
A Parallel Two–Level Hybrid Method for
Diagonal Dominant Tridiagonal Systems

 Xian-He Sun and Wu Zhang

Department of Computer Science
Illinois Institute of Technology

Chicago, IL 60616
sun@cs.iit.edu

Abstract

A new method, namely the Parallel Two-Level Hybrid
(PTH) method, is developed to solve tridiagonal systems
on parallel computers. PTH is designed based on Parallel
Diagonal Dominant (PDD) algorithm. Like PDD, PTH is
highly scalable. It provides accurate solutions when PDD
may not be applicable and maintains a near PDD
performance when the underlying machine ensemble size
is large. By controlling its two-level partition, PTH can
deliver optimal performance for different machine
ensemble and problem sizes. Theoretical analyses and
numerical experiments indicate that PTH is significantly
better than existing methods for many scientific and
engineering applications.

1. Introduction

 Solving tridiagonal systems is one of the key issues
of numerical simulations in many scientific and
engineering problems. Parallel tridiagonal algorithms
have been studied extensively and remain an active
research area. The algorithms of Lawrie and Sameh [5]
and Wang [8] are called divided-and-conquer methods,
which partition the original problem into sub-problems.
The sub-problems are then solved in parallel, and the final
solution is obtained by combining the solutions of the
sub-problems. Later, Sun, Zhang and Ni [6,7] proposed
three parallel algorithms for solving tridiagonal systems.
All three algorithms are divided-and-conquer methods
and are based on Sherman-Morrison matrix modification
formula [1]. Two of them, the Parallel ParTition LU
(PPT) algorithm and the Parallel Partition Hybrid
algorithms, are fast and able to incorporate limited
pivoting. The third algorithm, the Parallel Diagonal
Dominant (PDD) algorithm, is designed for diagonal
dominant systems. PDD algorithm is the most efficient
among all three algorithms. Compared with other
tridiagonal solvers, which usually require O(log p)
communications, PDD algorithm has only two
communications independent of the number of
processors, and has a balanced workload on processors.

 Most parallel tridiagonal solvers trade computation
with parallelism. For solving multiple tridiagonal systems
or systems with multiple right-hand-sides, pipelining can
be introduced with the best sequential algorithm. The
pipelining approach is computationally efficient but has a
communication cost of O(p). It is a good choice when p,
the number of processors, is small. When p is large, its
performance drops dramatically due to communication
costs and pipelining delay.

A novel Parallel Two-level Hybrid (PTH) method for
diagonal dominant tridiagonal systems is proposed in this
study based on PDD algorithm. With a two-level
partition, PTH has two levels of parallelism. The first
level (outer level) is based on PDD. The second level
(inner level) can choose different parallel tridiagonal
solvers based on the underlying application. For instance,
PPT is a good candidate for single systems and pipelining
is a natural choice for solving multiple systems. PTH
algorithm overcomes the shortcoming of PDD and the
pipelined method and makes use of the merits of both. It
is highly efficient and more applicable than PDD. PTH
provides the best performance for many applications.

2. Existing Parallel Tridiagonal Solvers

 A tridiagonal system is a linear system of equations

 dAx = (1)

Where x and d are n-dimensional vectors, and

],,,[iii cbaA = is a tridiagonal matrix with dimension

n. A is called diagonal dominant if ib > ,ii ca + for

i≤0 < n. Assume that A, x and d have real coefficients,
to solve (1) efficiently on parallel computers, we partition
A into two parts, the main part A~ and the residue A∆ .

 AAA ∆+= ~
 (2)

Where A~ is a block diagonal matrix with diagonal
submatrices)1,,1,0(−= piAi Λ . We assume that

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

mpn ⋅= . Thus,)1,,1,0(−= piAi Λ are mm ×

tridiagonal matrices. Let ie be a column vector with its

ith, i≤0 < n-1, element being one and all the other
entries are zero. We have

A∆ = TVE (3)
where

],...,,,[1)1(1)1(2211 −−−−−−= mpmpmmmmmm eceaeceaV

and],,...,,[)1(1)1(1 mp
T

mp
T

m
T

m
T eeeeE −−−−= are

)1(2 −× pn matrices. Thus, we have
TVEAA += ~

 (4)
Based on the matrix modification formula originally
defined by Sherman and Morrison [1] for rank-one
changes. Equation (1) can be solved by

dAEVAEIVAdAx TT 11111 ~)~(~~ −−−−− +−= (5)

Note that I is an identity matrix.
)~(1VAEIZ T −+=′ is a pentadiagonal matrix of order

2(p-1). We introduce a permutation matrix P such that

,),,,,,,()2(2322301
T

pp zzzzzzPz −−= Λ (6)

From the property that PP =−1 , equation (5) becomes

dAEVPAEPVPAdAx TT 11111 ~)~(~~ −−−−− +−= (6)

The intermediate matrix,)~(1VPAEPZ T −+= , is a

)1(2)1(2 −×− pp tridiagonal system, which leads to
a reduced computation cost. The solving sequence of (6)
is,

 dxA =~~
 (7)

 VPYA =~
 (8)

 xEh T ~= (9)
 YEPZ T+= (10)
 hZy = (11)
 Yyx =∆ (12)
 xxx ∆−= ~ (13)

 In (7) and (8), x~ and Y are solved by the LU

decomposition method. By the structure of A~ and V,
these are equivalent to solving

],,[],,~[11)1(0
)()()()(

−−+= mmiim
iiii

i eceadwvxA ,

 1,,1,0 −= pi Λ (14)

Here)(ix and)(id are the ith block of x~ and d,
respectively, and)(iv and)(iw are possible no-zero
column vectors of the ith row block of Y. Equation (14)
implies that we only need to solve three linear systems of
order m with the same LU decomposition for each

)1,,1,0(−= pii Λ .

2.1. PPT: The Parallel Partition LU Algorithm

Basing on the matrix partitioning technique above,
using p processors to solver (1), PPT consists of the
following steps,

Step 1. Allocate)(, i

i dA and elements , 1)1(−+ miim ca to

the ith node, where .10 −≤≤ pi
Step 2. Use the LU decomposition method to solver (14).

All computations can be executed in parallel and
independently on p processors.

Step 3. Send)10(,,,,~,~)(
1

)(
0

)(
1

)(
0

)(
1

)(
0 −≤≤−−− piwwvvxx i

m
ii

m
ii

m
i

to all other nodes from the ith node to form
matrix Z and vector h (9-10) on each node. Here
are throughout the subindex indicates the
component of the vector.

Step 4. Use the LU decomposition method to solver (11)
on all nodes simultaneously. Note that Z is a 2(p-
1) dimensional tridiagonal matrix.

Step 5. Compute (12) and (13) in parallel on p processors.
 We have

)()()(

2

12)()()(

~

],[

iii

i

iiii

xxx

y
y

wvx

∆−=









=∆ −

2.2 PDD: Parallel Diagonal Dominant Algorithm

When A is diagonal dominant, the most interesting
mathematical properties is that the off diagonal

coefficients of the matrix VA 1~ − have an exponentially
decay to 0. Therefore, the coefficients of

)10(,,)(
0

)(
1 −<<− piwv ii

m can be dropped within machine
accuracy when p << n.
 As shown in [6,7], for most diagonal dominant
systems, when the subsystem size is greater than 64, the
reduced Z with the dropping is equivalent to Z within
machine accuracy for numerical computing. PDD uses the
dropping for the solution and needs only two neighboring
communications. The optimal and simple communication

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

property makes PDD algorithm an ideal algorithm for
massively parallel computing.

The resulting PDD algorithm is similar with PPT
except that Step 3 and Step 4 are modified as given
below.

Step 3. Send)(

0
)(

0 ,~ ii vx from the ith node to the (i-1)th

 node for .11 −≤≤ pi

Step 4. Solve







=











+
−

+
+

−
)1(

0

)(
1

12

2

)1(
0

)(
1

~
~

1
1

i

i
m

i

i
i

i
m

x
x

y
y

v
w

in parallel on all ith components for 10 −≤≤ pi .

Then send 12 +iy from the ith node to (i+1)th node for

.20 −≤≤ pi

2.3 The Pipelined Method for Multiple Systems

PDD can be applied to either single tridiagonal
systems or multiple systems where multiple independent
systems or a system with multiple right-hand-sides have
to be solved. Like most parallel tridiagonal solvers, PDD
has a non-optimal computation count. For solving
multiple systems, however, optimal sequential algorithm
can be used to achieve parallel processing via pipelining
[2].

Pipelining works by passing the intermediate results
from solving a subset of the system onto the next
processor before continuing. Let K be the number of
systems to be solved. We partition the K systems into m
sets. Each set has L systems. The pipelining procedure is
given below.

In the first pass, processor 0 solves the first part of
the first L systems whereas processors 2 to p-1 idle.
In the second pass, processor 1 works on the second
part of the first L system (using the results of the
first pass) while processor 0 works on the first part
of the second L systems; processors 2 to p-1 idle.
In the ith pass, processor i-1 solves the ith part of the
first L systems, processor i-2 solves the (i-1)th part
of the second L systems, …, processor 0 solves the
first part of the ith L systems. The subsequent passes
continue until eventually running out of work, and
processors one by one (starting with processor 0) go
idle.

There are three rounds of computations for solving a

tridiagonal system (or systems) via the conventionally
used tridiagonal solver, the Thomas algorithm [6]. One

round is for LU decomposition, one is for forward
substitution, and another one is for backward substitution.
Each round of computation requires a p-1
communication. The communication cost is high. It
increases linearly with the number of processors. In
addition, there is a pipeline delay of (p-1). The trade-off is
that the best sequential method can be used. The
computation is optimal. When the ensemble size is small,
the pipelined method is a good candidate for parallel
processing.

3. PTH: The Parallel Two-Level Hybrid

Method

 The Parallel Two-Level Hybrid (PTH) method is
proposed in this study to combine the merits of both PDD
and Pipelined methods. The basic idea of PTH is to
embed an inner tridiagonal solver into PDD to form a
two-level hierarchical parallelism. The base algorithm is
PDD. The tridiagonal system is first partitioned based on
PDD. However, the subsystems may be too small for the
accuracy concern if we use PDD directly with the one-
processor one-subsystem approach. To overcome the
limitation of PDD, we group each k processors together to
solve a super-subsystem (see Figure 1). Each super-
subsystem is an independent tridiagonal system and can
be solved by any direct parallel tridiagonal solver that
does not introduce approximation error. For single
tridiagonal systems, a good choice for the inner
tridiagonal solver would be PPT algorithm [7]. PPT
introduces a good parallelism and has log(p)
communication cost. For multiple tridiagonal systems, the
pipelined method would be a natural candidate for the
inner solver. Both of PPT and the pipelined method
require global communications and otherwise efficient.
When they are embedded into PDD, they are used on a
small number of processors for solving the super-
subsystems, and the communication cost is small. The
two-level hybrid method takes the advantage of PDD and
inner solvers. PDD takes care of the scalability issue and
can be scaled efficiently on massively parallel machines.
The inner solvers conduct efficient computation at the
local level and provide an adequate solution for accuracy
concern. In addition, by adjusting the size of the super-
subsystem, PTH method can be scale-up and scale-down
on different parallel machines based on the number of
processors available. When the number of super-
subsystem equals to one, PTH is the inner tridiagonal
solver. When the number of super-subsystem equals to p,
the number of processors, PTH becomes PDD. The
optimal number of the super-subsystem is a function of
machine parameters and error tolerance. When the
pipelined algorithm is chosen as the inner solver, we call
the resulting algorithm Partition Pipelined diagonal
Dominant (PPD) algorithm.

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

Algorithm

Computation

Communication

Pipelining
 p

npn 78)1(1

−+− ()βα 123)1(1 ++− pn

PDD
)1417(1 −

p
nn ()βα 1122 n+

PPD
)]44(13)1[(11 +++−

p
nn

p
nkn ()

)12))(log(2(
123)1(

1

1

βα
βα
nk

kn
++

+++−

Table 1. Formulas of computation and communication

Figure 1. PTH: a Two-level hierarchical
algorithm

The resulting PTH method can be described in the

following two steps.

Step 1. Use an accurate parallel tridiagonal solver to solve

the m super-subsystems concurrently, each with
k processors, where kmp ⋅= .

Step 2. Modify the solutions of Step 1 with Steps 3-5 of
PDD algorithm and consider communications
only between the m super-subsystems.

 If the accurate parallel tridiagonal solver of Step 1 is
the pipelined method, the resulting PTH algorithm is the
PPD algorithm. We use PPD for our performance
analysis.

Table 1 gives the computation and communication
counts of the pipelined method, PDD and PPD algorithm,
respectively. α is the communication startup time. β is
the data transmission time per byte, normalized to the
computing time. The parameters 1n , n and k in Table 1
stand for the number of tridiagonal systems, the order of
the systems and the number of subsystems (or the number
of processors) for each super-subsystem, respectively.
The computation and communication costs for solving
tridiagonal systems increase with the parameter 1n for all
algorithms. Compared with the pipelined algorithm, PPD

algorithm reduces the communication cost significantly
when p is big due to the fact that k << p . In general, in
PPD we choose the smallest k that maintains the
accuracy. From Table 1, we can see that when p is small,
the pipelined method is the best among the three. When p
is big, PDD provides the best performance. PDD,
however, may lose accuracy and, therefore, become
inapplicable when p is big. When PDD is inapplicable,
PPD is the leading algorithm. The range of p for the
performance rank change is machine and application
dependent. It can be determined when the application and
the underlying hardware are given.

4. Numerical Experiments

 Tridiagonal solvers have many applications. Here we
present the experimental testing of one application,
solving Poisson equations. Hockney’s fast Poisson solver,
the Fourier Analysis and Cyclic Reduction (FACR)
algorithm [3,4], is a most accepted direct solver. We use
FACR as an application of our tridiagonal solvers.

A 2-D Poisson equation, written in Cartesian
coordinates, is

,),(
2

2

2

2

Ω=
∂
∂+

∂
∂ inyxf

yx
ϕϕ

where Ω is a rectangle region and),(yxf is a given

function. Let)(y
k

ϕ and)(yf k
 be the Fourier

coefficients of the
thk wave number of),(yxϕ and

),(yxf Fourier expansion in x direction, respectively.

In the case that the function)(y
k

ϕ has prescribed values
at the boundaries in y direction, we can solve the problem
with the following steps [4], which is called the fast
Poisson solver or FACR.

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

Step 1. Conduct Fast Fourier transform on the given
function)(),(yfyxf k→

Step 2. Solve 1n independent tridiagonal systems each

with order of n,)()(yyf
kk

ϕ→ .
Step 3. Conduct Fast Fourier transform on the function

),()(yxy
k

ϕϕ → .
 The best way to solve FACR on parallel machines is
to solve FFT sequentially on each processor and solve the
tridiagonal systems in parallel. To solve the FFTs in each
machine locally, however, makes the resulting tridiagonal
systems having a very distinguished data distribution:
each processor has a submatrix (in the order of n/p) from
each of the 1n tridiagonal systems, so that each processor

solvers 1n subsystems sequentially. Even p is close to n,
each processor still has enough computing to do. When p
is close to n, however, PDD becomes inapplicable.

4.1 Experimental Testing

Experimental testing performed on the NPACI IBM
Blue-Horizon at the San Diego Supercomputing Center
(SDSC). The Blue Horizon is a teraflop-scale Power3
based cluster. The machine contains 1,152 processors and
576 GBytes of main memory, arranged as 144 Symmetric
Multiprocessing (SMP) compute nodes. Each node is
equipped with 4 GBytes of memory shared among its 8-
375 MHz Power3 processors. Each node also has several
GBytes of local disk space. It is well suited to run
straight MPI applications.

We use FACR to test PTH. Since the tridiagonal
systems in FACR are multiple systems, PPD is the chosen
PTH. For the experiments, we choose the wave number

5121 =n in x-direction and mesh points n = 4608 in y-
direction. Therefore, we need to solve 512 tridiagonal
systems, which each has an order of 4608. The size of the
subsystems is a function of the number of processors
used. The performance of 1, 12, 24, 48, 96, 192, 384 and
512 processor implementations are measured, which has
the subsystem sizes of 4608, 384, 192, 96, 48, 24, 12, and
9, respectively.

The experimental results for solving the FACR
tridiagonal systems with PDD and the Pipelined method
are given in Figure 2. As shown in Figure 4, the pipelined
method performs better for small ensemble size. At p =
96, PDD starts to over perform of the pipelined method.
The performance gap between PDD and the pipelined
method becomes larger and larger, as the number of
processors used becomes bigger and bigger. At p =512
PDD is more than ten times faster than the pipelined
method. It is a very impressive result. The experimental
results confirm PDD is highly scalable. For the given

application, however, when p is greater than 96, the
subsystem size is less than 48. PDD does not provide
accurate results when p reaches 96. It is not applicable for
FACR when p is large.
 We now use PPD for FACR tridiagonal systems and
choose k, the number of subsystems in a super-subsystem,
to be 16. We take the same set of numbers of processors
as above for PPD testing, that is, numbers of processors 1,
12, 24, 48, 96, 192, 384 and 512 are considered,
corresponding to the subsystem sizes of 4608, 384, 192,
96, 48, 24, 12 and 9.

Figure 3 shows the runtimes of three tridiagonal
solvers for the FACR tridiagonal systems. From p =1 to p
=48, PPD chooses to take one super-subsystem. That
means PPD is the pipelined method for p < 96. Starting at

Figure 2. Tridiagonal solver runtime: Pipelining

(square) and PDD (delta)

Figure 3. Tridiagonal Solver Time: Pipelining

(square), PDD (delta), PPD (circle)

p = 96, PPD groups each 16 subsystems to form a super-
subsystem and use 16 processors to solve each super-
subsystem. In this way, PPD reaches the optimal
performance. We can see PPD achieves a near PDD

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

performance when p is large and the same performance as
the pipelined method when p is small.

Figure 4 shows the measured accuracy of PDD, PPD
and the pipelined method compared with the sequential
algorithm with the ∞L norm. The accuracy of PPD

coincides with that of the pipelined method in ∞L norm.
Experimental results confirm that PPD is scalable and
applicable. It is a good algorithm for FACR. The
measured runtimes of FACR for solving the Poisson
equation with three different tridiagonal solvers are given
in Figure 5. Please notice that the FACR-PDD
implementation does not provide an accurate solution. It
only can be used as a pre-conditioner for further
computing.

Figure 4. Accuracy: Pipelining (square), PDD

(delta), PPD (circle)

Figure 5. Total runtime: Pipelining (square), PDD

(delta), PPD (circle)

5. Conclusions

PDD algorithm is an efficient algorithm for diagonal
dominant tridiagonal systems. Partitioned via the
Sherman and Morrison formula [1], PDD can drop
communications without losing accuracy for numerical

computing. The exponential decay rate of the dropping
elements has been mathematically proven. However, it is
also known that PDD is inapplicable when the size of the
partitioned subsystems is small. In this study, a new
method, the Parallel Two-level Hybrid (PTH) method, is
proposed to overcome the shortcoming of PDD. PTH
consists of two parallel tridiagonal solvers: the outer
solver and the inner solver. The outer solver is PDD. The
inner solver is open and can be application specific. When
the inner solver is the pipelined method, the resulting
PTH is called the Partition Pipelined diagonal Dominant
(PPD) algorithm. PPD maintains PDD's scalability and is
feasible while PDD is not. PPD has been examined
closely and experimentally tested for the well-known fast
Poisson solver originally proposed by Hockney [3,4].
Experimental analyses show that PPD is fundamentally
more appropriate for the fast Poisson solver than existing
tridiagonal algorithms. PPD needs to be further studied to
improve its performance in solving Poisson equations and
other applications. PPD is one of the many possible
algorithms that can be generated from PTH method. The
potential of PTH also should be further investigated.

 Acknowledgements

This research was supported in part by ONR under
PET/Logicon and by NSF under NSF grant CCR-
9972251. All numerical experiments were performed on
the IBM Blue Horizon operated by the San Diego
Supercomputing Center (SDSC). The authors are grateful
to NPACI and SDSC for providing the access to this
facility.

References

[1] I. Duff, A. Erisman and J. Reid, Direct Methods for Sparse

Matrices (Clarendon Press, Oxford, 1986)
 [2] T.M. Edison and G. Erlebacher, Implementation of a fully-

balanced periodic tridiagonal solver on a parallel
distributred memory architecture, Concurrency: Practics
and Experience, 1995

 [3] R.W. Hockney, A fast direct solution of Poisson’s equation
using Fourier analysis, J. Assoc. Comput. Mach., 12 (1965),
95-113

[4] R.W. Hockney, Parallel computers 2, Architecture,
Programming and algorithms, Adam Hilger, 1988

[5] D. Lawrie and A. Sameh, The computation and
communication complexity of a parallel banded system
solver, ACM Trans. Math. Soft. 10 (2), June 1984, 155-195

 [6] X.-H. Sun, Application and accuracy of the parallel diagonal
dominant algorithm, Parallel Computing, 18(1995), 1241-
1267

 [7] X.-H. Sun, H. Zhang and L. Ni, Efficient tridiagonal solvers
on multicomputers, IEEE Trans. Comput., 41(3) (1992),
286-296

 [8] H. Wang, A parallel method for tridiagonal equations, ACM
Trans. Math Software, 7(1981), 170-153

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

