
Utilizing Concurrency: A New Theory
for Memory Wall

Xian-He Sun(&) and Yu-Hang Liu

Illinois Institute of Technology, Chicago, USA
{sun,yuhang.liu}@iit.edu

Abstract. In addition to locality, data access concurrency has emerged as a
pillar factor of memory performance. In this research, we introduce a
concurrency-aware solution, the memory Sluice Gate Theory, for solving the
outstanding memory wall problem. Sluice gates are designed to control data
transfer at each memory layer dynamically, and a global control algorithm,
named layered performance matching, is developed to match the data transfer
request/supply at each memory layer thus matching the overall performance
between the CPU and memory system. Formal theoretical analyses are given to
show, with sufficient data access concurrency and hardware support, the
memory wall impact can be reduced to the minimum. Experimental testing is
conducted which confirm the theoretical findings.

1 Introduction and Highlight

Memory wall problem refers to the relatively slow memory performance forming a wall
between CPU and memory [1]. This wall causes CPUs to stall while waiting for data
and slows down the speed of computing. The widely accepted solution for memory
wall problem is the memory hierarchy approach. During the last thirty years, the design
of the memory hierarchy has been enhanced to have more layers, larger caches, and
built-in on-chip caches to match the increasingly large performance gap between
computing and memory access. Besides the traditionally-focused locality, data access
concurrency has become increasingly important, and can determine the performance of
a memory system [2, 3].

Concurrency has been built into each layer of a memory hierarchy to support
concurrent data access. However, a system is hard to reach the optimal locality and
concurrency at the same time. Even it does, that does not mean it has reached the
optimal system performance. Similarly, adding the optimizations of each memory layer
of a memory hierarchy does not necessarily lead to the best system optimization.
Locality and concurrency influence each other, within their layer and beyond their
layer, and the influences are application dependent. These complicate the
concurrency-aware data access optimization process.

In this study, we propose a new theory, Sluice Gate Theory, to fully utilize memory
hierarchy systems. Sluice Gate Theory claims that memory hierarchy is a designed
sluice to transfer data to computing units, and through multi-level sluice gate control
we can match data flow demand with supply. Therefore, we can reduce memory stall

© Springer International Publishing AG 2017
C. Ding et al. (Eds.): LCPC 2016, LNCS 10136, pp. 18–23, 2017.
DOI: 10.1007/978-3-319-52709-3_2



time to the minimum under existing technologies, and provide a practical solution for
the long-standing memory wall problem. Two techniques, the C-AMAT (Concurrent
AMAT) model and the LPM (Layered Performance Matching) method, are developed
to provide a constructive proof for Sluice Gate Theory.

C-AMAT serves as a gate calculator which finds a locality-concurrency balanced
optimal configuration to match the data access requests and supplies at each layer of a
memory hierarchy [2]. LPM controls the global memory system optimization and
provides global control parameters to each memory layer [4]. Sluice Gate Theory
provides a formal proof of the correctness of the LPM approach. That is, with sufficient
data access and hardware concurrency, the LPM method can find a system configu-
ration to match the demand with supply, whereas the matching will reduce the memory
stall time to the minimum. Sluice Gate Theory utilizes the substantial memory con-
currency that already exists at each layer of current memory systems to explore the
combined effort of capacity, locality, and concurrency; and provides a constructive
method for software and hardware co-design of memory systems. Only major theo-
retical results are presented in this paper. All the proofs can be found in [5], and the
paper of C-AMAT [2] and LPM [4] are available online.

Sluice Gate Theory proves that through “matching” at each memory layer, the
memory stall time can be reduced to the minimum. The terms “sluice” and “gate” are
carefully chosen, implying data moves toward the computing unit in a specially
designed, gate controlled data channel. Figure 1 illustrates data movement and the
“sluice” and “gate”. The channel has stages with different devices (the registers,
multi-level on-chip or off-chip caches, main memory, disk, and so on), has width in
different forms (concurrency), and has speed in different measurements (bandwidth,
frequency, latency). It is multi-staged to mask the performance difference between
computing units and memory devices. At each stage, a “sluice gate” is placed to control
the data movement. C-AMAT measures the supply rate and controls the “width” of the
channel by increasing data access concurrency to meet the data access demand at each
memory layer. This concurrency is not only for improving the data movement speed,
but equally important for overlapping computing and data transfer. Data locality will
increase the cache hits at the “gate” and, therefore, reduce the request at the next level
of the memory hierarchy. The number of stages can be increased to improve concur-
rency, locality, and to adapt a new hardware device.

The LPM algorithm controls the matching process. It determines the data
demand/supply matching threshold at each memory layer, and makes sure the
thresholds can be reached through locality and concurrency optimizations. Due to the
request and device differences at each stage, the sluice gates need to be locally con-
trolled and adjusted to best fit the local demand. Since the performance at one memory
layer will influence the performance of other memory layers, the performance matching
of a memory system needs to be globally coordinated. Performance matching of a
memory system is an uneasy task. Fortunately, the C-AMAT model and LPM algo-
rithm have been developed for local calculation and global coordination, respectively.
Jointly, C-AMAT and LPM provide a constructive proof of the Sluice Gate Theory.

Utilizing Concurrency Data Access: A New Theory 19



2 The Theoretical Treatment of Memory Sluice Gate Theory

Theorem 1 (Layered Performance Matching (LPM)): If a matching can be achieved
at each memory layer for a given application for any matching threshold T > 0
through optimization, then the LPM algorithm can find a performance matching for the
application.

With the LPM theorem, we now analyze the assumptions of the LPM theorem.

Theorem 2 (Data Concurrency): If an application has sufficient hit concurrency and
has sufficient pure miss concurrency or sufficiently low pure miss rate or pure miss
penalty at layer Li, then at memory layer Li, we can find a performance matching for
any matching threshold Ti > 0.

All the optimization parameters used in Data Concurrency Theorem, hit concur-
rency, pure miss concurrency, pure miss rate, and pure miss penalty are data access
concurrency parameters introduced by C-AMAT [2]. They can be optimized through
increasing software and hardware concurrency. They do not depend on the memory
device hardware peak performance. In other words, the concurrency theorem says
through concurrency improvement we can find a match at memory layer Li. The
theorem shows the great potential of data access concurrency.

Based on the Data Concurrency and the LPM Theorem, the following result shows
that we can remove the memory wall effect through increasing data concurrency.

Theorem 3 (Concurrency Match): If an application has sufficient hit concurrency
and has sufficient pure miss concurrency or sufficiently low pure miss rate or pure miss
penalty at each memory layer, then the LPM algorithm can find a performance
matching for the application for any matching threshold T1 > 0.

The proof of the Concurrency Match Theorem has only used the concurrency
parameters. The following theorem shows the contribution of data locality in perfor-
mance matching.

Data movement

Water flow

Memory Layer 1 Layer 2 Layer 3 ...

Processor side

Downstream sideUpstream side

Off-chip side

Layer 4

...

Fig. 1. Compare between data access movement and water flow

20 X.-H. Sun and Y.-H. Liu



Theorem 4 (Data Locality): Increasing data locality at memory layer j (1 � j � i),
will decrease the data access request rate at the memory layer Li+1.

From Data Concurrency Theorem and Data Locality Theorem, we can see data
concurrency and data locality playing different roles in the performance matching
process. Data concurrency improves the supply in a memory performance matching,
and data locality reduces the request in memory performance matching. They are both
vital in memory performance matching.

Recall the impact of the memory wall problem is the large ratio of memory stall time
compared to the total application runtime. Therefore, we can claim that the memory
wall effect is negligible small if memory stall time is less than 1% of the application’s
pure execution time (we think 1% is small enough, but it can be x% for any x > 0).
With this one percent definition, we have the final result.

Theorem 5 (Sluice Gate): If a memory system can match an application’s data access
requirement for any matching threshold T1 > 0, then this memory system has removed
the memory wall effect for this application.

The Sluice Gate Theorem is of great significance. It claims that the memory wall
impact can be reduced to the minimum and to be practically eliminated through data
access concurrency, on conventional memory hierarchy architectures. For a long time,
the memory wall problem has been the wall standing on the road of improving com-
puting system performance. It has been believed that the memory wall problem only
can be solved through technology advancements of memory devices. The Sluice Gate
Theorem gives an alternative approach via data concurrency.

The performance match can be found as stated in Data Concurrency Theorem is in
a theoretical sense. Theoretically achievable does not mean we can achieve it in today’s
engineering practice, but through engineering effort we may achieve it someday. While
we may not have sufficient data access and dynamic hardware concurrency in practice,
Sluice Gate Theory gives a direction of software/hardware co-design and optimization
to reduce memory stall time to the minimum.

3 Experimental Results and Conclusion

A detailed CPU model and the DRAMSim2 module in the GEM5 simulator were
adopted to achieve accurate simulation results. We have conducted several case studies,
and only show one, the Multiple Dimension Exploration case study, here in.

Under the five configurations A to E, Table 1 shows the corresponding average
LPMRs (LPM Ratios) of the 410.bwaves benchmark in the SPEC CPU 2006 bench-
mark suit. We use the LPM algorithm [4] to find an optimal architecture match for the
given software implementation. The goal of the optimization is to keep the memory
stall time per instruction within 1% of CPIexe, where the CPIexe is 0.261 cycles per
instruction on average. The calculated matching thresholds, T1 and T2, for L1 and L2
cache of the 410.bwaves benchmark are 1.52 and 2.14, respectively. Table 1 shows
under Configuration A, the LPMRs are higher than the threshold values of T1 and T2,
so that the optimizations are carried in both layers at the same time. To increase

Utilizing Concurrency Data Access: A New Theory 21



concurrency, we doubled the IW and ROB size, transformed the architecture from
configuration A to configuration B in Table 1. However, the mismatches are still higher
than their thresholds. Then we continue the optimization process and transform the
configuration B to configuration C, and then to D. Configuration D meet the “1%”
requirement. As an optional step, we continue to check if hardware is overprovided.
We do a fine tune to reduce possible hardware overprovision to achieve cost efficiency,
which leads to the final configuration E.

Please notice with the original configuration A, the memory stall time is 0.396
cycles per instruction, which contributes more than 60% of the total execution time
(0.653 cycles per instruction). With the configuration E, the final memory stall time is
less than 1% of the pure execution time (which is less than 0.4% of the original total
execution time). Therefore, the memory system performance speedup is greater than
150. The performance improvement is huge.

Sluice Gate Theory provides a system approach to solve the long-standing memory
wall problem. Its correctness is verified with rigorous mathematical proofs, and its
practical applicability is supported with its associated C-AMAT model and LPM
method for performance measurement and optimization. Sluice Gate Theory utilizes
existing data concurrency and optimizes the combined performance of data locality and
concurrency to reduce the overall memory stall time. It is powerful and imperative for
the advancement of modern memory systems. Sluice Gate Theory is based on data
concurrency. It calls for the rethinking from a data centric view. It calls for the
development of compiler technologies to utilize data access concurrency and to
develop concurrency-aware locality optimizations, and provides a guideline for such
optimization and utilization.

References

1. Wulf, W.A., McKee, S.A.: Hitting the memory wall: implications of the obvious.
ACM SIGARCH Comput. Archit. News 23, 20–24 (1995)

2. Sun, X.H., Wang, D.: Concurrent average memory access time. IEEE Comput. 47(5), 74–80
(2014)

Table 1. LPMRs under five machine configurations

Configuration A B C D E

Sluice width Pipeline issue width 4 4 6 8 8
IW size 32 64 64 128 96
ROB size 32 64 64 128 96
L1 cache port number 1 1 2 4 4
MSHR numbers 4 8 16 16 16
L2 cache interleaving 4 8 8 8 8

Mismatching degree LPMR1 8.1 6.2 2.1 1.2 1.4
LPMR2 9.6 9.3 3.1 1.6 1.9

22 X.-H. Sun and Y.-H. Liu



3. Chou, Y., Fahs, B., Abraham, S.: Microarchitecture optimizations for memory-level
parallelism. In: Proceedings of 31st International Symposium on Computer Architecture,
June 2004

4. Liu, Y.H., Sun, X.H.: LPM: concurrency-driven layered performance matching. In: 44th
International Conference on Parallel Processing (ICPP). IEEE (2015)

5. Sun, X.-H., Liu, Y.-H.: Sluice gate theory: have we found a solution for memory wall?.
Illinois Institute of Technology Technical report (IIT/CS-SCS-2016-01) (2016). Full paper is
available upon request

Utilizing Concurrency Data Access: A New Theory 23



http://www.springer.com/978-3-319-52708-6


	Utilizing Concurrency: A New Theory for Memory Wall
	Abstract
	1 Introduction and Highlight
	2 The Theoretical Treatment of Memory Sluice Gate Theory
	3 Experimental Results and Conclusion
	References


