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Abstract—The success of the Hadoop MapReduce program-
ming model has greatly propelled research in big data analytics.
In recent years, there is a growing interest in the High Per-
formance Computing (HPC) community to use Hadoop-based
tools for processing scientific data. This interest is due to the
facts that data movement becomes prohibitively expensive, high-
performance data analytic becomes an important part of HPC,
and Hadoop-based tools can perform large-scale data processing
in a time and budget efficient manner. In this study, we propose
PortHadoop, an enhanced Hadoop architecture that enables
MapReduce applications reading data directly from HPC parallel
file systems (PFS). PortHadoop saves HDFS storage space, and,
more importantly, avoids the otherwise costly data copying.
PortHadoop keeps all the semantics in the original Hadoop system
and PFS. Therefore, Hadoop MapReduce applications can run
on PortHadoop without code change except that the input file
location is in PFS rather than HDFS. Our experimental results
show that PortHadoop can operate effectively and efficiently with
the PVFS2 and Ceph file systems.
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I. INTRODUCTION

Hadoop MapReduce has been a popular framework for
distributed large-scale data processing [1] [2]. Hadoop MapRe-
duce handles fault tolerance in a transparent manner and can
achieve embarrassingly parallelism on commodity devices. Its
programming model is easy to understand and use, which has
significantly lowered the bar of large-scale data processing.

In recent years, researchers have proposed the concept of
“HPC in the Cloud” [3] [4] [5] and various programming
models and platforms to address big data challenges in data
center [6] [7] [8]. The motivation behind “HPC in the Cloud” is
twofold. Firstly, the growth of computing capacity of the HPC
systems has followed Moore’s law in the past few decades, and
this trend will continue in the near future. On one the hand,
the increasing of computing capacity has enhanced the abilities
of scientific discoveries. On the other hand, those empowered
scientific applications have also generated skyrocketing data,
putting even more pressure on the ever-overloaded file systems.
The development of storage systems has severely lagged
behind its computing counterpart, in terms of both capacity
and accessing speed, thus limiting the overall performance
of HPC systems. Offloading the onerous data-intensive tasks
to a cheaper and yet powerful system like Hadoop MapRe-
duce system is one viable approach to alleviate the burden
on HPC storage system. Secondly, Hadoop MapReduce has

gained wide success in many fields over the past few years.
Utilizing Hadoop for scientific application data management
and processing becomes convenient as well as productive.

Typical tasks of an HPC storage system fall into two
categories: (1) Input/Output from a computing system; (2)
query and data processing requests from external users. Tra-
ditionally, task (1) has been the major concern of HPC, and
the design and optimization of HPC systems have focused on
achieving high-performance I/O rate and dealing with irregular
and bursty I/O requests [9] [10]. Parallel File Systems (PFS),
e.g., PVFS2 [11], GPFS [12], CephFS [13], Lustre [14] etc, are
developed for the purpose of solving task (1). While task (2) is
becoming more and more an integrated part of HPC, PFS are
not designed to handle it. The query and data processing tasks
often take a large portion of the performance time and impair
the I/O performance of running applications. In recognizing the
problem, there is a growing interest in using big data process-
ing frameworks such as Hadoop MapReduce for large-volume
data query and processing. Another reason for this interest, of
course, is that many data processing and analytic tools/software
are developed under Hadoop MapReduce environments.

Hadoop MapReduce manages its data through the Hadoop
Distributed File System (HDFS). Unlike PFS, HDFS releases
data consistency and consequently has a better data concur-
rency than PFS. It is extremely effective for applications that
do not require strong consistency, such as Internet search,
information retrieval, and visualization, etc. For example, in
the NASA Center for Climate Simulation (NCCS), climate
and weather simulations can create a few Terabyte simulation
datasets [15]. Only the data items with interesting events such
as hurricane center and thunderstorms, which could be one
order of magnitude smaller than the original data size, are
further analyzed. To visualize the reduced, but still huge,
data effectively, a visualization tool has been developed under
Hadoop environment at NCCS. Hence, it is highly desirable to
have a reading tool that is able to read a subset of data in PFS to
HDFS efficiently for visualization. In fact, this cross-platform
reading tool is necessary and essential for on-time visualization
for NASA climate and weather simulation results.

A straightforward way to use Hadoop MapReduce is to
copy data from PFS to HDFS. However, this approach has
several issues. The first design challenge is to maintain the
efficiency of the data storage. Typically, PFS keeps one copy of
the data, and HDFS keeps multiple copies for high availability
and fault tolerance. This multiple copying is costly and unnec-



essary for data already available in PFS. The second design
challenge is the performance of data movement. HDFS does
not support concurrent write access. Thus, data blocks have to
be first aggregated into an assigned aggregator and then saved
onto HDFS. This copy procedure is very time-consuming, and
the users have to experience a long, unpredictable delay before
accessing the data in HDFS. The biggest challenge yet is
to reconcile the semantic gap between the two file systems.
This semantic gap is not just in terms of interface, but the
optimization and organization under its semantic interface. For
instance, In handling fault tolerance, PFS relies on application
checkpointing and restart while HDFS relies on data replica-
tion and task rescheduling. Thus, their scalability has to be
achieved with two different philosophies. There are numerous
community efforts trying to reconcile the I/O middleware layer
such as the MR-MPI [16]. Such efforts usually involve several
trade-offs in design and deployment and sacrifice performance
and functionalities. Therefore, it is extremely challenging to
develop a full-fledged file system that is well accepted by both
communities.

After considering those issues, we propose PortHadoop, a
portable Hadoop framework that supports direct data access
to PFS from a Hadoop environment. PortHadoop supports
multiple PFS including PVFS2 and CephFS. PortHadoop does
not intend to reconcile PFS and HDFS. Instead, it supports
direct data access between these two file systems. PortHadoop
reads PFS data directly from a (remote) PFS and stores the
data onto PortHadoop memory system. This data path and
its management involve a significant change in the current
Hadoop implementation, and we will elaborate them in detail
in Section II. The benefit of the PortHadoop design is signifi-
cant: both the interface of PFS and HDFS are unchanged. Thus,
the HPC application code does not need any change, and can
still take the full advantages provided by PFS, e.g. enhancing
application performance through maximizing the parallelism
and I/O bandwidth. In the meantime, there is no need to change
the Hadoop applications as well. In Figure 1, we illustrate
the design behind PortHadoop. Here, the lines labeled with
“a” represent the data path of the naive approach, and the
lines labeled with “b” represent the data path of PortHadoop.
The naive approach copies the entire data onto HDFS and
then, after copying, read data for post-processing. PortHadoop,
read data directly to Hadoop memory, without copying from
PFS to HDFS first, for data processing. Since PortHadoop
reads data directly for processing, it has avoided the multiple
copying issues onto HDFS. Also, since it reads directly into
the memory, it further can pipeline the data processing and
data transfer. As illustrated in Figure 1, the advantage of
PortHadoop is tremendous in that it avoids the entire copy
and read on HDFS, and only reads the needed data to Hadoop
memory system directly.

The contributions of this paper are summarized as follows:

• PortHadoop has built an efficient mechanism for pro-
cessing data stored in PFS in a Hadoop environment
via direct data access;

• PortHadoop is portable to various PFS. The current
PortHadoop implementation works effectively and ef-
ficiently on PVFS2 and CephFS;

• PortHadoop keeps the semantics of native Hadoop and
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Fig. 1. Data paths for supporting data processing in Hadoop. The data path
of the naive approach is labeled as a, and colored in red while the data path
of PortHadoop is labeled as b, and colored in green.

PFS. Therefore, existing Hadoop applications can run
directly on PortHadoop, and HPC application codes
do not need any modification.

The rest of the paper is organized as follows. Section II
mainly focuses on the design and implementation of PortHa-
doop. The experimental evaluation of PortHadoop is presented
in Section III. The related work is discussed in Section IV.
Finally, we conclude the paper in Section V.

II. DESIGN AND IMPLEMENTATION

A. Overview

PortHadoop is an extension of the Hadoop framework. Our
current implementation of PortHadoop is based on Hadoop
version 1.0.0, which is a stable version and widely deployed.
Our target application is the NASA climate modeling applica-
tion, which is implemented under Hadoop version 1. It serves
our purpose well. Cross-platform data access does not involve
advanced features, such as advanced resource allocation for
multi-tenancy, provided by Apache YARN. HDFS has not
changed much from Hadoop version 1 to YARN, except some
additional features. PortHadoop can be extended to YARN
with little effort. PortHadoop supports the native MapReduce
workloads and also enables map tasks to read directly from
an external PFS. Our work is portable in the sense that it is
compatible with multiple PFS.

To achieve our design goal, we have modified multiple
existing components in Hadoop system and created some
new components. We introduce the communication and data
transfer protocol between Hadoop and PFS in Subsection
II-B, introduce the virtual block concept for cross-platform
data processing in Subsection II-C, present the task schedul-
ing support in Subsection II-D. We discuss the PortHadoop
data alignment and data integrity design in Subsection II-
E and propose data prefetching mechanism to further utilize
the bandwidth between PFS and Hadoop in Subsection II-F.
Finally, fault PortHadoop tolerant mechanisms are discussed
in Subsection II-G. Figure 2 illustrates the PortHadoop system
architecture and its corresponding job and task events. A
typical MapReduce job splits data into multiple independent
chunks that are processed by multiple map tasks in a parallel
manner. PortHadoop intercepts data-read from map tasks by
mapping the virtual blocks in HDFS to real blocks in remote
PFS. PortHadoop manages the virtual blocks in a virtual block
table in the name node. A job starts with mapping the virtual
blocks to PFS files. This step is crucial as PortHadoop uses
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Fig. 2. PortHadoop System Architecture: We take PVFS2 as an exmaple for PFS, PortHadoop job tracker and task tracker run on master node, and task tracker
and map task run on PortHadoop slave node. (There are many slaves, take one as example here.) Virtual blocks are managed in the virtual block table in
namenode. Task tracker initiates the PFS prefetcher thread, which is responsible for prefetching data directly from remote PFS. Map task initiates the PFS reader
thread, which reads data directly from remote PFS.

this block metadata information for data block retrieval from
the remote PFS. In Figure 3, we further illustrate the main
algorithms used in PortHadoop. The PFS reader procedure
represents the thread spawned by the map task process. They
are initiated when the target blocks are not in the virtual
block table. Those threads further interact directly with the
remote PFS file server. The PFS prefetcher represents the
thread spawn by task tracker process. It communicates with
the remote PFS. This thread can utilize the PFS network and
prefetch data from the remote PFS to memory, thus achieve the
goal of overlapping computation with I/O. Both PFS reader
and PFS prefetcher fetch the target data into Cached File(CF),
and then set this CF available to map task.

B. Portable APIs

A communication protocol between Hadoop and PFS is
established via our portable APIs. We implement this protocol
according to Message Passing Interfaces (MPI). In the imple-
mentation of PortHadoop, we select MPI-IO [17] as the direct
access tool for reading data from remote PFS. Thus, the MPI
APIs are the standard APIs for PortHadoop. We choose MPI
because it meets our three key requirements: 1) efficient data
transmission, 2) data integrity, and 3) ease of access to PFS
namespace and metadata information.

MPI-IO is widely adopted in many supercomputer systems
as the intermediate tool for communicating with the storage
system. As the most popular implementation, ROMIO [18] has
enabled MPI-IO to work seamlessly with many PFS, including
GPFS, PVFS2, Lustre, and CephFS. It is an efficient and
compatible data transmission tool to PFS.

Because PFS and HDFS have different views of data, we
need to ensure data integrity while transferring data. In PFS,
data are stored and accessed in certain types, such as int, long,
float, etc. However, HDFS data is unstructured and untyped
data, which is Byte oriented. The user defined RecordRead
within map function will parse the data as it is expected. Thus,
the granularity of data transfer is per byte, which is consistent
between the data source and sink. In the implementation of
PortHadoop, MPI CHAR and MPI BYTE are used as the
basic data type for data access. When loading the data in nodes
at Hadoop cluster, they are transferred as they were in PFS.

In order to intelligently read data from PFS, PortHadoop

uses MPI File get size() function to get the size of the target
file. PortHadoop uses this file size as well as the default block
size to compute the exact offset on the data for each task
in HDFS namespace system. This calculation ensures that
PortHadoop provides a consistent semantic as that of HDFS
for the upper-level MapReduce applications.

C. Virtual Block

As mentioned in the system overview, virtual blocks are
used to build the data mapping between HDFS and the remote
PFS. This mechanism is illustrated in Figure 1. PortHadoop
bypasses the HDFS layer in the Hadoop environment by plac-
ing data directly into memory. It has skipped the file copying
process, which is extremely costly. However, the skipping
creates a technical hurdle. PortHadoop needs to maintain the
integrity of the upper-level MapReduce applications, providing
a virtual HDFS environment, even the data is in a remote PFS.

In order to provide the virtual environment, we introduce
the concept of “virtual block” in PortHadoop. The management
of HDFS is based on a centralized namespace in NameNode.
This namespace provides the view of all the files and blocks
saved in HDFS and is the base for JobTracker (the first
generation of Hadoop) and MapReduceAppMaster (Hadoop
YARN) to make scheduling decision. Conventionally, tasks are
scheduled to nodes where the input splits or data blocks reside.
To make this procedure consistent, we added functionalities
in the namespace system of NameNode by providing virtual
blocks and files without actually saving the data blocks to
the nodes. In other words, virtual blocks only exist in the
centralized namespace. The data operation is hidden from the
MapReduce application, and a map task triggers the MPI file
read procedure and fetches the data from the remote PFS
before its Mapper function processes its data. The details
about a map task and its processing data are presented in
Subsection II-E. The mapping from remote PFS file to virtual
blocks is computed by the call of MPI File get size(). The
functionalities are provided in a created function named Virtu-
alBlockAllocation(). This function can create the virtual blocks
in the namespace, map files to blocks and close the directory.
We purposely exclude DataNode in this procedure. Thus,
PortHadoop can avoid the I/O operations and data replications
that are necessary parts of the original HDFS. In Subsection



V BT : Virtual block table
S : Split
SQ : Split queue
CF : Cached file
PC : Capacity for prefetching data

procedure SCHEDULE TASK
. Enable PortHadoop to work with virtual block.

Create V BT for PFS file/files by client.
Job and splits are initialized. SQ is initialiazed.
while true do . The master processes RPC from slaves.

if the slave asks for map task then
if this slave has split prefefetched in SQ then

assign a task with prefetched data to the
slave, update SQ

else
assign a map task to the slave, update SQ

end if
end if
if the slave asks for prefetch then

assign prefetch task to the slave, update SQ
end if
process other requests

end while
end procedure

procedure POLL TASKS
while true do . RPC from a slave to the scheduler.

poll task when resource avaiable
request prefetch task when PC avaiable
procedure Process actions

end while
end procedure

procedure PROCESS ACTIONS
if action is to assign task then

initialize Map task(S)
end if
if action is to prefetch then

initialize PFS Prefetch(S), update PC
end if
process other actions

end procedure

procedure MAP TASK
compute CF , re-establish split to CF
if CF is not in available then

initialize PFS read(S)
end if
wait until CF is available
conduct Mapper, update PC when cleanup

end procedure

Fig. 3. Main algorithms used in PortHadoop.

II-D, we illustrate these virtual blocks are sufficient for cross-
platform task scheduling and execution.

D. Task Scheduling Support

PortHadoop schedules tasks based on virtual blocks to
initialize the aligned mapping between map tasks and their
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Fig. 4. Cross-block-boundary record reads in Hadoop MapReduce: this issue
is transparently handled by RecordReader and HDFS.

target data. The default scheduler in Hadoop schedules tasks
based on the data locality information. Tasks are scheduled
to the local slave node where the corresponding data block
resides. The scheduler only assigns a task onto a remote node
when there is no slot or container resource available on a local
node. The scheduler assigns each task an input split, which is
a reference to an actual data block or consecutive blocks. The
actual data block is only retrieved when the task is assigned
to the slave node and starts execution. Therefore, PortHadoop
intercepts the input split and redirect the data block retrieval
from HDFS or local storage system to memory. The centralized
namespace provides sufficient information for the scheduler to
assign splits to tasks. Thus, we can avoid the communication
to DataNode. In fact, we have built an HDFS equivalent in the
memory system as introduced in Subsection II-C. The offset
and length of the file for each task is identical as they would be
in the HDFS. To support this mechanism, PortHadoop has to
initiate the necessary MPI function calls to get the file metadata
and data from the remote PFS, update the namespace and save
the corresponding data to memory system before scheduling
the tasks. This procedure will be triggered while the client
is adding the input path with a PFS specified prefix, such as
“pvfs2://,” which indicating the input data are in remote PFS.
In implementation, the function is integrated in addInputPath
method of FileInputFormat. The hint of PFS will be reserved in
the path, to inform the consequent map task to process a remote
data split at a specific PFS. An RPC protocol is established
between the client and NameNode to establish virtual blocks
according to the input data.

E. Split Alignment

It is essential to guarantee data integrity such that map task
in PortHadoop can process its target data similar to that of the
conventional Hadoop. As discussed in Subsection II-D, a split
is a unit of input data for a map task and is a reference to
the target data rather than the actual data block. We illustrate
the virtual block mechanism in Figure 4. Specifically, a split
contains the file name, start and end positions in a file. Each
split will be calculated while user submits the job. In general,
a contiguous file will be chunked up to multiple splits for
processing. A split corresponds to a data block. Because the
block size is pre-determined, it is common that a record will
cross the boundary of two blocks. In this scenario, a split
usually contains incomplete information for the first and the
last record. A map function has its RecordReader to read the
input data in its expected format. The RecordReader reads
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Fig. 5. Read strategies and actual data processing in PortHadoop.

records in a while loop, from the start offset of the split,
also the last record in the split if the very record cross block
boundary.

For a given split, the data of its beginning part may belong
to the task of the previous split. If the start offset in the split
is non-zero, which indicates the current split is not the first
block, RecordReader will skip that piece of data and adjust the
start offset data for appropriate task processing. In a special
case, the split is perfectly aligned, the first record in the split,
therefore, should be processed by the current map task. In
Hadoop, LineRecordReader reads the input data backward one
byte from the start offset of assigned split and then skips the
first line from a synchronization label, namely sync-marker,
such as a new line character. This strategy avoids processing
an incomplete record that at the beginning of a given split.
HDFS can handle the split alignment automatically if data are
copied into HDFS first. The question, then, is how do handle
the alignment if we skip the HDFS copying.

PortHadoop aligns the split boundary and guarantees the
data integrity provided by HDFS. Before initializing the Map-
per function, as Figure 5 shows, the range of target data is
parsed from the given split, the fetcher then read the data in
PFS and save it to the local memory of the map tasks hosting
node. We re-establish the split by pointing the split file at the
cached file and setting the start offset the same as the length
of sync-marker and keeping the split length remain.

In PortHadoop, the splits are categorized into two classes:
the ones with predictable size and patterns, and the ones
with unpredictable sizes. The solution to the first category
is straightforward. As illustrated in Figure 5(a), we can set
the boundary of two input splits at the right place where
no records are broken. And the data processed is the same
as the assigned split. HDFS uses fixed block size for easy
namespace and conducts metadata operations in name node,
allowing for customizable block size that is multiples of 1024
bytes. Though Hadoop computes splits based on blocks sizes,
we cannot change the block sizes based on record boundaries.
Alternatively, we adjust split sizes. In other words, once the
split boundaries are calculated, we can allocate the virtual
blocks, each of which indicating the approximate amount of
data to be processed by a map task, and then set up preferred
split sizes accordingly to match boundaries. Therefore, the
consequent splits will be perfectly aligned, and there is no
cross-block-boundary record read.

For the second category, a straightforward approach is to
adopt the default Hadoop mechanism that adjusts the split
boundaries during task executions. Recall that the input data
are not kept in HDFS, so there is no data locality information

in the splits; the splits will be sorted according to their sizes
in descent order before task scheduling. Hence, we have to
reserve the split dependency during task execution, which is
a pointer from the previous block to the following block.
Moreover, it is necessary to dynamically re-establish input
stream at runtime while the RecordReader reaches the end of
the local split file. PortHadoop implementation is based on the
second and the third mechanisms.

The second method is to acquire more data than the actual
range of the split. We name it redundant-read mechanism,
as shown in Figure 5(b). If the current split is not the first
one, it reads a unit of synchronized marker length data at the
beginning of the split. Also, if the current split is not the last
one, it also reads certain redundant bytes to ensure the data
integrity of the last record. While the current split is not the
first one, a backward read for a sync-marker length data is
a must in Hadoop, although it may introduce more latency.
Redundant-read in PortHadoop will read all the data once that
avoids the latency of backward reading. However, while the
record size pattern is unknown, it is hard to predetermine
the size of the read. This method suffers uncertainty for both
overhead and integrity guarantee for the last record in that split.
If the size is too small, then the record may still be incomplete.
If the size is too large, the I/O overhead will dominate.

The third one is to detect the split boundary by detecting
the sync-marker that is close to block boundary, and then fetch
the target data accordingly. We name this method perfectly
aligned read with dynamic split boundary detection, as shown
in Figure 5(c). Hence, the fetched data are exactly the same
as the data to be processed for an assigned split. Different
from predictable record patterns, PortHadoop acquires the split
boundaries first; instead of creating splits accordingly, it then
passes the hints of split range to MPI data reader to fetch
the perfectly aligned target data. Therefore, this procedure
guarantees both data integrity and I/O efficiency.

In summary, PortHadoop implements three split alignment
strategies as shown in Figure 5, to support split alignment. In
Figure 5, the yellow rectangle represents a virtual data block
in HDFS, and the corresponding split that is assigned to a map
task. The light aqua one represents the data mapping from PFS
to memory, a cached data file (CF) and its rebuilt split to that
CF. The Green ones indicate the actual data to be processed
by map tasks. The redundant-read strategy, as shown in Figure
5(b), is efficient in practical because a redundant 2K bytes are
small to a 64MB block and sufficient to ensure data integrity.
However, it may suffer data integrity or redundant I/O when the
record size or synchronized unit is too large in that split. We
have two perfectly-aligned read strategies, which are shown



in Figure 5(a) and Figure 5(c), respectively. Both of them
have no redundant read for the cached file (CF) and their map
tasks process the exact amount of data that cached in memory.
The first one prefers predictable split sizes and determines
the alignment for data transfer in the split creation phase.
The second one has no assumption on the split boundaries,
it adjusts the boundaries at runtime, calculates the data (CF)
to be transferred in map task runtime.

F. Data Prefetching

As large memory enhances performance and the RAM card
becomes cheaper and has larger capacity, it is conservative that
PortHadoop uses memory as a staging stack of the input data
splits. Map function begins once its input data are cached in
memory. Hence, the I/O request time of map task input will
be exposed. The causes are two-fold. First, as same as the
conventional Hadoop, PortHadoop adopts a poll mechanism
for task executions. The slave nodes are periodically commu-
nicating with the scheduler, for reporting task status and asking
for tasks when the resource is available. Second, the execution
time of tasks in PortHadoop is composed of the time for data-
fetching and processing manner. Hence, when the bandwidth
of both network and PFS disk I/O is underutilized, prefetching
target data blocks helps to reduce exposed data access time.
However, prefetching more blocks will overflow the capacity
of the memory at slave nodes and causes failure. Hence, in
each node, we define an upper-limit capacity threshold for
these in-memory blocks. One monitoring thread maintains the
status of capacity consumption and clean ups the useless data
for the killed or failure tasks.

We design a fine-grained pipeline data processing mecha-
nism in PortHadoop, which coordinates data prefetching and
task scheduling. Since there is no data locality for all the
map tasks, the task will be dispatched in FIFO order in the
task queue. JobInProgress is for a job and decoupled with
job tracker. We utilize the existing status of tasks and splits
information that is kept in JobInProgress. The PortHadoop
scheduler uses JobInProgress information to assign map tasks,
and prefetching task. The pipelining is conducted in three
steps. The first one is the job tracker decides whether to
conduct pipelining based on if the job has a potential to
overlap the data processing and data fetching. Second, once the
job is initialized, the split information is ready, we maintain
an array that indicates the split status in three categories:
prefetching, corresponding task finished, and not assigned.
Different from map task scheduling, the prefetching task will
prefetch the split with a state of not assigned, from the rear
of the split queue for avoiding redundant fetching data blocks.
Consequently, if the current job needs block prefetching, then
the job tracker assigns block prefetch tasks to the task trackers.
Task tracker is responsible for launching prefetching input data
functions. We utilize heartbeat routine between task tracker
and job tracker to coordinate the data prefetch and pipelining
task execution. We define a new action named PrefetchAction
and encapsulate it into actions that assigned split to the task
tracker. Each PrefetchAction carries the file name, the split
start offset, and the split length for prefetching. We customize
TaskTrackerStatus to provide available capacity for prefetching
input splits, report to the job tracker. When the scheduler
assigns prefetching tasks to a task tracker, it records the name
of task tracker and the corresponding split and the state of that

split is set to prefetching. Correspondingly, when a task tracker
asks for map tasks, the job tracker will look up the assigned
prefetching splits and assign corresponding map tasks to that
slave.

G. Fault Tolerance Support

Hadoop is popular due to its transparent fault tolerance on
commodity machines. As PortHadoop is an extended Hadoop,
its map tasks will store their intermediate results onto local file
system as the default Hadoop does. Therefore, the fault toler-
ance feature of reduce phase is inherent in the conventional
Hadoop after map tasks have finished their jobs. However, if
a map task fails during its execution, the failure task needs to
fetch its input data again from the remote PFS. In this case,
PortHadoop has designed to reschedule the failure task and
re-fetch the corresponding input data. PortHadoop optimizes
data transfer by pipelining the transfer and processing prior to
alleviating map task skewness and stragglers. We observed the
skewnesses in multiple waves of map task processing in Sec-
tion III. To optimize task processing, PortHadoop also supports
backup tasks [19], as that in the conventional Hadoop.

III. EVALUATION

In this section, we present the experimental evaluations
of PortHadoop and verify its performance and functionalities
from a set of tests cases. PortHadoop bridges two domains of
file systems and supports multiple types of Hadoop applica-
tions. Thus, there are multiple factors which affect PortHadoop
performance. We select the most important factors and illus-
trate the details in the following discussions.

A. File Systems and Platforms

PortHadoop is portable meaning that it works seamlessly
with multiple PFSes. The current implementation supports
PVFS2 and CephFS. Specifically, we use OrangeFS version
2.8.6 that is the commercial version of PVFS2 and is well
maintained by a team from Clemson University. We also
used CephFS version 0.80.7 in the experiments. In our test
environment, the network connection is one Gigabit Ethernet.
To further prove that PortHadoop can operate on multiple
platforms, we use the two clusters in IIT SCS Lab: Craysun
and HEC. We use 17 nodes in Craysun and 25 nodes in HEC.
The head node is a Dell PowerEdge 2850 Server, which has
a dual-core Intel Xeon CPU 2.80GHz with 6GB of memory.
All slave nodes are Dell PowerEdge SC 1425 Server, each of
which has an Intel Xeon CPU 3.40GHz processor, 1GB of
memory, and a 36GB (15,000 rpm) SCSI hard drive. HEC is
an SUN Fire Linux cluster, in which each node has two AMD
Opteron processors, 8GB memory, and a 250GB SEAGATE
HDD. All nodes run Ubuntu 14.04 with the latest Linux kernel.
The MPI installed in both systems is MPICH 3.0.4.

B. Metadata Operation

In Subsection II-C, we introduced the concept of virtual
blocks. The NameNode in PortHadoop manages virtual blocks
in a centralized manner similar to managing regular blocks.
Intuitively, the overhead for managing the virtual blocks should
be small because all operations are within the memory. In
Figure 6, we present the overhead under a series of experiments
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Fig. 6. Duration of virtual block allocation in PortHadoop.

on the creation of virtual blocks. The data block size is set as
64MB, and we vary the total number of blocks from 10 to
10,000. As we can see, the total execution time grows linearly
with the number of operated virtual blocks. In the largest test
case, the virtual blocks for a total of 625 GB of data are
allocated in about half a second. The overhead compared to the
actual data fetching from the remote PFS is negligible. Thus,
in the following experiments, we mainly focus on analyzing
the overhead of I/O and task execution.

C. Evaluation on Hadoop Benchmarks

We select Wordcount and Grep as the baseline Hadoop
benchmarks for evaluating the performance of PortHa-
doop. They are representative applications for old fashion
(runOldMapper) and new fashion (runNewMapper) MapRe-
duce APIs, respectively. To further show the performance
improvement of PortHadoop over the original Hadoop system,
we conducted experiments on both Hadoop and PortHadoop.
As discussed in Section II, PortHadoop is based on Hadoop
version 1.0.0; thus we also use the same version for a fair
comparison.

We measure and compare the costs of reading data in the
conventional copy-then-read manner and PortHadoop. CephFS
is used in this evaluation. We use raw wiki text dataset
from Wikipedia.org as the input data. Recall the conventional
method has a “copy” step and a read step. The data copy
overhead from PFS to HDFS is marked as HDFS put in
Figure 7. After that, the conventional Hadoop application reads
the target data from HDFS. The read (processing) time is
labeled as Hadoop in Figure 8. By contrast, our PortHadoop
directly accesses and processes the data in CephFS. Compared
with “HDFS Put” and “Hadoop” processing approach, the
input dataset of PortHadoop reside in the remote PFS, and
input I/O occurs at separate nodes from Hadoop slave nodes.
Recall that PortHadoop conducts a remote data access, reading
data from a PFS system to an HDFS system. This remote
data access process can be overlapped and pipelined with data
processing. In this direct data processing cost, we did not
perform any prefetching in this experiment since prefetching is
application dependent, and here we want to show the advantage
of avoiding copying. As shown in Figure 7, for the 8 GB case,
the HDFS put + Hadoop time is 243 seconds + 355 seconds =
598 seconds, and the PortHadoop is 389 seconds. PortHadoop
improves the performance by 34.9%. Figure 7 demonstrates
the correctness of PortHadoop design and its potential, but not
its best possible performance.

We also conduct our experiments with PVFS2. Eight I/O
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Fig. 7. Performance comparison between conventional Hadoop and PortHa-
doop with WordCount on wiki text dataset. “HDFS put” copies an input
data file from CephFS to HDFS and then “Hadoop” processes the dataset.
“PortHadoop” directly reads and processes the dataset residing in CephFS.

server nodes are set up to test the scalability for PortHadoop.
PortHadoop is configured with 4, 8, and 16 slaves, respectively.
As Figure 8 shows, PortHadoop significantly reduces the
overall execution time while the number of concurrent map
tasks varies from 2 to 8 per slave, and the target data size from
1GB to 8GB. While the number of the concurrent maps task
is small, e.g. 2, the performance improvement by PortHadoop
is limited, especially when the target data size is also small.
This is attributed to the fact that PortHadoop uses memory
as a stage and adopts blocking data access. Map task starts
processing only when the data transfer completes. Hence, the
data transfer time is exposed to the overall elapsed time. In
contrast, after data copy phase, the consequent job of Hadoop
can achieve data locality and task processing can overlap the
disk I/O. Nevertheless, PortHadoop always outperforms the
copy approach by standard Hadoop.

To further investigate the scalability of PortHadoop and
evaluate the potential bottleneck, we employ up to 16 slaves
with 8 concurrent map task processing per node, to saturate the
network bandwidth between PFS and PortHadoop system. Fig-
ure 9 shows that PortHadoop improves the overall performance
but suffers from the limited network bandwidth for further
scalability. However, the copy phase in naive approach is still
costly due to the constraint of the network bandwidth.

Figure 10 shows the performance of PortHadoop with
different applications with 4GB input data. Copying these
data from CephFS to HDFS costs roughly 134 seconds. The
performance of both TeraSort and TestDFSIO-read outperform
that of the original Hadoop because CephFS provides extra and
better I/O bandwidths for data read. Particularly, TestDFSIO-
read is a pure read workload, it costs 60 seconds in PortHadoop
while 190 seconds in Hadoop without data copy cost, since
CephFS can provide better read bandwidth than HDFS.

D. Evaluation on a Bio-application

We use a bio application named OCTree to further demon-
strate the portability and functionalities of PortHadoop. Octree
is used for classifying protein-ligand binding geometries [19].
The proposed method is implemented as a two-phase Hadoop
MapReduce job. The geometry reduction and key generation
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Fig. 9. Performance comparison between Hadoop and PortHadoop for 3
number of slaves. Each WordCount job processes 8 GB wiki text data with 8
concurrent map tasks per slave.

constitute the first-phase MapReduce job, where map tasks
read large datasets as the input for further iterative compu-
tation. The second phase takes the output of the first phase
as input, and this constitutes one round of iteration. This
iterative octree-based clustering algorithm is implemented as a
chain of MapReduce jobs and the I/O amount in the iterative
phase is usually quite small compared to the first phase. In
this paper, we only focus on the first phase computation and
report its performance in PortHadoop. This application has
strict semantic for its input data. The target file consists of
several input units. Each input unit is about 57MB. We conduct
this experiment on eight Hadoop slaves, each slave with two
concurrent map tasks. As Figure 11 shows that PortHadoop
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Fig. 10. Performance of PortHadoop with different applications under
CephFS.
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Fig. 11. Performance comparison with bio application Octree under CephFS.

has about 10% more time compared with Hadoop framework,
similar to the previous experiments. However, it avoids the data
migration phase. Therefore, it always outperforms the native
copy approach and improves overall performance roughly by
50% when the job is large.

E. Profiled I/O Analysis

To illustrate the potential of overlapping the computation
and I/O in PortHadoop, we profiled the I/O events of map
phase in Figure 12(a). To clearly show the I/O behavior and
data transmission cost, we conduct WordCount on a weather
simulation data set of 48GB, which needs multiple waves of
map tasks to complete. The experiment run on 8 PVFS2 server
nodes and 8 slaves in PortHadoop, each slave is configured
with four concurrent map tasks. Figure 12(b) shows the first
128 I/O events. At the very beginning, the I/O requests from
a wave, and such bursty I/O requests results in I/O contention.
It is because map tasks issued I/O in a wave, the start time of
current event depends on the completion time of previous map
task. I/O contention is alleviated later when the I/O requests
vary. As shown in Figure 12(c), I/O duration and map task
start time became stable. And comparing two Figure 12(b)
and Figure 12(c), the 128 I/O events in both cases cost
about 100 seconds. The computation and I/O are overlapped.
The performance of data transfer will be enhanced as I/O
bandwidth increased. Both PortHadoop and Hadoop will suffer
from the network overhead caused by reading from a remote
site. However, the consequent performance of PortHadoop is
alleviated by processing data in pipeline manner that overlaps
data transfer and processing.

F. Evaluation on Performance of Data Prefetching

We evaluate data prefetching feature of PortHadoop under
PVFS2 environment with 8 server nodes by conducting Word-
count on 8 Hadoop slaves. Each slave is configured with two
concurrent map tasks. The maximum number for prefetching
data blocks in PortHadoop is 2. Figure 13 shows the perfor-
mance improvement of PortHadoop from data prefetch feature
by 5% on average. This is reasonable because as Figure 12(c)
shows, the average I/O duration is around 2 seconds when the
contention reduced, considering the execution time of the map
tasks is around 20 seconds that is multiple compared with the
I/O time. Therefore, the overlapped I/O time is a related small
portion to overall elapsed time.
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(a) I/O Profiled overview.
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(b) I/O Profiled for the first 128 I/O requests.
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Fig. 12. Profiled I/O events of map phase of WordCount on 48GB scientific data in PortHadoop. The start time labels the I/O request time, and the I/O duration
means the elapsed time between the start time and the completion time for I/O request event.
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Fig. 14. Performance under task failure: Hadoop processes data reside at
HDFS whereas PortHadoop processes data reside at CephFS.

G. Performance under Failures

We inject failures to map tasks in order to evaluate the
fault tolerance feature and overhead of PortHadoop. We run
WordCount on 8 slaves, each with 8 concurrent map tasks.
The input dataset is 8 GB wiki text data. In Figure 14, we
randomly inject failures to map tasks that trigger failure-redo
attempts. For a fair comparison, failure injects time is at about
one- third of map phase, and testing was run five times. The
performance under failure is slightly higher than the failure-
free runs for both native Hadoop and PortHadoop. The failure
penalty of PortHadoop is slightly higher than one of native
Hadoop. We think that this is because its input data reading
from remote PFS is a blocking procedure through the network.

IV. RELATED WORK

There are several research works for integrating MapRe-
duce and HPC data processing power. MRAP [20] proposed
to bridge the semantic gap between HPC data models (e.g.,

NetCDF) and MapReduce data formats. It significantly reduces
data migration and alleviates data preprocessing workloads for
MapReduce applications. In contrast, our proposal is a copy-
free, data transferring and processing pipeline approach. Sci-
Hadoop [5] attempted to fill the gap between byte stream data
model (e.g., Hadoop) and the highly structured, array-based
binary data model (e.g., NetCDF), supporting Hadoop MapRe-
duce framework to store and process NetCDF data. SciHadoop
manages the physical-to-logical mapping for MapReduce ap-
plications and introduces several optimization techniques such
as reduction of data transfer and remote reads, avoidance of
unnecessary scan operations. Our work focuses on making
Hadoop efficiently access and process remote data, and it will
be extended to support high-level data processing that is built
on top of Hadoop.

Researchers in HPC proposed to extend existing PFS to
support its non-native MapReduce workloads. PVFS-shim-
layer [21] enables PVFS to have a competitive performance
with default HDFS. GPFS-FPO [22] is proposed to replace
HDFS and extend GPFS for Hadoop MapReduce. However,
these approaches require modifications on raw implementa-
tions, conventional system configurations, and data placements,
which are not transparent to underlying native parallel file
systems. In particular, different from raw GPFS, GPFS-FPO
is designed for distributed environment where each node is
equipped with local disks and store big size chunk. Lustre com-
munity dedicatedly to support MapReduce applications [23].
Lustre is naturally POSIX-compliant and designed with high-
speed networks but does not support replication, and the fault
tolerance features to MapReduce applications are unknown.
Ceph also proposed to support both HPC and MapReduce
applications [24]. Moreover, these efforts are tightly coupled
implementations with a specific PFS and can hardly be used
by other in-production file systems to support their native
workloads. Our method is a portable solution and does not
need to modify the existing PFS; MapReduce application will
run on its native cluster.

The MapReduce community tried to improve the re-
sponse time of applications, adopting pipelining or in-memory
processing strategies, such as MapReduce Online [25],
Themis [26], M3R [27]. These pipelining strategies are
adopted within MapReduce cluster. Themis [26] and M3R [27]
trade reliability for performance by avoiding materializing the
intermediate data into disks. PortHadoop processes data from
external PFS in a pipelining manner. It may achieve a finer-
grain pipeline processing by adopting data prefetching. Our
proposal will inherit the fault tolerance mechanism as default
Hadoop does, such as fail-redo mechanism and intermediate



result materialization mechanism, without significantly scari-
fying the reliability for achieving performance.

V. CONCLUSION

We have presented PortHadoop, a portable Hadoop ar-
chitecture supporting direct data fetching from parallel file
systems, in this study. Data access has become the premier
performance bottleneck of HPC. This is especially true for
advanced HPC applications where data analysis is performed,
in addition to scientific simulations. However, due to histori-
cal and technical reasons, data analytic software traditionally
are developed and available under Hadoop systems, whereas
HPC applications are developed under MPI environments.
The cross-platform data access between Hadoop and MPI is
extremely costly. PortHadoop is designed to solve the cross-
platform data access issue. With PortHadoop, researchers can
promptly analyze identified events without copying the entire
data set from PFS to Hadoop, and consequently accelerate sci-
entific discovery and significantly reduce costs in computation
and storage. Our experimental results show that PortHadoop
is effective and compatible with existing PFS such as PVFS2
and CephFS. In particular, under PortHadoop: 1) MapReduce
can read data directly from PFS without data copying. The
target blocks processed by map tasks reside in memory rather
than on disk. 2) Only the needed data at PFS are taken to
Hadoop at runtime. 3) Blocks in a PFS files can be accessed
concurrently. 4) According to the amount of data required by
map tasks, the data transfer operations from PFS to HDFS
can overlap with MapReduce data processing. 5) PortHadoop
supports fault tolerance as default Hadoop does. In the future,
we plan to improve PortHadoop in three areas: (1) Apply
PortHadoop to Apache YARN and support more parallel file
systems, including Lustre and GPFS. (2) To support various
data formats, including SequenceFile and compressed datasets.
(3) Deploy, test, and optimize PortHadoop on a large-scale
platform, such as Amazon EC2.
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