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Abstract  

 
A new method, namely the Parallel Two-Level Hybrid 
(PTH) method, is developed to solve tridiagonal systems 
on parallel computers. PTH is designed based on Parallel 
Diagonal Dominant (PDD) algorithm. Like PDD, PTH is 
highly scalable. It provides accurate solutions when PDD 
may not be applicable and maintains a near PDD 
performance when the underlying machine ensemble size 
is large. By controlling its two-level partition, PTH can 
deliver optimal performance for different machine 
ensemble and problem sizes. Theoretical analyses and 
numerical experiments indicate that PTH is significantly 
better than existing methods for many scientific and 
engineering applications.  
 
1. Introduction  
 
 Solving tridiagonal systems is one of the key issues 
of numerical simulations in many scientific and 
engineering problems. Parallel tridiagonal algorithms 
have been studied extensively and remain an active 
research area. The algorithms of Lawrie and Sameh [5] 
and Wang [8] are called divided-and-conquer methods, 
which partition the original problem into sub-problems. 
The sub-problems are then solved in parallel, and the final 
solution is obtained by combining the solutions of the 
sub-problems. Later, Sun, Zhang and Ni [6,7] proposed 
three parallel algorithms for solving tridiagonal systems. 
All three algorithms are divided-and-conquer methods 
and are based on Sherman-Morrison matrix modification 
formula [1]. Two of them, the Parallel ParTition LU 
(PPT) algorithm and the Parallel Partition Hybrid 
algorithms, are fast and able to incorporate limited 
pivoting. The third algorithm, the Parallel Diagonal 
Dominant (PDD) algorithm, is designed for diagonal 
dominant systems. PDD algorithm is the most efficient 
among all three algorithms. Compared with other 
tridiagonal solvers, which usually require O(log p) 
communications, PDD algorithm has only two 
communications independent of the number of 
processors, and has a balanced workload on processors.

 Most parallel tridiagonal solvers trade computation 
with parallelism. For solving multiple tridiagonal systems 
or systems with multiple right-hand-sides, pipelining can 
be introduced with the best sequential algorithm. The 
pipelining approach is computationally efficient but has a 
communication cost of O(p). It is a good choice when p, 
the number of processors, is small. When p is large, its 
performance drops dramatically due to communication 
costs and pipelining delay. 

A novel Parallel Two-level Hybrid (PTH) method for 
diagonal dominant tridiagonal systems is proposed in this 
study based on PDD algorithm. With a two-level 
partition, PTH has two levels of parallelism. The first 
level (outer level) is based on PDD. The second level 
(inner level) can choose different parallel tridiagonal 
solvers based on the underlying application. For instance, 
PPT is a good candidate for single systems and pipelining 
is a natural choice for solving multiple systems. PTH 
algorithm overcomes the shortcoming of PDD and the 
pipelined method and makes use of the merits of both. It 
is highly efficient and more applicable than PDD. PTH 
provides the best performance for many applications. 
 
2. Existing Parallel Tridiagonal Solvers 
 
 A tridiagonal system is a linear system of equations 
 
  dAx =             (1)  
 
Where x  and d are n-dimensional vectors, and 

],,,[ iii cbaA =  is a tridiagonal matrix with dimension 

n. A is called diagonal dominant if ib > ,ii ca +  for 

i≤0 < n. Assume that A, x and d have real coefficients, 
to solve (1) efficiently on parallel computers, we partition 
A into two parts, the main part A~  and the residue A∆ .  
 

        AAA ∆+= ~
      (2) 

Where A~  is a block diagonal matrix with diagonal 
submatrices )1,,1,0( −= piAi Λ . We assume that 
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mpn ⋅= . Thus, )1,,1,0( −= piAi Λ  are mm ×  

tridiagonal matrices.  Let ie  be a column vector with its 

ith, i≤0 < n-1, element being one and all the other 
entries are zero. We have  

A∆  = TVE                                                   (3) 
where

],...,,,[ 1)1(1)1(2211 −−−−−−= mpmpmmmmmm eceaeceaV  

and ],,...,,[ )1(1)1(1 mp
T

mp
T

m
T

m
T eeeeE −−−−=  are 

)1(2 −× pn  matrices. Thus, we have 
TVEAA += ~

       (4) 
Based on the matrix modification formula originally 
defined by Sherman and Morrison [1] for rank-one 
changes. Equation (1) can be solved by  
 

dAEVAEIVAdAx TT 11111 ~)~(~~ −−−−− +−=      (5) 
 

Note that I is an identity matrix. 
)~( 1VAEIZ T −+=′  is a pentadiagonal matrix of order 

2(p-1). We introduce a permutation matrix P such that  
 

,),,,,,,( )2(2322301
T

pp zzzzzzPz −−= Λ   (6) 
 
From the property that PP =−1 , equation (5) becomes 
 

dAEVPAEPVPAdAx TT 11111 ~)~(~~ −−−−− +−=     (6) 
 
The intermediate matrix, )~( 1VPAEPZ T −+= , is a 

)1(2)1(2 −×− pp  tridiagonal system, which leads to 
a reduced computation cost. The solving sequence of (6) 
is, 
 

  dxA =~~
        (7) 

  VPYA =~
        (8) 

  xEh T ~=         (9) 
  YEPZ T+=        (10) 
  hZy =         (11) 
  Yyx =∆         (12) 
  xxx ∆−= ~        (13) 
 
 In (7) and (8), x~  and Y are solved by the LU 

decomposition method. By the structure of A~  and V, 
these are equivalent to solving 
 

],,[],,~[ 11)1(0
)()()()(

−−+= mmiim
iiii

i eceadwvxA ,                     

                      1,,1,0 −= pi Λ      (14) 
 
Here )(ix  and )(id  are the ith block of x~  and d, 
respectively, and )(iv  and )(iw  are possible no-zero 
column vectors of the ith row block of Y. Equation (14) 
implies that we only need to solve three linear systems of 
order m with the same LU decomposition for each 

)1,,1,0( −= pii Λ . 
 
2.1. PPT: The Parallel Partition LU Algorithm 
 

Basing on the matrix partitioning technique above, 
using p processors to solver (1), PPT consists of the 
following steps, 
 
Step 1. Allocate )(, i

i dA  and elements   , 1)1( −+ miim ca to 

the ith node, where .10 −≤≤ pi  
Step   2. Use the LU decomposition method to solver (14). 

All computations can be executed in parallel and 
independently on p processors. 

Step 3. Send )10( ,,,,~,~ )(
1

)(
0

)(
1

)(
0

)(
1

)(
0 −≤≤−−− piwwvvxx i

m
ii

m
ii

m
i  

to all other nodes from the ith node to form 
matrix Z and vector h (9-10) on each node. Here 
are throughout the subindex indicates the 
component of the vector. 

Step 4. Use the LU decomposition method to solver (11) 
on all nodes simultaneously. Note that Z is a 2(p-
1) dimensional tridiagonal matrix. 

Step 5. Compute (12) and (13) in parallel on p processors. 
 We have 

)()()(

2

12)()()(

~             

],[             

iii

i

iiii

xxx

y
y

wvx

∆−=









=∆ −

 

 
2.2 PDD: Parallel Diagonal Dominant Algorithm 
 
When A is diagonal dominant, the most interesting 
mathematical properties is that the off diagonal 

coefficients of the matrix VA 1~ −  have an exponentially 
decay to 0. Therefore, the coefficients of 

)10( ,, )(
0

)(
1 −<<− piwv ii

m  can be dropped within machine 
accuracy when p << n. 
       As shown in [6,7], for most diagonal dominant 
systems, when the subsystem size is greater than 64, the 
reduced Z with the dropping is equivalent to Z within 
machine accuracy for numerical computing. PDD uses the 
dropping for the solution and needs only two neighboring 
communications. The optimal and simple communication 
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property makes PDD algorithm an ideal algorithm for 
massively parallel computing.  

The resulting PDD algorithm is similar with PPT 
except that Step 3 and Step 4 are modified as given 
below.  
  
Step 3. Send )(

0
)(

0 ,~ ii vx  from the ith node to the (i-1)th 

 node for .11 −≤≤ pi  
  
Step 4. Solve 







=











+
−

+
+

−
)1(

0

)(
1

12

2

)1(
0

)(
1

~
~

1
1

             
i

i
m
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i
i

i
m
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x
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y
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w

 

in parallel on all ith components for 10 −≤≤ pi . 

Then send 12 +iy  from the ith node to (i+1)th node for 

.20 −≤≤ pi  
  

 
2.3 The Pipelined Method for Multiple Systems 
 

PDD can be applied to either single tridiagonal 
systems or multiple systems where multiple independent 
systems or a system with multiple right-hand-sides have 
to be solved. Like most parallel tridiagonal solvers, PDD 
has a non-optimal computation count. For solving 
multiple systems, however, optimal sequential algorithm 
can be used to achieve parallel processing via pipelining 
[2].  

Pipelining works by passing the intermediate results 
from solving a subset of the system onto the next 
processor before continuing. Let K be the number of 
systems to be solved. We partition the K systems into m 
sets. Each set has L systems. The pipelining procedure is 
given below. 
 

In the first pass, processor 0 solves the first part of 
the first L systems whereas processors 2 to p-1 idle. 
In the second pass, processor 1 works on the second 
part of the first L system (using the results of the 
first pass) while processor 0 works on the first part 
of the second L systems; processors 2 to p-1 idle. 
In the ith pass, processor i-1 solves the ith part of the 
first L systems, processor i-2 solves the (i-1)th part 
of the second L systems, …, processor 0 solves the 
first part of the ith L systems. The subsequent passes 
continue until eventually running out of work, and 
processors one by one (starting with processor 0) go 
idle.  

 
There are three rounds of computations for solving a 

tridiagonal system (or systems) via the conventionally 
used tridiagonal solver, the Thomas algorithm [6]. One 

round is for LU decomposition, one is for forward 
substitution, and another one is for backward substitution. 
Each round of computation requires a p-1 
communication. The communication cost is high. It 
increases linearly with the number of processors. In 
addition, there is a pipeline delay of (p-1). The trade-off is 
that the best sequential method can be used. The 
computation is optimal. When the ensemble size is small, 
the pipelined method is a good candidate for parallel 
processing.  
 
3. PTH: The Parallel Two-Level Hybrid 

Method 
 
 The Parallel Two-Level Hybrid (PTH) method is 
proposed in this study to combine the merits of both PDD 
and Pipelined methods. The basic idea of PTH is to 
embed an inner tridiagonal solver into PDD to form a 
two-level hierarchical parallelism. The base algorithm is 
PDD. The tridiagonal system is first partitioned based on 
PDD. However, the subsystems may be too small for the 
accuracy concern if we use PDD directly with the one-
processor one-subsystem approach. To overcome the 
limitation of PDD, we group each k processors together to 
solve a super-subsystem (see Figure 1).  Each super-
subsystem is an independent tridiagonal system and can 
be solved by any direct parallel tridiagonal solver that 
does not introduce approximation error. For single 
tridiagonal systems, a good choice for the inner 
tridiagonal solver would be PPT algorithm [7]. PPT 
introduces a good parallelism and has log(p) 
communication cost. For multiple tridiagonal systems, the 
pipelined method would be a natural candidate for the 
inner solver. Both of PPT and the pipelined method 
require global communications and otherwise efficient. 
When they are embedded into PDD, they are used on a 
small number of processors for solving the super-
subsystems, and the communication cost is small. The 
two-level hybrid method takes the advantage of PDD and 
inner solvers. PDD takes care of the scalability issue and 
can be scaled efficiently on massively parallel machines. 
The inner solvers conduct efficient computation at the 
local level and provide an adequate solution for accuracy 
concern. In addition, by adjusting the size of the super-
subsystem, PTH method can be scale-up and scale-down 
on different parallel machines based on the number of 
processors available. When the number of super-
subsystem equals to one, PTH is the inner tridiagonal 
solver. When the number of super-subsystem equals to p, 
the number of processors, PTH becomes PDD. The 
optimal number of the super-subsystem is a function of 
machine parameters and error tolerance. When the 
pipelined algorithm is chosen as the inner solver, we call 
the resulting algorithm Partition Pipelined diagonal 
Dominant (PPD) algorithm.  
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Algorithm 
 

Computation 
 

Communication 
 

Pipelining 
 p

npn 78)1( 1

−+−  ( )βα 123)1( 1 ++− pn  

PDD 
 )1417(1 −

p
nn  ( )βα 1122 n+  

PPD 
)]44(13)1[( 11 +++−

p
nn

p
nkn  ( )

)12))(log(2(
123)1(

1

1

βα
βα
nk

kn
++

+++−  

 
Table 1. Formulas of computation and communication 

 
 

Figure 1. PTH: a Two-level hierarchical 
algorithm 

 
The resulting PTH method can be described in the 

following two steps. 
 
Step 1. Use an accurate parallel tridiagonal solver to solve 

the m super-subsystems concurrently, each with 
k  processors, where kmp ⋅= . 

Step 2. Modify the solutions of Step 1 with Steps 3-5 of 
PDD algorithm and consider communications 
only between the m super-subsystems. 

 
 If the accurate parallel tridiagonal solver of Step 1 is 
the pipelined method, the resulting PTH algorithm is the 
PPD algorithm. We use PPD for our performance 
analysis.  

Table 1 gives the computation and communication 
counts of the pipelined method, PDD and PPD algorithm, 
respectively. α  is the communication startup time. β  is 
the data transmission time per byte, normalized to the 
computing time. The parameters 1n , n  and k in Table 1 
stand for the number of tridiagonal systems, the order of 
the systems and the number of subsystems (or the number 
of processors) for each super-subsystem, respectively. 
The computation and communication costs for solving 
tridiagonal systems increase with the parameter 1n  for all 
algorithms. Compared with the pipelined algorithm, PPD 

algorithm reduces the communication cost significantly 
when p is big due to the fact that k << p . In general, in 
PPD we choose the smallest k that maintains the 
accuracy. From Table 1, we can see that when p is small, 
the pipelined method is the best among the three. When p 
is big, PDD provides the best performance. PDD, 
however, may lose accuracy and, therefore, become 
inapplicable when p is big. When PDD is inapplicable, 
PPD is the leading algorithm. The range of p for the 
performance rank change is machine and application 
dependent. It can be determined when the application and 
the underlying hardware are given.  

 
4.  Numerical Experiments 
 
 Tridiagonal solvers have many applications. Here we 
present the experimental testing of one application, 
solving Poisson equations. Hockney’s fast Poisson solver, 
the Fourier Analysis and Cyclic Reduction (FACR) 
algorithm [3,4], is a most accepted direct solver. We use 
FACR as an application of our tridiagonal solvers.  

A 2-D Poisson equation, written in Cartesian 
coordinates, is  

,),(
2

2

2

2

Ω=
∂
∂+

∂
∂ inyxf

yx
ϕϕ

   
where Ω  is a rectangle region and ),( yxf  is a given 

function. Let  )( y
k

ϕ and )(yf k
 be the Fourier 

coefficients of the 
thk  wave number of ),( yxϕ and 

),( yxf  Fourier expansion in x direction, respectively. 

In the case that the function )(y
k

ϕ has prescribed values 
at the boundaries in y direction, we can solve the problem 
with the following steps [4], which is called the fast 
Poisson solver or FACR.  
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Step 1. Conduct Fast Fourier transform on the given 
function )(),( yfyxf k→  

Step 2. Solve 1n  independent tridiagonal systems each 

with order of n, )()( yyf
kk

ϕ→ . 
Step 3. Conduct Fast Fourier transform on the function 

),()( yxy
k

ϕϕ → . 
 The best way to solve FACR on parallel machines is 
to solve FFT sequentially on each processor and solve the 
tridiagonal systems in parallel. To solve the FFTs in each 
machine locally, however, makes the resulting tridiagonal 
systems having a very distinguished data distribution: 
each processor has a submatrix (in the order of n/p) from 
each of the 1n  tridiagonal systems, so that each processor 

solvers 1n  subsystems sequentially. Even p is close to n, 
each processor still has enough computing to do. When p 
is close to n, however, PDD becomes inapplicable. 
 
4.1 Experimental Testing 
 

Experimental testing performed on the NPACI IBM 
Blue-Horizon at the San Diego Supercomputing Center 
(SDSC). The Blue Horizon is a teraflop-scale Power3 
based cluster. The machine contains 1,152 processors and 
576 GBytes of main memory, arranged as 144 Symmetric 
Multiprocessing (SMP) compute nodes. Each node is 
equipped with 4 GBytes of memory shared among its 8-
375 MHz Power3 processors. Each node also has several 
GBytes of local disk space.  It is well suited to run 
straight MPI applications.   

We use FACR to test PTH. Since the tridiagonal 
systems in FACR are multiple systems, PPD is the chosen 
PTH. For the experiments, we choose the wave number 

5121 =n  in x-direction and mesh points n = 4608 in y-
direction. Therefore, we need to solve 512 tridiagonal 
systems, which each has an order of 4608. The size of the 
subsystems is a function of the number of processors 
used. The performance of 1, 12, 24, 48, 96, 192, 384 and 
512 processor implementations are measured, which has 
the subsystem sizes of 4608, 384, 192, 96, 48, 24, 12, and 
9, respectively.  

The experimental results for solving the FACR 
tridiagonal systems with PDD and the Pipelined method 
are given in Figure 2. As shown in Figure 4, the pipelined 
method performs better for small ensemble size. At p = 
96, PDD starts to over perform of the pipelined method. 
The performance gap between PDD and the pipelined 
method becomes larger and larger, as the number of 
processors used becomes bigger and bigger. At p =512 
PDD is more than ten times faster than the pipelined 
method. It is a very impressive result. The experimental 
results confirm PDD is highly scalable. For the given 

application, however, when p is greater than 96, the 
subsystem size is less than 48. PDD does not provide 
accurate results when p reaches 96. It is not applicable for 
FACR when p is large.  
       We now use PPD for FACR tridiagonal systems and 
choose k, the number of subsystems in a super-subsystem, 
to be 16. We take the same set of numbers of processors 
as above for PPD testing, that is, numbers of processors 1, 
12, 24, 48, 96, 192, 384 and 512 are considered, 
corresponding to the subsystem sizes of 4608, 384, 192, 
96, 48, 24, 12 and 9.  

Figure 3 shows the runtimes of three tridiagonal 
solvers for the FACR tridiagonal systems.  From p =1 to p 
=48, PPD chooses to take one super-subsystem. That 
means PPD is the pipelined method for p < 96. Starting at 
 

 
Figure 2. Tridiagonal solver runtime: Pipelining 

(square) and PDD (delta) 

 
Figure 3.  Tridiagonal Solver Time: Pipelining 

(square), PDD (delta), PPD (circle) 
 

p = 96, PPD groups each 16 subsystems to form a super-
subsystem and use 16 processors to solve each super-
subsystem. In this way, PPD reaches the optimal 
performance. We can see PPD achieves a near PDD 
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performance when p is large and the same performance as 
the pipelined method when p is small. 

Figure 4 shows the measured accuracy of PDD, PPD 
and the pipelined method compared with the sequential 
algorithm with the ∞L  norm.  The accuracy of PPD 

coincides with that of the pipelined method in ∞L  norm. 
Experimental results confirm that PPD is scalable and 
applicable. It is a good algorithm for FACR. The 
measured runtimes of FACR for solving the Poisson 
equation with three different tridiagonal solvers are given 
in Figure 5. Please notice that the FACR-PDD 
implementation does not provide an accurate solution. It 
only can be used as a pre-conditioner for further 
computing. 

 

 
Figure 4. Accuracy: Pipelining (square), PDD 

(delta), PPD (circle) 

 
Figure 5. Total runtime: Pipelining (square), PDD 

(delta), PPD (circle) 
 
5. Conclusions 
 

PDD algorithm is an efficient algorithm for diagonal 
dominant tridiagonal systems. Partitioned via the 
Sherman and Morrison formula [1], PDD can drop 
communications without losing accuracy for numerical 

computing. The exponential decay rate of the dropping 
elements has been mathematically proven. However, it is 
also known that PDD is inapplicable when the size of the 
partitioned subsystems is small. In this study, a new 
method, the Parallel Two-level Hybrid (PTH) method, is 
proposed to overcome the shortcoming of PDD. PTH 
consists of two parallel tridiagonal solvers: the outer 
solver and the inner solver. The outer solver is PDD. The 
inner solver is open and can be application specific. When 
the inner solver is the pipelined method, the resulting 
PTH is called the Partition Pipelined diagonal Dominant 
(PPD) algorithm. PPD maintains PDD's scalability and is 
feasible while PDD is not. PPD has been examined 
closely and experimentally tested for the well-known fast 
Poisson solver originally proposed by Hockney [3,4]. 
Experimental analyses show that PPD is fundamentally 
more appropriate for the fast Poisson solver than existing 
tridiagonal algorithms. PPD needs to be further studied to 
improve its performance in solving Poisson equations and 
other applications. PPD is one of the many possible 
algorithms that can be generated from PTH method. The 
potential of PTH also should be further investigated. 
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