confidence to proceed to the following steps. However,
what would happen if we did not have 100% confidence

under certain circumstances? For example, how should we
update the binary trees when these predicted blocks will be
accessed in the near future with a level of confidence? Our
solution to this problem is called Prediction-Aware
Confidence-based Pseudo LRU (PAC-PLRU) replacement
policy.
4.2. Confidence Level of Prediction

It is well known that the further the predictor forecasts,
the less accurate the predicted information is. For example,
if cache block A was just accessed 3 clock cycles ago, block
B is predicted to be accessed in 30 clock cycles, and block
C is predicted to be referenced in 4,000 clock cycles, then
we have full confidence in block A and less than 100%
confidence in the accuracy of predictions about block B and
C. It is also obvious that the prediction confidence in block
B is much stronger than that in block C because the rule of
thumb is that more recent behavior predicts the future better.
As a result, the confidence level is related and inversely
proportional to the degree of prediction, which is defined as
the position of a particular predicted block in one prediction
sequence. The predicted blocks with more confidence
should be retained in the cache for a longer time than those
with less confidence. In other words, on a cache miss, the
predicted blocks with higher confidence levels should be
exempt as much as possible from being selected as the
replacement candidates.
4.3. PAC-PLRU Replacement Policy

The basic idea of PAC-PLRU is converting the
confidence level of predictions into the priority of the nodes
in the binary tree. As explained in the previous two
subsections, the information of prediction degree can be
converted into the number of levels that should be modified
in the binary tree. The mechanism of PAC-PLRU policy is
designed as follows. For the original data access
information, the behavior of PAC-PLRU is the same as the
basic PLRU policy due to full confidence in the referencing
information. For the predicted future information,
PAC-PLRU assumes that these predicted blocks are normal
cache accesses, but with a certain confidence level. As a
result, for these predicted blocks, PAC-PLRU only modifies
part of the binary tree, from leaf nodes to upper levels,
based on how much the confidence is, from weak to
medium to strong.

A hash function uses the number of the prediction
degree of the predicted block to form the number of levels
that should be modified in the binary tree. We define as
the maximum prediction degree, and as the position of a
particular predicted block in this prediction sequence,

K
k

� �1, 2, 3, , k � � K . The equation � �L N2logi i� �

iL

�

calculates the number of modified tree levels () based on
the parameter of position for the i th segment, where

 is an integer from 1 to
k

i �2log N that satisfies the
following formula:

268

� �
� � � �2

1
1

log log
i K i Kk

2N N
	
� � ��

� � �� �� � �� �� � �� � �� �

�
�
��

.

For an N-way set associative cache, the whole prediction
sequence is divided into the number of K � �2log N
segments, and is the index number of a segment. Each
segment has a corresponding total number of modified
tree levels based on the above equation. We can see that

i
iL

�2log �N is also the total number of levels in the binary
tree. Therefore, the lower the segment index number is, the
more levels PAC-PLRU modifies in the binary tree. Notice
that the modification to the binary tree is made from leaf
nodes to upper levels, except the root node. The root node
can only be toggled by an actual memory access. An
example of the behavior of PAC-PLRU is given in the next
subsection.

This approach statically calculates the number for
each segment in advance. As a result, it can be easily
implemented in hardware. The PAC-PLRU replacement
logic converts i into based on a small hash table
generated by the hash function beforehand.

iL

iL

According to this method, we statically connect the
degree and confidence level of prediction with the structure
of the binary tree. Although the confidence level can also be
changed dynamically, under the current architecture,
experimental results in Section V show that it is sufficient to
statically define the confidence level. How to dynamically
change the confidence level will be our future work.
4.4. Example of the Hash Function in PAC-PLRU

1

2

4

A

5

3

6 7

B C D E F G H

n X:Nodes in the binary tree; :Cache blocks in one set
Figure 5: An example of behavior of the hash function for
an 8-way set associative cache. The circles represent the
nodes in the binary tree which has 3 levels and 7 nodes
(No. 1 to 7). The rectangles represent the cache blocks in
one cache set which has 8 blocks (A to H).

To help readers better understand the PAC-PLRU policy,
a simple example of the behavior of the hash function
mentioned in previous subsection is shown here. Take an
8-way set associative cache as an example in Figure 5.
Assume a specific case: cache block D in one cache set was
just accessed, and then based on the history information, the
predictor sends out a 4-degree prediction sequence, which
consists of block F, B, C and G. It should be noticed that

these blocks, D, F, B, C and G, are not necessarily in one
cache set; in most cases, they belong to different cache sets,
so they have different binary trees. But here, we use Figure
5 below to show the relative position of the nodes in these
tree

ied for
bloc he nfidence level.

NALYSIS
5.1.

 simulator Dinero [8] to

5.2. Simu
T : Architectural Config

s.
According to the condition in iL equation, block F and

B are in segment 1, block C is in segment 2, and block G is
in the last segment. Based on the previous description, block
D belongs to the real cache referencing information. In
consequence, the number of tree levels that should be
modified could be calculated by iL equation. For block D,
node 5, 2 and 1 need to be updated with 100% confidence
level. For block F and B, node 6 and 3, node 4 and 2 should
be toggled with strong confidence. For block C, only node 5
needs to be changed. Lastly, nothing will be modif

k G because it has t weakest co

V. EVALUATION AND A
 Experimental Methodology
In this study, an instrumentation-driven simulator

CMP$im [12] with Pin tools [19] is used to collect memory
traces of the SPEC CPU2006 benchmark suite [25] on a real
machine based on the representative simulation points
generated by SimPoint [22]. Then we use a prefetching kit
called PREF_KIT [7] to get both predicted trace and
uncompressed data access trace. Finally, these traces are
imported to a trace-driven cache
verify our proposed PAC-PLRU.

lation Environment
able 3 urations
Item Parameter

Processor Pipeline 4-wid OoO e, 15-stage,
Instruction Window 128-entry

L1 cache organization 32K/64K, 4/8-way
L 25 y 2 cache organization 6K/512K, 8/16-wa

Cache Block Size 64B for L1&L2
Defa licy Basic P 1&L2 ult Replacement Po LRU for L

L2 Cache Latency 20 cycles
M emory Latency 220 cycles

L2 Bandwidth 1 cycle/access
Mem dth 16 st ory Bandwi cycles/bur

L2 MSHRs 32- entry
Prefetch Degree 8

Prefetch Distance 0
Stride Prefetcher Table Size 1024-entry

As shown in Table 3, the simulator was configured as an
out-of-order processor with a 15-stage, 4-wide pipeline and
perfect branch prediction. L1 cache is 32KB/64KB and
4/8-way set associative. L2 cache is 8/16-way with a
capacity of 256KB/512KB. The default configuration for
cache replacement policy follows basic PLRU policy. The
stride prefetcher used in our experiments is similar to that
used in the Intel Core microarchitecture which utilizes a
Program Counter-indexed hardware table to store the stride

269

information [6]. The simulation testing was conducted with
the complete 29 benchmarks from the SPEC CPU2006 suite.
The benchmarks were compiled using GCC 4.2.4 with -O3
-funroll-all-loops -ffast-math optimization and -m32 option.
We collected traces for all benchmarks by fast forwarding to
the representative points and then running 200 million
instructions. The ref input size was used for all benchmarks.
5.3. Misses per Kilo-Instructions (MPKI) of

PAC-PLRU

0.
02

8.
69

0.
1

69
.8

8

1.
08 2.
82

0.
38

13
.5

7

1.
4

12
.6

7

2.
92

1.
7

11
.4

3

0.
3

19
.4

8

3.
09

1.
59 5.

02 10
.1

2

0.
16

0.
12

22
.3

9

0.
01

0.
02

16
.4

0.
2

25
.2

5

5.
06

15
.1

4

8.
66

0 0.
02

0.
08

46
.4

9

0.
88

0.
17

0.
39

0 0.
48

11
.0

1

1.
46

1.
27 6.

25

0.
15 3.

33

0.
09 0.
77

0.
14 0.
76

0.
08

0.
09 5.

11

0.
01

0.
01

0.
35

0.
13

0.
18

0.
14 5.

57

2.
95

40 46
2.

l 46 47

48
3.

x 4 41 43 43
43

6. 43

45
9.

G0.
pe

rlb
en

ch
40

1.
bz

ip
2

40
3.

gc
c

42
9.

m
cf

44
5.

go
bm

k
45

6.
hm

m
er

45
8.

sj
en

g
ib

qu
an

tu
m

4.
h2

64
re

f
1.

om
ne

tp
p

47
3.

as
ta

r
al

an
cb

m
k

10
.b

w
av

es
6.

ga
m

es
s

43
3.

m
ilc

4.
ze

us
m

p
5.

gr
om

ac
s

ca
ct

us
AD

M
7.

le
sl

ie
3d

44
4.

na
m

d
44

7.
de

al
II

45
0.

so
pl

ex
45

3.
po

vr
ay

45
4.

ca
lc

ul
ix

em
sF

D
TD

46
5.

to
nt

o
47

0.
lb

m
48

1.
w

rf
48

2.
sp

hi
nx

3
Ar

ith
M

ea
n

0

20

40

60

80

M
is

se
s

pe
r K

ilo
 In

st
ru

ct
io

ns
 (M

P
K

I)

 Baseline (PLRU w/o Stride Prefetcher)
 PAC-PLRU

L1

th high

5.4. Cache Performance of PAC-PLRU on L2 Cache

Figure 6: Misses per Kilo-Instructions (MPKI) of
PAC-PLRU policy compared with a baseline system.
32K 4-way, L2 256K 8-way, MPKI results on L2 cache.

Figure 6 shows the changes of Misses per
Kilo-Instructions (MPKI) using PAC-PLRU policy. For a
baseline system only with the basic PLRU replacement
policy, the average MPKI for all 29 SPEC CPU2006
benchmarks is 8.66. After judiciously salvaging the
prediction information discarded from a stride prefetcher,
our proposal reduces the average value of MPKI to 2.95.
However, detailed analysis shows that about one third
benchmarks in the whole SPEC CPU 2006 suite have very
low miss rate (MPKI < 1) for the representative simulation
points we select. Thus, these benchmarks cannot get a lot of
benefits from any improvement on the baseline system. In
consequence, we will only use the benchmarks wi
miss rate (MPKI > 1) in the following experiments.

40
1.

bz
ip

2
42

9.
m

cf
44

5.
go

bm
k

45
6.

hm
m

er
46

2 4

48
3. 4

43
6.

45
9.

.li
bq

ua
nt

um
46

4.
h2

64
re

f
71

.o
m

ne
tp

p
47

3.
as

ta
r

xa
la

nc
bm

k
41

0.
bw

av
es

43
3.

m
ilc

43
4.

ze
us

m
p

35
.g

ro
m

ac
s

ca
ct

us
AD

M
43

7.
le

sl
ie

3d
45

0.
so

pl
ex

G
em

sF
D

TD
47

0.
lb

m
48

1.
w

rf
48

2.
sp

hi
nx

3
G

eo
M

ea
n

0%

20%

40%

60%

80%

100% 91.2%
99.7%

M
is

s
R

ed
uc

tio
n

stem for 20

nd a large
am

lation of 200 million
instructions in several benchmarks.

Figure 7: Improvement in L2 miss reduction by PAC-PLRU
with stride prefetcher over the baseline sy
high-miss-rate SPEC CPU2006 benchmarks.

In this section, we use the miss reduction, which means
the total number of reduction in cache misses, to show the

improvement of cache performance. Figure 7 shows the L2
cache miss reduction by using our proposed PAC-PLRU
replacement policy with a widely-adopted stride, compared
to the baseline system with only the basic PLRU policy and
without any prefetchers. It can be clearly observed that 13
out of 20 benchmarks in SPEC CPU2006 suite gained
significant performance improvement (over 50%)
leveraging the PAC-PLRU policy. On average, PAC-PLRU
with the stride prefetcher reduced average L2 cache miss
rate by 91% over the baseline system with only PLRU. The
reason of this huge improvement is because these programs
show strong repeated stride pattern of memory access that
can be correctly predicted by a stride prefetcher, a

ount of predictions already exist in L2 cache.
The simulation results reported in Figure 7 show that,

for several benchmarks, PAC-PLRU largely reduced cache
misses and achieved nearly 100% (99.x% actually; for
instance, 99.7% for 401.bzip2) L2 miss reduction. Note that
the cold misses are included in the gap between 99.x% and
100%. Therefore, like any other replacement policies,
PAC-PLRU still suffers from L2 cache misses, even it
largely reduced misses and achieved near-optimal
replacement results for the simu

40
1.

bz
ip

2
42

9.
m

cf
44

5.
go

bm
k

45
6.

hm
m

er
46

2. 47

48
3 43

43
6.

45
9.

Glib
qu

an
tu

m
46

4.
h2

64
re

f
1.

om
ne

tp
p

47
3.

as
ta

r
.x

al
an

cb
m

k
41

0.
bw

av
es

43
3.

m
ilc

43
4.

ze
us

m
p

5.
gr

om
ac

s
ca

ct
us

AD
M

43
7.

le
sl

ie
3d

45
0.

so
pl

ex
em

sF
D

TD
47

0.
lb

m
48

1.
w

rf
48

2.
sp

hi
nx

3
G

eo
M

ea
n

0%

20%

40%

60%

80%

22.0%

77.4%

M
is

s
R

ed
uc

tio
n

or 20 high-miss-rate SPEC CPU2006

over
the

Figure 8: Improvement in L2 miss reduction by PAC-PLRU
over the baseline system with a disconnected stride
prefetcher f
benchmarks.

Figure 8 shows the L2 cache miss reduction by using
our proposed PAC-PLRU replacement policy, compared to
the baseline system with the basic PLRU policy and
independent stride prefetcher. We would like to show the
miss ratio reduction of PAC-PLRU itself when ignoring the
effect of prefetching by this comparison. The statistics
report that, on average, PAC-PLRU with the stride
prefetcher reduced average L2 cache miss rate by 22%

 baseline system with PLRU and a stride prefetcher.
In Figure 8, several benchmarks had noticeable

improvement, such as 434.zeusmp, 456.hmmer, 433.milc
and 436.cactusADM. This is because the PAC-PLRU indeed
makes good utilization of the discarded information from
the stride prefetcher. However, two applications,
435.gromacs and 429.mcf, had negative performance
improvement over the baseline system with an unconnected

270

stride prefetcher. Our analysis of the trace segment of these
benchmarks we have reveals that, the stride prefetcher fails
to detect any useful pattern, so the prediction information is
not accurate enough for PAC-PLRU to retain useful cache
blocks. T

40
0.

pe
rlb

en
ch

40
1.

bz
ip

2
40

3.
gc

c
42

9.
m

cf
44

5.
go

bm
k

45
6.

hm
m

er
45

8.
sj

en
g

46
2.

lib
qu

an
tu

m
46

4.
h2

64
re

f
47

1.
om

ne
tp

p
47

3.
as

ta
r

48
3.

xa
la

nc
bm

k
41

0.
bw

av
es

41
6.

ga
m

es
s

43
3.

m
ilc

43
4.

ze
us

m
p

43
5.

gr
om

ac
s

43
6.

ca
ct

us
AD

M
43

7.
le

sl
ie

3d
44

4.
na

m
d

44
7.

de
al

II
45

0.
so

pl
ex

45
3.

po
vr

ay
45

4.
ca

lc
ul

ix
45

9.
G

em
sF

D
TD

46
5.

to
nt

o
47

0.
lb

m
48

1.
w

rf
48

2.
sp

hi
nx

3

-20%
-10%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

M
is

s
R

ed
uc

tio
n

 L1 32K 4-way, L2 256K 8-way L1 32K 8-way, L2 512K 8-way
 L1 32K 8-way, L2 512K 16-way L1 64K 8-way, L2 512K 16-way

herefore, the cache is polluted by those unwanted
blo

e

5.5. Cache Performance of PAC-PLRU on L1 Cache

cks.
Moreover, PAC-PLRU has a significant role here

because it increases the life-time of those in-accurately
predicted blocks. How to avoid completely relying on th
prefetcher is a future study for enhancing the PAC-PLRU.

40
0.

46
2.

48
3.

43
6.

45
9.

pe
rlb

en
ch

40
1.

bz
ip

2
40

3.
gc

c
42

9.
m

cf
44

5.
go

bm
k

45
6.

hm
m

er
45

8.
sj

en
g

lib
qu

an
tu

m
46

4.
h2

64
re

f
47

1.
om

ne
tp

p
47

3.
as

ta
r

xa
la

nc
bm

k
41

0.
bw

av
es

41
6.

ga
m

es
s

43
3.

m
ilc

43
4.

ze
us

m
p

43
5.

gr
om

ac
s

ca
ct

us
AD

M
43

7.
le

sl
ie

3d
44

4.
na

m
d

44
7.

de
al

II
45

0.
so

pl
ex

45
3.

po
vr

ay
45

4.
ca

lc
ul

ix
G

em
sF

D
TD

46
5.

to
nt

o
47

0.
lb

m
48

1.
w

rf
48

2.
sp

hi
nx

3
G

eo
M

-50%
-25%

0%
25%
50%
75%

100%

ea
n

76.1%

M
is

s
R

ed
uc

tio
n

 implementing our mechanism on the last level

5.6.

ensitivity in the next section about
memory bus usage.

Figure 10: Improvement in L2 cache miss reduction by
PAC-PLRU with a stride prefetcher over the baseline
system for four different configurations of L1 and L2 cache
organization.

Figure 9: Improvement in L1 miss reduction by PAC-PLRU
over the baseline system for 29 SPEC CPU2006 benchmarks.

Compared to the baseline system with only the basic
PLRU policy, Figure 9 demonstrates the L1 cache miss
reduction by using our proposed PAC-PLRU replacement
policy with a stride prefetcher. On average, PAC-PLRU
reduced the L1 cache miss rate by 76% over the baseline
system with only PLRU. According to Figure 9, PAC-PLRU
could improve L1 cache, but not as much as that in L2, even
some applications show large negative performance
improvement, such as 458.sjeng and 416.gamess. There are
three reasons for this. Substantial L1 cache accesses are
demanded by the CPU core compared to the number of L2
accesses. Also, a considerable amount of information from
the L1 cache that fed to the prefetcher constrains its
effectiveness by either rendering cache pollution or poor
timeliness. Third, the MPKI for L1 cache is much lower
than that for L2. These are the main reasons why we highly
suggest
cache.

 Sensitivity to Cache Configuration
Figure 10 shows the L2 cache miss reduction of

PAC-PLRU replacement policy with a stride prefetcher for
four different configurations of L1 and L2 cache
organization. The PAC-PLRU gains substantial and stable
performance improvement regardless of different cache
configurations in most benchmarks. However, 416.gamess
is an exception. In normal cases, the larger the cache is, the
more miss reduction is. But 416.gamess has higher miss rate
when the cache capacity or associativity increases.
Moreover, the gap is significant. We can see the effect of
this application’s s

5.7. Memory Bus Usage

40
0.

pe
rlb

en
ch

40
1.

bz
ip

2
40

3.
gc

c
42

9.
m

cf
44

5.
go

bm
k

45
6.

hm
m

er
45

8.
sj

en
g

46
2.

lib
qu

an
tu

m
46

4.
h2

64
re

f
47

1.
om

ne
tp

p
47

3.
as

ta
r

48
3.

xa
la

nc
bm

k
41

0.
bw

av
es

41
6.

ga
m

es
s

43
3.

m
ilc

43
4.

ze
us

m
p

43
5.

gr
om

ac
s

43
6.

ca
ct

us
AD

M
43

7.
le

sl
ie

3d
44

4.
na

m
d

44
7.

de
al

II
45

0.
so

pl
ex

45
3.

po
vr

ay
45

4.
ca

lc
ul

ix
45

9.
G

em
sF

D
TD

46
5.

to
nt

o
47

0.
lb

m
48

1.
w

rf
48

2.
sp

hi
nx

3
Ar

ith
M

ea
n0.0

0.5

1.0

1.5 PLRU with
disconnected Stride Pref.

N
or

m
al

iz
ed

 C
yc

le
s

of
 D

at
a

Tr
an

sm
itt

ed
 o

n
M

em
or

y
Bu

s

 Copied-back Data
 Prefetched Data
 Fetched Data

PAC-PLRU with Stride Pref.

1.0793
1.0000

Figure 11: Normalized cycles of data transmitted on memory
bus for PAC-PLRU with stride prefetcher.

Figure 11 shows the normalized clock cycles of data
transmitted on the L2-to-main memory bus. We classify the
data into three types: (1) copied-back data - the data
transferred back to the next level storage, (2) prefetched
data - the data fetched by prefetching requests, and (3)
fetched data - the data issued by normal memory accessing
instructions. The latter two categories dominate the memory
bus in our experiments. This analysis of memory bus usage
reflects some impact of PAC-PLRU on the programs’
performances.

On average, PAC-PLRU with a stride prefetcher
increased memory bus usage by only 7.9%, compared to the
baseline system with PLRU and a disconnected prefetcher.
About half of the benchmarks performed well, which means
no significant increase in memory bus contention. Moreover,
for several applications, such as 434.zeusmp,
436.cactusADM, 456.hmmer and 470.lbm, the total number
of clock cycles used for transmitting data are limited to a
certain degree. However, 416.gamess along with several
other applications was the worst case due to its high
sensitivity to different cache configurations. Its high
demand of memory bandwidth is because the working set of
this application cannot be effectively fetched or prefetched
into L2 cache.

271

The stride prefetcher in our experiments is not very
bandwidth-efficient. However, it is widely accepted by both
academia and industry due to its simplicity and high
performance. Thus, we use it to show our PAC-PLRU idea
is universal and simple. We believe that future
bandwidth-efficient and advanced prefetchers, such as [5,
29], can also benefit from PAC-PLRU.

Notes:

5.8. Hardware Cost of PAC-PLRU
To implement the concept of PAC-PLRU, several

modifications need to be made on current existing cache
hardware, especially in the cache controller, but the
implementation is straightforward and cost-efficient. The
cache controller determines whether or not a predicted
address generated from the prefetcher exists in the cache by
looking it up in the cache tags just as a normal access.
Meanwhile, if it is a hit, PAC-PLRU makes changes to the
node value of the cache block in its corresponding PLRU
binary tree during the process of examination. The binary
tree becomes the medium of information transmission over
the connection between the prefetching mechanism and
cache replacement policy. Therefore, PAC-PLRU does not
require any additional hardware overhead, but just some
operations on PLRU binary trees. This additional control
logic is feasible for modern IC design utilizing the vast
silicon estate available on chip. Moreover, the inspection of
predicted addresses and the change of PLRU binary trees
can overlap and the time overhead of PAC-PLRU is
negligible.

VI. RELATED WORK
LRU, Random, FIFO, and PLRU are the four major and

widely used cache replacement policies in commercial
processors. We have focused on the existing technologies in
real processors in order to make our new proposal as
practicable as possible. We surveyed 35 modern
representative commercial processors. Table 4 summarizes
the distribution of usage for each cache replacement policy
used in these real commercial processors, in terms of
different associativity. Based on Table 4, we can draw a
conclusion that PLRU is the most widely used cache
replacement policy in real-world processors, especially for
cache associativity between 4-way and 16-way. This is the
reason why we use the basic PLRU replacement policy in
our baseline experimental system.

Table 4: Distribution of replacement policies usage based
on the statistics of 35 modern representative processors.
(86 caches in all)

Cache Associativity (N-way) Replacement
Policy

Category 2-way 4-way 8-way 10-way 12-way 16-way 32-way 128-way

Random 4 15 1
LRU 10 10 2 1 1

PLRU 13 11 1 3
FIFO 3 7 2 2

1. The category of LRU policy includes LRU and true LRU. Some
caches use LRU policy as described in their processor datasheets, but
the implementation might be PLRU or some other variants. However,
without loss of generality, we still count this case in the category of
LRU policy.

2. The category of PLRU policy includes Pseudo LRU, Approx. LRU,
Quasi LRU and NRU.

3. Some caches can be configured using more than one replacement
policy by a hardware-dependent register. In this case, we count every
possible policy into corresponding category in this table.

In Table 5 (a) and (b), we give the comparison of

different cache replacement policies in terms of hardware
storage and operation complexity.

Table 5: Complexity Comparison of Different Cache
Replacement Policies [1, 9]

(a) Storage

Policies Storage requirements
(bits)

LRU � �log !2S N� �� �

FIFO � �log2S N

Random (LFSR) � �log2 N

PLRU (tree-based) � �1S N �

PAC-PLRU (Our Proposal) � �1S N �
(b) Operation

Policies Action on cache
hits

Action on cache
misses

LRU

Update the LRU
stack
(Read Op. + Write
Op.)

Update the LRU
stack
(Read Op. + Write
Op.)

FIFO No Operation Increment FIFO
counter

Random
(LFSR) No Operation Update LFSR

register

PLRU
(tree-based)

Update the tree
bit(s)
(Write Op.)

Update the tree
bit(s)
(Read Op. + Write
Op.)

PAC-PLRU
(Our
Proposal)

Update the tree
bit(s) on real hits
and prediction hits
(Write Op.)

Update the tree
bit(s)
(Read Op. + Write
Op.)

Notes:
1. S is the number of Cache Sets. N is the number of ways.
2. “Op.” stands for operation.

Based on the LRU entry in Table 5 (a), the statement we

made in Subsection 2.1 that LRU is costly to implement in
hardware for high-associative cache can be further proved.
A 4-way set associative cache must have five storage bits
for each cache set to represent the 24 (= 4!) possible states
of the cache blocks usage, since 24 states require five bits to
encode. Similarly, an 8-way cache would require 16 bits to
store the LRU status for each cache set; a 16-way cache

272

requires 45 bits; a 32-way cache needs 118 bits. In real
processors, such as UltraSPARC T2 [26] and MIPS32
1004K [21], even six LRU status bits are maintained for
each cache set in a 4-way data cache. However, compared
with LRU, a 32-way cache using PLRU policy need only 31
bits for each cache set.

Another problem of both LRU and PLRU policy is that
they have to update storage information (Read and/or Write
Op) on both cache hits and misses, while FIFO and Random
policy needs no operation on cache hits. Furthermore, LRU
policy needs a read operation and a write operation on both
cache hits and misses. But PLRU needs only one write
operation on cache hits.

Our proposed PAC-PLRU has the same hardware
storage cost as the basic PLRU, but needs some operations
on PLRU binary trees when the predicted addresses hit in
the cache.

VII. CONCLUSION AND FUTURE WORK
In this study, we propose the PAC-PLRU cache

replacement policy. PAC-PLRU not only utilizes but also
judiciously salvages the prediction information discarded
from a widely-adopted stride prefetcher. The main idea
behind PAC-PLRU is utilizing the prediction results
generated by the existing stride prefetcher and preventing
these predicted cache blocks from being replaced in the near
future if they are already in cache. Changing the PLRU
binary tree of these predicted blocks is required to
implement PAC-PLRU.

Extensive simulation results show that the proposed
PAC-PLRU replacement policy is very promising in
fostering the connection between PLRU and stride
prefetcher, and it will have a lasting impact on improving
overall cache performance. In addition, PAC-PLRU utilizes
the prefetcher already available on processor chips to
enhance the cache replacement policy, so that any concerns
about the budget and cost of a dedicated prefetcher can be
ignored. Last but not least, this design is independent of the
prefetcher, which means it can benefit from any prefetcher
including future advanced ones. Our future work includes
the exploration of dynamically changing the confidence
level in PAC-PLRU, and adaptively turning off PAC-PLRU,
depending on specific access patterns.

ACKNOWLEDGMENT
We are thankful to the anonymous reviewers for their

valuable suggestions to further improve this work. We thank
Dr. Zhiling Lan for providing the benchmark suite, Dr.
Hassan Ghasemzadeh for contributions to the cache
simulator. We also thank Dr. Lixin Zhang and Dr. Mingyu
Chen at Institute of Computing Technology of CAS, and
SCS Group members at Illinois Institute of Technology for
their insightful comments. This research was supported in
part by the China Scholarship Council under CSC grant
2008100631, and by the Illinois Institute of Technology
Graduate Dean Scholarship.

REFERENCES
[1] H. Al-Zoubi, A. Milenkovic, and M. Milenkovic.

Performance evaluation of cache replacement policies
for the SPEC CPU2000 benchmark suite. in
Proceedings of the 42nd Annual Southeast Regional
Conference, April 2004.

[2] AMD Inc. Software Optimization Guide for AMD
Family 10h and 12h Processors, Revision 3.12.
http://support.amd.com/us/Processor_TechDocs/40546
.pdf, pp. 81-89, December 2010.

[3] J.-L. Baer and T.-F. Chen. An effective on-chip
preloading scheme to reduce data access penalty. in
Proceedings of the 1991 ACM/IEEE Conference on
Supercomputing (SC '91), November 1991.

[4] M. Chaudhuri. Pseudo-LIFO: the foundation of a new
family of replacement policies for last-level caches. in
Proceedings of the 42nd Annual IEEE/ACM
International Symposium on Microarchitecture
(MICRO '09), December 2009.

[5] Y. Chen, H. Zhu, and X.-H. Sun. An Adaptive Data
Prefetcher for High-Performance Processors. in
Proceedings of the 10th IEEE/ACM International
Conference on Cluster, Cloud and Grid Computing
(CCGrid-2010), May 2010.

[6] J. Doweck. Intel Smart Memory Access and the
Energy-Efficient Performance of the Intel Core
Microarchitecture.
http://download.intel.com/technology/architecture/sma
.pdf, 2006.

[7] DPC committee. The 1st JILP Data Prefetching
Championship (DPC-1). http://www.jilp.org/dpc/,
2009.

[8] J. Edler and M. D. Hill. Dinero IV Trace-Driven
Uniprocessor Cache Simulator.
http://pages.cs.wisc.edu/~markhill/DineroIV/.

[9] J. Handy, The Cache Memory Book, Academic Press,
San Diego, 1998.

[10] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean,
A. Kyker, and P. Roussel. The Microarchitecture of the
Pentium® 4 Processor. Intel Technology Journal, (First
Quarter) 2001.

[11] Z. Hu, S. Kaxiras, and M. Martonosi. Timekeeping in
the memory system: predicting and optimizing
memory behavior. in Proceedings of the 29th Annual
International Symposium on Computer Architecture
(ISCA '02), May 2002.

[12] A. Jaleel, R. S. Cohn, C.-K. Luk, and B. Jacob.
CMP$im: A Pin-based on-the-fly multi-core cache
simulator. in Proceedings of Fourth Annual Workshop
on Modeling, Benchmarking and Simulation, June
2008.

[13] A. Jaleel, K. B. Theobald, S. C. Steely, Jr., and J. Emer.
High performance cache replacement using
re-reference interval prediction (RRIP). in Proceedings
of the 37th Annual International Symposium on
Computer Architecture (ISCA '10), June 2010.

273

[14] M. Kampe, P. Stenström, and M. Dubois.
Self-correcting LRU replacement policies. in
Proceedings of the 1st Conference on Computing
Frontiers (CF '04), April 2004.

[15] A.-C. Lai, C. Fide, and B. Falsafi. Dead-block
prediction & dead-block correlating prefetchers. in
Proceedings of the 28th Annual International
Symposium on Computer Architecture (ISCA '01),
June/July 2001.

[16] H. Q. Le, W. J. Starke, J. S. Fields, J. S. O'Connell, D.
Q. Nguyen, B. J. Ronchetti, B. J. Sauer, E. M. Schwarz,
et al. IBM POWER6 microarchitecture. IBM Journal
of Research and Development, 51(6):639-662,
November 2007.

[17] D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min, Y.
Cho, and C. S. Kim. LRFU: a spectrum of policies that
subsumes the least recently used and least frequently
used policies. IEEE Transactions on Computers,
50(12):1352-1361, December 2001.

[18] H. Liu, M. Ferdman, H. Jaehyuk, and D. Burger.
Cache bursts: A new approach for eliminating dead
blocks and increasing cache efficiency. in Proceedings
of the 41st IEEE/ACM International Symposium on
Microarchitecture (MICRO '08), November 2008.

[19] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G.
Lowney, S. Wallace, V. J. Reddi, et al. Pin: building
customized program analysis tools with dynamic
instrumentation. in Proceedings of the 2005 ACM
SIGPLAN Conference on Programming Language
Design and Implementation, June 2005.

[20] A. Malamy, R. N. Patel, and N. M. Hayes. Methods
and apparatus for implementing a pseudo-LRU cache
memory replacement scheme with a locking feature.
United States Patent US5353425, October 1994.

[21] MIPS. MIPS32® 1004K® CPU Family Software User's
Manual, Revision 01.10.
https://www.mips.com/application/login/login.dot?pro

duct_name=/auth/MD00622-2B-CMP-SUM-01.10.pdf,
pp. 265-273, July 2009.

[22] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder.
Automatically characterizing large scale program
behavior. in Proceedings of the Tenth International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS '02),
October 2002.

[23] K. So and R. N. Rechtschaffen. Cache Operations by
MRU Change. IEEE Transactions on Computers,
37(6):700-709, June 1988.

[24] W. E. Speight and L. Zhang. Cache Directed
Sequential Prefetch. (Application Publication No.: US
2010/0030973 A1), Feburary 2010.

[25] C. D. Spradling. SPEC CPU2006 benchmark tools.
ACM SIGARCH Computer Architecture News,
35(1):130-134, March 2007.

[26] Sun Microsystems, Inc. UltraSPARC T2 supplement to
UltraSPARC Architecture 2007 Specification,
Hyperprivileged, Draft D1.4.3.
http://opensparc-t2.sunsource.net/specs/UST2-UASup
pl-current-draft-HP-EXT.pdf, pp. 937-940, September
2007.

[27] W. A. Wong and J.-L. Baer. Modified LRU policies for
improving second-level cache behavior. in
Proceedings of the Sixth International Symposium on
High-Performance Computer Architecture (HPCA '00),
January 2000.

[28] W. A. Wulf and S. A. McKee. Hitting the memory wall:
implications of the obvious. ACM SIGARCH
Computer Architecture News, 23(1):20-24, March
1995.

[29] H. Zhu, Y. Chen, and X.-H. Sun. Timing local streams:
improving timeliness in data prefetching. in
Proceedings of the 24th ACM International
Conference on Supercomputing (ICS '10), June 2010.

274

