
A Parallel Two-Level Hybrid Method for
Tridiagonal Systems and Its Application

to Fast Poisson Solvers
Xian-He Sun, Senior Member, IEEE, and Wu Zhang

Abstract—A new method, namely, the Parallel Two-Level Hybrid (PTH) method, is developed to solve tridiagonal systems on parallel

computers. PTH has two levels of parallelism. The first level is based on algorithms developed from the Sherman-Morrison

modification formula, and the second level can choose different parallel tridiagonal solvers for different applications. By choosing

different outer and inner solvers and by controlling its two-level partition, PTH can deliver better performance for different applications

on different machine ensembles and problem sizes. In an extreme case, the two levels of parallelism can be merged into one, and PTH

can be the best algorithm otherwise available. Theoretical analyses and numerical experiments indicate that PTH is significantly better

than existing methods on massively parallel computers. For instance, using PTH in a fast Poisson solver results in a 2-folds speedup

compared to a conventional parallel Poisson solver on a 512 nodes IBM machine. When only the tridiagonal solver is considered, PTH

is over 10 times faster than the currently used implementation.

Index Terms—Parallel processing, scalable computing, tridiagonal systems, Poisson solver.

�

1 INTRODUCTION

SOLVING tridiagonal systems is one of the key issues in
numerical simulations of many scientific and engineer-

ing problems. However, solving tridiagonal systems
efficiently is a difficult task on parallel computers due to
their inherent data dependencies and low computation to
communication ratio. For this reason, parallel tridiagonal
algorithms have been studied extensively and remain an
active research area [3], [4], [9], [19]. Notable tridiagonal
solvers include the recursive doubling reduction method
(RCD) developed by Stone [11], and the cyclic reduction or
odd-even reduction method (OED) developed by Hockney
[5], which are able to solve an n-dimensional tridiagonal
system in OðlognÞ time using p processors with p ¼ n and
are efficient for the case of fine grain computing. Several
algorithms were proposed for medium and coarse grain
computing, i.e., for the case of p < n, or p << n [2], [8], [18].
The algorithms of Lawrie and Sameh [8] and Wang [18] are
called divide-and-conquer methods, which partition the
original problem into subproblems. The subproblems are
then solved in parallel, and the final solution is obtained by
combining the solutions of the subproblems. Later, Sun [12]
and Sun et al. [15] proposed three parallel algorithms for
solving tridiagonal systems. All three algorithms are
divide-and-conquer and are based on the Sherman-Morri-
son matrix modification formula [1]. Two of them, the
Parallel ParTition LU (PPT) algorithm and the Parallel

Partition Hybrid (PPH) algorithms, are fast and able to
incorporate limited pivoting. The third algorithm, the
Parallel Diagonal Dominant (PDD) algorithm, is designed
for diagonal dominant systems. The PDD algorithm is the
most efficient among these three algorithms. Compared to
the usually required OðlogðpÞÞ communication cost, the
PDD algorithm has only two communications, independent
of the number of processors, and has a balanced workload
on processors. In reality, the PDD algorithm is perfectly
scalable in terms of iso-speed or iso-efficiency scalability
[12], [14]. Since its creation, many practitioners have
adopted PDD as their choice [7]. PDD, however, has its
limitations. It requests diagonal dominance. Studies of the
application, accuracy, and performance of PDD algorithm
can be found in [12], [13].

Most parallel tridiagonal solvers trade computation for
increasing parallelism. For solving multiple tridiagonal
systems or systems with multiple right-hand sides, pipelin-
ing can be used with the best sequential algorithm.
Pipelining works by passing the partial solutions of a
subset of systems onto the next processor before solving
another subset of the systems. The pipelining approach is
computationally efficient, but has a communication cost of
OðpÞ. It is a good choice when p, the number of processors,
is small. When p is large, its performance drops dramati-
cally due to communication costs and pipeline delays.

A novel Parallel Two-level Hybrid (PTH) method for
tridiagonal systems is proposed in this study based on the
PDD and PPT algorithms. With a two-level partition, PTH
has two levels of parallelism: The first level (outer level) is
based on PDD or PPT, while the second level (inner level)
can choose different parallel tridiagonal solvers based on
the underlying application. For instance, PPT is a good
candidate for single systems and pipelining is a natural
choice for solving multiple systems. PDD is highly scalable,

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 2, FEBRUARY 2004 97

. X.-H. Sun is with the Department of Computer Science, Illinois Institute of
Technology, Chicago, IL 60616. E-mail: sun@cs.iit.edu.

. W. Zhang is with the College of Computer Science and Engineering,
Shanghai University, Shanghai, 200072, P.R. China.
E-mail: wzhang@mail.shu.edu.cn.

Manuscript received 19 Aug 2002; revised 17 Jan. 2003; accepted 19 June
2003.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 117147.

1045-9219/04/$20.00 � 2004 IEEE Published by the IEEE Computer Society

but becomes inaccurate when the subsystems are small.

PPT and pipelining are efficient when p is small but not

scalable. PTH algorithm can overcome the shortcomings of

the outer and inner solver, and makes use of the merits of

both. A representative PTH algorithm is the combination of

PDD and the pipelined method that is highly efficient and

more applicable than PDD. PTH is thus significantly more

appropriate for massively parallel computers than existing

tridiagonal solvers.
This paper is organized as follows: Section 2 gives the

background and reviews of the PPT, PDD, and the pipelined

method. The pros and cons of the algorithms are discussed.

The PTH method is introduced in Section 3. Section 4

provides numerical experiments on a teraflop-scale parallel

computer for solving Poisson equations. Finally, conclusions

are given in Section 5.

2 EXISTING PARALLEL TRIDIAGONAL SOLVERS

A tridiagonal system is a linear system of equations

Ax ¼

b0 c0
a1 b c1

. .
. . .

. . .
.

an�2 bn�2 cn�2

an�1 bn�1

0BBBBB@

1CCCCCAx ¼ d; ð1Þ

where x ¼ ðx0; x1; . . . ; xn�1ÞT and d ¼ ðd0; d1; . . . ; dn�1ÞT are

n-dimensional vectors and A is a tridiagonal matrix of

dimension n. A is called diagonally dominant if jbij >
jaij þ jcij, for 0 � i < n. Assume A, x, and d have real

coefficients (extension to the complex case is straightfor-

ward). We now introduce PPT, PDD, and the pipelined

algorithm for solving system (1).
To solve (1) efficiently on parallel computers, we

partition A into two parts, the main part eAA and the residue

�A. For convenience, we assume that n ¼ p �m, where m is

the subsystem size (in general, if n� k ¼ p �m, where k < p,

then we have k subsystems of order mþ 1 and p� k

subsystems of order m). The tridiagonal matrix A can be

written as

A ¼ eAAþ�A; ð2Þ

where eAA is a block diagonal matrix with diagonal

submatrices Aiði ¼ 0; 1; . . . ; p� 1Þ. The submatrices Aiði ¼
0; 1; . . . ; p� 1Þ are m�m tridiagonal matrices shown in

Fig. 1.

Let ei be a column vector with its ith element,
0 � i < n� 1, being one and all the other entries being
zero. We have,

�A ¼ ½amem; cm�1em�1; a2me2m; c2m�1e2m�1;

. . . ; cðp�1Þm�1eðp�1Þm�1� �

eTm�1

ET
m

�
�
�

eTðp�1Þm�1

eTðp�1Þm

26666666666664

37777777777775
¼ VET ;

ð3Þ

where both V and E are n� 2ðp� 1Þ matrices. Thus, we
have

A ¼ eAAþ V ET : ð4Þ

Based on the matrix modification formula originally
defined by Sherman and Morrison [10] for rank-one
changes, (1) can be solved by

x ¼ A�1d ¼ ð eAAþ VET Þ�1d; ð5Þ

x ¼ eAA�1d� eAA�1V ðI þ ET eAA�1V Þ�1ET eAA�1d: ð6Þ

Note that I is an identity matrix. Z0 ¼ ðI þ ET eAA�1V Þ is a
pentadiagonal matrix of order 2ðp� 1Þ. We introduce a
permutation matrix P such that

Pz ¼ ðz1; z0; z3; z2; � � � ; z2p�3; z2ðp�2ÞÞT ; for all z 2 R2ðp�1Þ:

ð7Þ

From the property that P�1 ¼ P , (6) becomes

x ¼ eAA�1d� eAA�1V P ðP þ ET eAA�1V P Þ�1ET eAA�1d: ð8Þ

The intermediate matrix, Z þ ðP þET eAA�1V P Þ, is a 2ðp�
1Þ � 2ðp� 1Þ tridiagonal system, which leads to a reduced
computation cost. The modified solving sequence becomes,

eAAexx ¼ d; ð9Þ

eAAY ¼ V P; ð10Þ

h ¼ ET exx; ð11Þ

Z ¼ P þETY ; ð12Þ

98 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 2, FEBRUARY 2004

Fig. 1. m�m tridiagonal matricies.

Zy ¼ h; ð13Þ

�x ¼ Y y; ð14Þ

and (8) becomes

x ¼ exx��x: ð15Þ

In (9) and (10), exx and Y are solved by the LU decomposi-

tionmethod. By the structure of eAA andV, these are equivalent

to solving

Ai½exxðiÞ; vðiÞ; wðiÞ� ¼ ½dðiÞ; aime0; cðiþ1Þm�1em�1�;
i ¼ 0; 1; � � � ; p� 1:

ð16Þ

Here, xðiÞ and dðiÞ are the ith block of exx and d, respectively,

and vðiÞ and wðiÞ are possible no-zero column vectors of the

ith row block of Y . Equation (16) implies that we only

need to solve three linear systems of order m with the

same LU decomposition for each i; i ¼ 0; 1; � � � ; p� 1.

2.1 PPT: The Parallel Partition LU Algorithm

Based on the matrix partitioning technique above, the PPT

algorithm can use p processors to solve (1) concurrently.

The steps are as follows:

Step 1. Allocate Ai; d
ðiÞ and elements aim; cðiþ1Þm�1 to the

ith node, where 0 � i � p� 1.

Step 2. Use the LU decomposition method to solve (16). All

computations can be executed in parallel and indepen-

dently on p processors.

Step 3. Send exxðiÞ0 ; exxðiÞ
m�1v

ðiÞ
0 ; v

ðiÞ
m�1; w

ðiÞ
0 ; w

ðiÞ
m�1ð0 � i � p� 1Þ to

all other nodes from the ith node to form matrix Z and

vector h (11-12) on each node. Here and throughout, the

subindex indicates the component of the vector.

Step 4. Use the LU decomposition method to solve (13) on all

nodes simultaneously. Note that Z is a 2ðp� 1Þ dimen-

sional tridiagonal matrix.

Step 5. Compute (14) and (15) in parallel on p processors. We

have

�xðiÞ ¼ ½vðiÞ; wðiÞ�
y2i�1

y2i

� �
xðiÞ ¼ exxðiÞ ��xðiÞ:

2.2 PDD: Parallel Diagonal Dominant Algorithm

When A is diagonal dominant, an interesting mathematical

property is that the off diagonal coefficients of the matrixeAAðiÞV decay to 0 exponentially with the order of the matrix.

Therefore, the coefficients can be dropped within machine

accuracy when p << n, that is,

Z � eZZ; ð17Þ

or in matrix form shown in Fig. 2.
As shown in [12], [13], [15], for most diagonal dominant

systems, when the subsystem size is greater than 64, the
reduced matrix Z is equivalent to eZZ within machine
accuracy for numerical computing. PDD uses eZZ for the
solution and needs only two neighboring communications.
The computation and communication pattern of PDD is
shown in Fig. 3. The optimal and simple communication
property makes PDD algorithm an ideal algorithm for
massively parallel computing.

The resulting PDD algorithm can be described in the
following five steps:

Step 1. Allocate Ai; d
ðiÞ and elements aim; cðiþ1Þm�1 to the ith

node, where 0 � i � p� 1.

Step 2. Use the LU decomposition method to solve

Ai½exxðiÞ; vðiÞ; wðiÞ� ¼ ½dðiÞ; aime0; ciþ1Þm�1em�1�:

All computations can be executed in parallel and indepen-
dently on p processors.

Step 3. Send exxðiÞ0 ; v
ðiÞ
0 from the ith node to the ði� 1Þth node

for 1 � i � p� 1.

Step 4. Solve

w
ðiÞ
m�1 1

1 v
ðiþ1Þ
0

 !
y2i
y2iþ1

� �
¼ exxðiÞ

m�1exxðiþ1Þ
0

 !

SUN AND ZHANG: A PARALLEL TWO-LEVEL HYBRID METHOD FOR TRIDIAGONAL SYSTEMS AND ITS APPLICATION TO FAST POISSON... 99

Fig. 2. The matrix form of Z and eZZ.

Fig. 3. The computation and communication pattern of PDD.

in parallel on all i components for 0 � i � p� 1. Then, send
y2iþ1 from the ith node to ðiþ 1Þth node for 0 � i � p� 2.

Step 5. Compute in parallel on p processors

�xðiÞ ¼ ½vðiÞ; wðiÞ�
y2i�1

y2i

� �
;

xðiÞ ¼ exxðiÞ ��xðiÞ:

2.3 The Pipelined Method for Multiple Systems

PPT and PDD can be applied to either single tridiagonal
systems or multiple systems where multiple independent
systems or a system with multiple right-hand sides have to
be solved.

Like most parallel tridiagonal solvers, PPT and PDD
algorithms have a nonoptimal computation count. For
solving multiple systems, however, an optimal sequential
algorithm can be used to achieve parallel processing via
pipelining [3].

Pipelining works by passing the intermediate results
from solving a subset of the systems onto the next processor
before continuing. Let K be the number of systems to be
solved. We partition theK systems intoM sets. Each set has
L systems: K þm � L. The pipelining procedure is given
below (see Fig. 4).

. In the first pass, processor 0 solves the first part of
the first L systems whereas processors 1 to p� 1 are
idle.

. In the second pass, processor 1 works on the second
part of the first L system (using the results of the first
pass) while processor 0 works on the first part of the
second L systems; processors 2 to p� 1 are idle.

. In the ith pass, processor i� 1 solves the ith part
of the first L systems, processor i� 2 solves the
ði� 1Þth part of the second L systems, ...,
processor 0 solves the first part of the ith L
systems. The subsequent passes continue until
eventually running out of work, and processors
one by one (starting with processor 0) go idle.

There are three rounds of computations for solving a
tridiagonal system (or systems) via the conventionally used
tridiagonal solver, the Thomas algorithm [12]. One round is
for LU decomposition, one is for forward substitution, and
another one is for backward substitution. Because each round

of computation requires p� 1 communications, the commu-
nication cost is high, increasing linearly with the number of
processors. Also unfortunate is the Oðp� 1Þ pipeline delay,
illustrated in Fig. 4. However, the communication costs are
balanced by the fact that the amount of computation is
optimal, as it uses the best sequential method. When the
number of processors is small, and there aremultiple systems
to be solved, the pipelined method becomes a good
candidate.

3 PTH: THE PARALLEL TWO-LEVEL

HYBRID METHOD

PDD is highly scalable [12]. However, when the number of
processors, p, is close to the order of the tridiagonal matrix,
n, the size of the submatrices may become too small to
maintain accuracy. PPT does not require diagonal dom-
inance and does not have the accuracy problem. PPT,
however, has an OðlogðpÞÞ communication complexity and
is nonoptimal in computation. The pipelined algorithm
achieves the optimal amount of computation, but pays with
OðpÞ communication. An ideal tridiagonal solver would
combine the scalability of the PDD algorithm with the
accuracy of the PPT algorithm and the pipelined method.

The Parallel Two-Level Hybrid (PTH) method is pro-
posed in this study to combine the merits of PDD, PPT, and
the pipelined methods. The basic idea of PTH is to embed
an inner tridiagonal solver into PDD or PPT to form a two-
level hierarchical parallelism. The base algorithm is PDD or
PPT. For diagonal dominant tridiagonal systems, the system
is first partitioned based on PDD. However, the subsystems
may be too small for the accuracy concerned if we use PDD
directly with the one-processor one-subsystem approach.
To overcome the limitation of PDD, we group each k
processors together to solve a supersubsystem (see Fig. 5).
Each supersubsystem is an independent tridiagonal system
and can be solved by any direct parallel tridiagonal solver
that does not introduce approximation error. For single
tridiagonal systems, a good choice for the inner tridiagonal
solver would be PPT algorithm [15]. PPT has a good
parallelism and a logðpÞ communication cost. For multiple
tridiagonal systems, the pipelined method would be a
natural candidate for the inner solver. Both PPT and the
pipelined method require global communication and are
otherwise efficient. When they are embedded into PDD,
they are used on a small number of processors for solving

100 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 2, FEBRUARY 2004

Fig. 4. Pipelined algorithm for the substitutions. (a) Forward. (b) Backward.

the supersubsystems, and the communication cost is small.
The two-level hybrid method takes the advantage of PDD
and inner solvers. PDD takes care of the scalability issue
and can be scaled efficiently on massively parallel ma-
chines. The inner solvers conduct efficient computation at
the local level and provide an adequate solution for
accuracy concerned. In addition, by adjusting the size of
the supersubsystem, PTH method can scale-up and scale-
down on different parallel machines based on the number
of processors available. When the number of supersubsys-
tem equals one, PTH is the inner tridiagonal solver. When
the number of supersubsystem equals p, the number of
processors, PTH becomes the outer algorithm. The optimal
number of the supersubsystem is a function of the machine
parameters and the desired error bounds. For instance, if
communication cost is the concern, then we may use PDD
as the outer solver and make the size of the super-
subsystems as small as the given error bound that can be
met; if computing cost is the concern, we may use the
pipelining algorithm as the inner solver and make the size
of the supersubsystems as large as possible, until commu-
nication becomes a concern or the number of super-
subsystem becomes one. When PDD and the pipelined
algorithm is chosen as the outer and inner solver, respec-
tively, we call the resulting PTH algorithm Partition
Pipelined Diagonal Dominant (PPD) algorithm. For general
tridiagonal systems, PPT can be used as the outer solver
and combined with the pipelined method for multiple
systems. The communication complexity of OðlogðpÞÞ is not
as good as that of PDD but is better than the pipelined
method.

The PTH method can be described in the following two
steps.

Step 1. Use an accurate parallel tridiagonal solver to solve the
m supersubsystems concurrently, each with k processors,
where p ¼ l � k and solving three unknowns as given in
the Step 2 of PDD algorithm.

Step 2. Modify the solutions of Step 1 with Steps 3-5 of the
PDD algorithm, or of PPT algorithm if PPT is chosen as
the outer solver.
If the accurate parallel tridiagonal solver of Step 1 is the

pipelined method and the algorithm used in Step 2 is the
PDD algorithm, the resulting PTH algorithm is the PPD
algorithm. PPD is practically important for many technical
applications and deserves a name on its own. Table 1
summarizes some of the tridiagonal algorithms that we
have studied and the PTH method.

Table 2 gives the computation and communication counts
of the pipelined method, PPT, PDD, PPD, and other PTH-
based algorithms, respectively. � is the communication
startup time. � is the data transmission time per byte,
normalized to the computing time. The parameters n1, n,
and k in Table 2 stand for the number of tridiagonal systems,
the order of the systemsand thenumber of subsystems (or the
numberofprocessors) for eachsupersubsystem, respectively.
We assume four bytes per word in our analysis. With n1

tridiagonal systems, if we pipeline these n1 systems one-by-
one, the computation and communication count of the
pipelined method is ðn1 � 1þ pÞ 8n�7

p and ðn1 � 1þ pÞ
ð3�þ 12�Þ, respectively. To reduce the communication cost
the n1 systems are often grouped into m groups, each group
with m1 systems, such as n1 ¼ m �m1, and the tridiagonal
systems is pipelined group by group. The computation and
communication count of the general pipelined algorithm is
used in Tables 2 and 3.

The computation and communication count of PDD and
PPT are copied from [15]. PDD requires only two neighbor-
ing communications. Its communication count is machine
(connection) independent. PPT requires a data-gathering
communication. Its OðlogðpÞÞ communication cost is based
on the assumption that a butterfly communication is
supported [15]. We use the same assumption in the
communication analysis of this study. In PPD, the pipelined
method is used to solve (16). As pointed out in [15], we only

SUN AND ZHANG: A PARALLEL TWO-LEVEL HYBRID METHOD FOR TRIDIAGONAL SYSTEMS AND ITS APPLICATION TO FAST POISSON... 101

Fig. 5. PTH method: a two-level hierarchical approach.

TABLE 1
The PTH Method and Related Tridiagonal Algorithms

need one LU-decomposition for solving and can skip the

forward substitutions for the third set of systems. The

communication of the pipelined inner solver is ðm� 1þ
kÞð3�þ 24 �m1�Þ for solving (16); the communication cost

for solving the reduced system of PDD is ð2�þ 12n1�Þ (the
reduced system is generated by the boundary equations of

the l supersubsystems); the communication cost for propa-

gating the solution of the reduced system inside each

supersubsystem is logðkÞð�þ 8n1�Þ. The summation of the

three is the communication count

ðm�1þkÞð3�þ24�m1�Þþð2þlogðkÞÞ�þ ð8 logðkÞ þ 12Þn1�:

We use PPT/Pipeline to denote the PTH algorithm

where PPT is used as the outer solver and the pipelined

algorithm is used as the inner solver. We can reach the

computation and communication count of the PPT/Pipeline

algorithm by following a similar deduction of that used on

PPD. PPT/Pipeline is a general tridiagonal solver and does

not require diagonal dominance. Alternatively, we can use

PDD as the outer solver and PPT as the inner solver. The

resulting PDD/PPT PTH algorithm may provide better

performance than PPD if n1 is small or k is big. Notice that,

for the PDD/PPT approach, both the inner and outer

solvers need to solve three equations, though the third

102 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 2, FEBRUARY 2004

TABLE 2
Computation and Communication Count (Multiple Independent Systems)

TABLE 3
Computation and Communication Count (Multiple Right Sides)

equation can skip the forward substitution step. In addition,
the reduced systems of the second and third equations of
the PPT inner solver can also skip some forward substitu-
tion. The computation and communication count of the
three steps of the PDD/PPT approach is:

n1 17
n

p
þ 16k� 47

� �
þ ðlogðkÞÞ�þ 16ðk� 1Þn1�;

n1
9n

p

� �
þ 5k� 3Þ þ 8n1�; and

n1
4n

p

� �
þ 7Þ þ ð2þ logðkÞÞ�þ ð8 logðkÞ þ 12Þn1�;

respectively. Table 2 lists the summation of the costs.
The computation and communication costs for solving

tridiagonal systems increase with the parameter n1 for all
algorithms. Compared with the pipelined algorithm, the
PPD algorithm reduces the communication cost signifi-
cantly when p is big due to the fact that k << p. In general,
in PPD, we choose the smallest k that maintains the
accuracy. From Table 2, we can see that when p is small,
the pipelined method is the best among the three. When p is
big, PDD provides the best performance. PDD, however,
may lose accuracy and, therefore, become inapplicable
when p is big. When PDD is inapplicable, PPD is the leading
algorithm. The range of p for the performance rank change
is machine and application dependent.

Table 2 is for solving n1 independent tridiagonal
systems. Table 3 gives the computation and communication
count of solving n1 multiple right-sides systems, where the
LU decomposition cost is not considered. For many
applications, the computation costs of PDD and other
PDD-based algorithms can be reduced by using the
Reduced PDD algorithm. Interested readers can refer [12]
for further study.

4 POISSON SOLVER APPLICATION AND NUMERICAL

EXPERIMENTS

Tridiagonal solvers can be used to solve systems that arise
in a variety of applications. In this section, we present
experimental results from using the methods described in
this paper to the fast Poisson solvers.

4.1 Application: Fast Poisson Solver

Solving Poisson equations has received continuous atten-
tion for several decades. Sequential Poisson solvers are very
close to optimal and are unlikely to be further improved.
Existing parallel Poisson solvers, however, do not meet the
demand of scalable computing. They are often being
identified as the bottleneck of parallel simulation packages
when the number of processors is large [17]. Among these
parallel solvers, Hockney’s fast Poisson solver, the Fourier
Analysis and Cyclic Reduction (FACR) algorithm [6], is the
most accepted direct solver. We use FACR(0) as an
application of our tridiagonal solvers.

A 2D Poisson equation written in Cartesian coordinates is

@2’

@x2
þ @2’

@y2
¼ fðx; yÞ in �; ð18Þ

where � is a rectangular region and fðx; yÞ is a given
function. Periodic boundary condition in x direction and
Dirichlet boundary condition in y direction are considered,
respectively.

In the case that the function ’kðyÞ has prescribed values
at the boundaries in y direction, we can solve the problem
with the following steps [6], which is called the fast Poisson
solver or FACR.

Step 1. Conduct Fourier transform on the given function

fðx; yÞ ! f
kðyÞ.

Step 2. Solve n1independent tridiagonal systems, each with

order of n, f
kðyÞ ! ’kðyÞ.

Step 3. Conduct Fourier transform on the function ’kðyÞ !
’ðx; yÞ.
Fast Fourier Transform (FFT) is another fundamental

kernel solver with great challenge. FFT has an even worse
computing/communication ratio than tridiagonal solvers.
The best way to solve FACR on parallel machines is to solve
FFT sequentially on each processor and solve the tridiago-
nal systems in parallel. To solve the FFTs in each machine
locally, however, makes the resulting tridiagonal systems
have a very specific data distribution: Each processor has a
submatrix (on the order of n=p) from each of the N1

tridiagonal systems, so that each processor solves N1

subsystems sequentially. Even if P is close to N , each
processor may still have a lot of computing work to do.
When P is close to N , PDD becomes inapplicable.

4.2 Experimental Testing

Experimental testingwasperformedon theNational Partner-
ship for Advanced Computational Infrastructure (NPACI)
IBM Blue-Horizon at the San Diego Supercomputing Center
(SDSC). The Blue Horizon is a teraflop-scale Power3-based
cluster, which contains 1,152 processors and 576 GBytes of
main memory, arranged as 144 Symmetric Multiprocessing
(SMP) compute nodes. Each node is equipped with 4 GBytes
of memory shared among its 8-375 MHz Power3 processors.
Each node also has several GBytes of local disk space.

We use FACR(0) to test PTH. Since the tridiagonal
systems in FACR are multiple diagonal dominant systems,
PPD is the chosen outer solver. For the experiments, we
choose the wave number N1 ¼ 512 in x-direction and mesh
points n ¼ 4; 608 in y-direction. Therefore, we need to solve
512 tridiagonal systems, where each has an order of 4,608.
The size of the subsystems is a function of the number of
processors used. The performance of 1, 12, 24, 48, 96, 192,
384, and 512 processor implementations are measured,
which has the subsystem sizes of 4,608, 384, 192, 96, 48, 24,
12, and 9, respectively.

The experimental results for solving the FACR
tridiagonal systems with PDD and the Pipelined method
are given in Fig. 6. As shown in Fig. 6, the pipelined method
performs better for small ensemble size. At p ¼ 96, PDD
starts to outperform the pipelined method. The perfor-
mance gap between PDD and the pipelined method
continues to enlarge, as the number of processors increase.
At p ¼ 512 PDD is 10 times faster than the pipelined
method, which is very impressive. The experimental results
confirm PDD is highly scalable. For the given application,

SUN AND ZHANG: A PARALLEL TWO-LEVEL HYBRID METHOD FOR TRIDIAGONAL SYSTEMS AND ITS APPLICATION TO FAST POISSON... 103

however, when p is greater than 96, the subsystem size is
less than 48 and PDD does not provide accurate results.
PDD is not applicable for FACR when p is large.

We now use PPD for FACR and choose k, the number of
subsystems in a supersubsystem, to be 16. We take the same
set of numbers of processors as above for PPD testing, that
is, numbers of processors 1, 12, 24, 48, 96, 192, 384, and 512
are considered, corresponding to the subsystem sizes of
4,608, 384, 192, 96, 48, 24, 12, and 9.

Fig. 7 shows the runtimes of three tridiagonal solvers for
the FACR tridiagonal systems. From p ¼ 1 to p ¼ 48, PPD
chooses to take one supersubsystem. That means PPD is the
pipelined method for p < 96. Starting at p ¼ 96, PPD groups
each 16 subsystems to form a supersubsystem and use
16 processors to solve each supersubsystem. In this way,
PPD reaches the optimal performance. We can see PPD
achieves a near PDD performance when p is large and the
same performance as the pipelined method when p is small.

Fig. 8 shows the measured accuracy of PDD, PPD, and
the pipelined method, compared with the sequential
algorithm with the L1 norm. The accuracy of PPD coincides
with that of the pipelined method in L1 norm, where PDD
is not. Experimental results confirm that PPD is scalable and
applicable. It is a good algorithm for FACR. The measured
runtimes of FACR for solving the Poisson equation with

three different tridiagonal solvers are given in Fig. 9. Please
note that the FACR-PDD implementation does not provide
an accurate solution. It only can be used as a preconditioner
for further computing.

4.3 Performance Prediction

The measured values of the parameters on the IBM Blue

Horizon at SDSC are � ¼ 31:5� 10�6 sec, � ¼ 0:00925�
10�6 sec=byte, and �comp ¼ 0:017� 10�6 sec, where � is the

communication startup time, � is the data transmission time

per byte, and �comp is the operation time per floating-point

operation. We can use the formulas given in Tables 2 and 3

to predict the performance. We first use the measured

results to confirm the performance formulas and then use

the formulas to predict the performance on even larger

computing systems. Since PDD is well-studied in [13], only

PPD and the pipelined method are studied here.

Comparisons of the predicted and numerical runtimes

for the two algorithms are given in Figs. 10 and 11,

respectively. We can see our predicted results match the

measured results well. Figs. 12 and 13 give the speedup of

the PPD and the pipelined method, respectively. Here,

speedup is defined as the single processor execution time of

the sequential algorithm over the parallel execution time of

the parallel algorithm [16]. From Figs. 12 and 13, we can see

that the speedup of the PPD increases linearly with the

number of processors, while the linear increasing property

does not hold for the pipelined method due to its heavy

104 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 2, FEBRUARY 2004

Fig. 6. Tridiagonal solver runtime: Pipelining (square) and PDD (delta).

Fig. 7. Tridiagonal Solver Time: Pipelining (square), PDD (delta), and

PPD (circle).

Fig. 8. Accuracy: Pipelining (square), PDD (delta), and PPD (circle).

Fig. 9. Total runtime: Pipelining (square), PDD (delta), and PPD (circle).

communication cost. The predicted results show that PPD

has a potential for even large computing systems. Since the

system arising in the fast Poisson solvers is common in

scientific applications, PPD has a real potential for many

scientific applications.

5 CONCLUSIONS

The PDD algorithm is an efficient algorithm for diagonal

dominant tridiagonal systems. Based on the Sherman and

Morrison formula [10], PDD can drop elements without

losing accuracy for numerical computing. The exponential

decay rate of the dropping elements has been mathemati-

cally proven. However, it is also known that PDD is

inapplicable when the size of the partitioned subsystems is

small. In this study, a new method, the Parallel Two-level

Hybrid (PTH) method, is proposed to overcome the

shortcoming of PDD. PTH consists of two parallel tridia-

gonal solvers: the outer solver and the inner solver. The

outer solver is PDD or PPT algorithm. The inner solver is

open and can be application specific. When the outer and

inner solver is the PDD and the pipelined method,

respectively, the resulting PTH is called the Partition

Pipelined diagonal Dominant (PPD) algorithm. PPD main-

tains PDD’s scalability and is feasible while PDD is not.

PPD has been examined closely and experimentally tested

for the well-known fast Poisson solver originally proposed

by Hockney [5]. Experimental analyses show that PPD is

fundamentally more appropriate for the fast Poisson solver

than existing tridiagonal algorithms. PPD needs to be

further studied to improve its performance in solving

Poisson equations and other applications. PPD is one of the

many possible algorithms that can be generated from the

PTH method. For instance, for general tridiagonal systems,

PPT can replace PDD and be used as the outer solver. The

potential of PTH should also be further investigated.

ACKNOWLEDGMENTS

The thought of using PDD in a fast Poisson solver has been

with X.-H. Sun for many years. After delivering an invited

talk at the Scalability Workshop at the SuperComputing’92

conference, X.-H. Sun had a long and pleasant talk with

Professor Roger Hockney on various topics, from perfor-

mance evaluation to a fast Poisson solver. Both of them

realized that PDD had the potential for improving FACR

and agreed to incorporate PDD in FACR when time

permitted. But alas, they never found the time. Dr. Hockney

passed away in 1999 and, since then, improving the

performance of FACR has become Dr. Sun’s personal

commitment. In fiscal year 2000, they received funding

SUN AND ZHANG: A PARALLEL TWO-LEVEL HYBRID METHOD FOR TRIDIAGONAL SYSTEMS AND ITS APPLICATION TO FAST POISSON... 105

Fig. 10. PPD: The predicted (line) and numerical (square) runtime.

Fig. 11. Pipelining: The predicted (line) and numerical (square) runtime.

Fig. 12. Speedup of PPD: predicted (line) and numerical (circle).

Fig. 13. Speedup of Pipelining: predicted (line) and numerical (square).

from ONR, thanks to the support of Dr. Alan Wallcraft at

the Naval Research Laboratory, to improve the performance

of NLOM, an ocean simulation code that adopts FACR as its

kernel solver. Finally, the PPD algorithm was developed for

the fast Poisson solver. This study could be further

improved, but they are glad to the current achievement

and would like to devote this article to Professor Roger W.

Hockney in memory of his outstanding contributions to the

high performance computing and parallel processing

community.

This research was supported in part by the ONR under

PET/Logicon and by the US National Science Foundation

under grant CCR-9972251. All numerical experiments were

performed on the IBM Blue Horizon operated by the San

Diego Supercomputing Center (SDSC). The authors are

grateful to NPACI and SDSC for providing the access to this

facility, and to the referees for their thoughtful comments

and suggestions on the revision of this paper.

REFERENCES

[1] I. Duff, A. Erisman, and J. Reid, Direct Methods for Sparse Matrices.
Clarendon Press, Oxford, 1986.

[2] O. Egecioglu, D. Koc, and A. Laub, “A Recursive Doubling
Algorithm for Solution of Tridiagonal Systems on Hypercube
Multiprocessors,” J. Computational and Applied Math., vol. 27, 1989.

[3] T.M. Edison and G. Erlebacher, “Implementation of a Fully-
Balanced Periodic Tridiagonal Solver on a Parallel Distributed
Memory Architecture,” Concurrency: Practics and Experience, 1995.

[4] C. Ho and S. Johnsson, “Optimizing Tridiagonal Solvers for
Alternating Direction Methods on Boolean Cube Multiproces-
sors,” SIAM J. Scientific and Statistical Computing, vol. 11, no. 3,
pp. 563-592, 1990.

[5] R.W. Hockney, “A Fast Direct Solution of Poisson’s Equation
Using Fourier Analysis,” J. ACM, vol. 12, pp. 95-113, 1965.

[6] R.W. Hockney, Parallel Computers 2, Architecture, Programming and
Algorithms. Adam Hilger, 1988.

[7] IBM, Parallel Engineering and Scientific Subroutine Library for AIX,
third ed. 1999, http://www.rs6000.ibm.com.

[8] D. Lawrie and A. Sameh, “The Computation and Communication
Complexity of a Parallel Banded System Solver,” ACM Trans.
Mathmatic Software, vol. 10, no. 2, pp. 155-195, June 1984.

[9] J. Ortega and R. Voigt, “Solution of Partial Differential Equations
on Vector and Parallel Computers,” SIAM Rev., pp. 149-240, 1985.

[10] J. Sherman and W. Morrison, “Adjustment of an Inverse Matrix
Corresponding to Changes in the Elements of a Given Column or
a Given Row of the Original Matrix,” Ann. Math Statistics, vol. 20,
p. 618, 1949.

[11] H. Stone, “An Efficient Parallel Algorithm for the Solution of a
Tridiagonal Linear System of Equations,” J. ACM, vol. 20, no. 1,
pp. 27-38, Jan. 1973.

[12] X.-H. Sun, “Application and Accuracy of the Parallel Diagonal
Dominant Algorithm,” Parallel Computing, vol. 18, pp. 1241-1267,
1995.

[13] X.-H. Sun and S. Moitra, “Performance Comparison of a Set of
Periodic and Nonperiodic Tridiagonal Solvers on SP2 and
Paragon Parallel Computers,” Concurrency: Practice and Experience,
vol. 9, no. 8, pp. 781-801, 1997.

[14] X.-H. Sun and D. Rover, “Scalability of Parallel Algorithm-
Machine Combinations,” IEEE Trans. Parallel Distributed Systems,
pp. 599-613, June 1994.

[15] X.-H. Sun, H. Zhang, and L. Ni, “Efficient Tridiagonal Solvers on
Multicomputers,” IEEE Trans. Computers, vol. 41, no. 3, pp. 286-
296, 1992.

[16] X.-H. Sun and J. Zhu, “Performance Considerations of Shared
Virtual Memory Machines,” IEEE Trans. Parallel and Distributed
Systems, vol. 6, no. 11, pp. 1185-1194, Nov. 1995.

[17] A.J. Wallcraft and D.R. Moore, “The NRL Layered Ocean Model,”
Parallel Computing, vol. 23, pp. 2227-2242, 1997.

[18] H. Wang, “A Parallel Method for Tridiagonal Equations,” ACM
Trans. Math Software, vol. 7, pp. 170-153, 1981.

[19] P. Arbenz, A. Cleary, J. Dongarra, and M. Hegland, “A
Comparison of Parallel Solvers for Diagonally Dominant and
General Narrow Banded Linear Systems,” Parallel and Distributed
Computing Practices, vol. 2, pp. 385-400, 1999.

Xian-He Sun received the BS degree in mathe-
matics from Beijing Normal University, Beijing,
China, in 1982, the MS degree in mathematics,
and the MS and PhD degrees in computer
science from Michigan State University, East
Lansing, in 1985, 1987, and 1990, respectively.
He was a staff scientist at ICASE, NASA
Langley Research Center and was an associate
professor in the Computer Science Department
at Louisiana State University, Baton Rouge. He

has been serving as a faculty member of the Computer Science
Department at the Illinois Institute of Technology (IIT), Chicago, since
1999. Currently, he is a professor and the director of the Scalable
Computing Software Laboratory in the Computer Science Department at
IIT, and is a guest faculty member at the Argonne National Laboratory.
Dr. Sun’s research interests include grid and cluster computing,
software system, pervasive computing, performance evaluation, and
scientific computing. He has published intensively in the field and his
research has been supported by DoD, DoE, NASA, US National Science
Foundation, and other government agencies. He is a senior member of
the IEEE, a member of the ACM, New York Academy of Science, PHI
KAPPA PHI, and has served and is serving as the chairman or on the
program committee for a number of international conferences and
workshops, including current service as the general co-chair of the Grid
and Cooperative Computing (GCC03) workshop, area chair of the
technical committee of the IEEE SuperComputing (SC03) conference,
vice chair of the programming committee of the International Conference
on Parallel Processing (ICPP04), and vice president of the Society of
Chinese American Professors and Scientists. He received the ONR and
ASEE Certificate of Recognition award in 1999, and received the Best
Paper Award from the International Conference on Parallel Processing
(ICPP01) in 2001.

Wu Zhang received the BS degree in applied
mathematics from Nanjing University of Aero-
nautics and Astronautics, Nanjing, China, the
MS degree in computational mathematics from
Xian Jiaotong University, Xian, China, and the
PhD degree in engineering mechanics from
Northwestern Polytechnic University, Xian, Chi-
na, in 1988. After graduating, he was a
postdoctoral research assistant in Department
of Mechanics at Peking University, 1989-1991,

and a postdoctoral research assistant in Department of Mathematics at
the University of North Carolina, Charlotte, 1996-1998. He has been a
faculty member of the Mathematics Department at Xian Jiaotong
University since 1993. During the 2000-2001, he was a visiting professor
in the Department of Computer Science at the Illinois Institute of
Technology, Chicago. He is currently a professor of the School of
Computer Science and Engineering at Shanghai University, China. His
research interests include parallel computing and grid computing,
numerical algorithms and analysis, and platform software of scientific
computing. He is a member of the AMS, the Chinese Mathematical
Society, and the Computer Society of China, Mathematical Reviewer,
and Director of System Architecture Committee, Shanghai Computer
Society, China.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

106 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 2, FEBRUARY 2004

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

