
 1

 QoS Oriented Resource Reservation in Shared Environments

Ming Wu, Xian-He Sun, Yong Chen
Department of Computer Science

Illinois Institute of Technology
Chicago, Illinois 60616, USA

(wuming, sun, chenyon1@iit.edu)

Abstract

Resource sharing across different computers and
organizations makes it possible to support diverse,
dynamic changing resource requirements of distributed
applications. Reservation mechanisms have been used
to reserve resources for external applications through
service level agreements between local resource
organizations and external applications. However, the
effects of resource reservation on local applications,
and therefore the trustfulness of the successful
fulfillment of the service agreement, have been
ignored. In this paper, we investigate the effect of
resource reservation on external applications as well
as local jobs, and design efficient task scheduling
algorithms considering the tolerance of local jobs to
resource reservation. Extensive simulations and
implementation experiments have been carried out to
confirm our analysis results. Experimental results
show that the relative slowdown metric and the failure-
minimization scheduling algorithms proposed in this
study are practically effective and have a real
potential.

1. Introduction

Resource sharing has become common place in

distributed computing. The sharing exists not only in
computation resources but also in communication
resources and storage resources. In Grid computing,
virtual organizations coordination has been proposed to
enable resource sharing among disparate groups of
organizations and individuals [1].

A challenging issue, however, arises in this new
situation: how external applications (i.e. applications
that are being managed by external organizations or
individuals) and local applications (i.e. jobs that are
managed by the local resource administration domain)
share resources appropriately. To satisfy external
applications’ required Quality-of-Service, reservation

is proposed as a mechanism of resource sharing among
external applications and local jobs.

Some fundamental problems still exist: how much
and how long resources should be reserved for external
applications? If little resource is reserved, the external
application may have to run for a long time. If resource
is over reserved, the performance of local jobs may be
greatly affected. Recent research [2][3] has shown that
local users often power cycle the resource immediately
if uncomfortable machine slowness is observed. This
indicates that an inappropriate resource reservation will
result in a failed fulfillment of the service level
agreement. The lack of a unified analysis of the
performance impact of resource reservation on local
jobs and external applications prevents the adoption of
resource reservation among individuals and
organizations and thus the appropriate delivery of
resource sharing in distributed computing, especially in
Grid computing.

In this study, we propose a new performance metric,
the relative slowdown, to quantify the performance
impact of resource reservation. We model the local job
process with an M/G/1 queuing system and analyze the
effect of system parameters on relative slowdown. We
investigate both first-come-first-serve (FCFS) and
round-robin (RR) queuing disciplines. Efficient
algorithms are designed and implemented considering
local jobs’ tolerance to reservation. A user-level soft
real time CPU scheduler, DSRT, is updated to enable
resource reservation in a general computing platform.
Extensive simulations have been carried out to verify
our analytical results, and experimental studies have
been conducted to confirm the correctness and
effectiveness of the newly proposed metric in real
production systems.

The rest of this paper is organized as follows.
Section 2 reviews some related work. Section 3
introduces the proposed relative slowdown metric and
presents the analytical results. Task scheduling
algorithms under reservation are then given. Section 4
presents implementation details of CPU reservation

 2

and system parameter measurement. Section 5 presents
the simulation and experimental results. Finally, in
Section 6, we summarize the current work and discuss
future work.

2. Related work

Several sharing policies have been deployed in

distributed systems. In SETI@home, Entropia, and
Condor, an external application is allowed to run only
when no keyboard and/or mouse activities are detected
on local resources. This sharing mechanism ensures
that external applications do not interfere with the
execution of local jobs, but it cannot provide the QoS
guarantee for external applications. Another sharing
mechanism [4] is that external applications compete
with local jobs for resource occupancy. This sharing
mechanism cannot assure the desired level of QoS of
applications either. The third sharing policy is that
resources are reserved for the execution of external
applications to satisfy their QoS requirements [5]. In
Grid computing, resource reservation is enabled with
the General-purpose Architecture for Reservation and
Allocation (GARA) [6].

Scheduling methodologies in shared environments
have been widely studied. AppLeS [4] is a well-known
task scheduling system for Grid computing. Scheduling
algorithms in the AppLeS are supported by short-term
resource availability prediction provided by NWS
services [7]. In contrast, a long-term, application-level
performance prediction and task scheduling system,
namely Grid Harvest Service (GHS) system, is
proposed recently [8]. Both AppLeS and GHS
scheduling provide the estimate of application
completion time. However, neither of them can
guarantee that an application will be finished for a
given deadline because resource availabilities may
vary during the time. Virtual Application Service
(VAS), a deadline-bound system, makes scheduling
decision based on resource reservation [10]. According
to the application information, VAS determines the
CPU resources to support the application QoS.
However, the scheduling decision is made only based
on the application QoS requirement. It doesn’t consider
the impact of reservation on local jobs.

Research in performance impact of resource
reservation has attracted increasing attention recently
[11][12]. J. Cao et al implement a light weight job
scheduler, COSY, to support both queue scheduling
and advance reservation [11]. They carry out
experiments to observe the impact of advance
reservation on the mean waiting time, resource
utilization, and the reject rate. The performance impact
of resource provisioning on the completion time of
workflows has been studied by G. Singh et al [12].

Their simulation results have shown that the workflow
completion time is reduced by 50% using reservations.
Their work has demonstrated the importance of the
analysis of performance impact of reservation in
scheduling algorithm designing. However, they are
observational in nature. There is no analytical result on
the reservation impact on local jobs and external
applications.

3. Performance modeling and analysis

We call an external application the remote task. In

order to identify the impact of resource reservation on
local jobs and the remote task respectively, we build up
a model to describe the local job process. The arrival of
the resource owner’s local job is assumed to follow a
Poisson distribution with rateλ . The execution time of
local jobs is assumed to follow a general distribution
with mean µ/1 and standard deviationσ . µ is also
called the service rate. The job arrival assumption is
based on the observations of hyperexponential machine
usage patterns reported by researchers in Wisconsin-
Madison, Berkeley, Maryland and et al [13]. The
general service assumption is a generalization of the
observed machine usage pattern. Based on our
assumption, the resource owner’s local job process is
an M/G/1 queuing system. Notice this model has been
widely used in literature [9][14].

3.1. Effects of resource reservation on local
jobs and the remote task

To make an appropriate resource reservation, we

need to identify the effect of resource reservation on
the performance of local jobs. In queuing systems, an
often used performance measure is the mean waiting
time, which is defined as the average waiting time of
local jobs [15]. Two waiting time metrics are widely
used in the literature. One is the waiting time in queue.
Another is the waiting time in system. Because it is
easier for users to feel and measure how long their jobs
are finished than how much time their jobs may stay in
a “queue”, we choose waiting time in system to
investigate the impact of resource reservation on local
jobs and simply call it waiting time throughout the
study.

When a certain part of CPU resource is reserved for
an external application, the CPU resource available to
local jobs is reduced. As a result, the local job’s
waiting time will be increased in general. To determine
whether a reservation is accepted or not, local users are
naturally concerned about how much the average
waiting time is affected. Let aW denote the mean

 3

waiting time of local jobs after reservation and bW
denote the mean waiting time of local jobs before
reservation. We can use either ba WW − or ba WW / to
describe the change of the average waiting time. The
latter is a more appropriate performance metric for our
study since it gives the relative variation of the waiting
time. The former reflects the absolute increased value
of the waiting time. It can be used to compare the
effects of different reservation quotas on local job
performance at one resource. It may be insufficient,
however, to compare the effects of the same
reservation quota for different resources with different
local job demands. For example, 10-second increased
waiting time caused by reservation indicates a lot of
performance change for local jobs at the average of 10-
second waiting time but a little for local jobs at the
average of 200-second waiting time. This is because
users are more likely to anticipate short delays for
small jobs and are willing to tolerate longer delay for
large jobs [19]. Based on the above discussion, we
introduce a new performance metric, relative
slowdown (RS) to reflect the impact of resource
reservation on local jobs.
Definition 1 The relative slowdown of local jobs on a
resource for a given reservation is the ratio of the
average waiting time with reservation and the average
waiting time without reservation.

We name the new performance metric as the
relative slowdown because ba WW / has a similar
format as the performance metric in the queuing
system, slowdown, which is defined as the ratio of the
waiting time and the job’s workload. In this study, we
focus on the reservation of CPU resource. We use κ
to represent the reserved part of CPU resource. We call
it the reservation ratio.

Two queuing disciplines are widely used in a
general computer system for choosing which job in the
queue is to be serviced next. They are first-come-first-
serve (FCFS) and round-robin (RR). In a FCFS queue,
jobs are served in the order of their arrival times. After
one is finished, the next one will be served. In a RR
queue, each job in the queue is served in a quantum of
time and all jobs are served in turn.
Theorem 1. Given a M/G/1 FCFS queuing system
where the local jobs’ arrival rate is λ . Let κ be the
reservation ratio. Then the mean waiting time after
reservation and the relative slowdown, are

1)1,,,(
1

1 −−
−

= λκσρλϕ
κaW (1)

)
)1,,,(

)1,,,((
)1(

1
σρλϕ

κσρλϕ
κ

−
−

=RS (2)

where
)(2

),,,(
222

ρ
σλρρσρλϕ

−
++=
c

c . µλρ /= is

machine utilization and σ is the service time standard
deviation.

Please note that 01 >>− κρ holds in the above
equation. Otherwise the system cannot arrive at a
steady state after reservation and the average waiting
time will be infinite.
Theorem 2. Given a M/G/1 RR queuing system where
the local jobs’ arrival rate is λ . Let κ be the
reservation ratio. Then the mean waiting time after
reservation and the relative slowdown, are

)1(ρκλ
ρ

−−
=aW (3)

)1(
1

ρκ
ρ
−−

−=RS (4)

The proof of Theorem 1 and 2 is given in [16].
We have introduced the RS metric to describe the

impact of resource reservation on local job completion
time. What is the effect of reservation on the remote
task execution time is another interesting problem. Let
ϖ denote the workload of the remote task, T denote
the completion time of the remote task and τ denote
the resource computing capacity of a resource where
the remote task executes. Since the reserved CPU
resource is dedicated to the execution of the remote
task, the task completion time can be expressed as

κτ
ϖ=T (5)

On the other hand, if a remote task has a
requirement of the completion time, T , we can
calculate the correspondent reservation ratio, κ , using

τ
ϖκ
T

= (6)

3.2 Effect of system parameters on relative
slowdown

Using formula (2), we examine the effects of

different system parameters on the relative slowdown
in an M/G/1 FCFS queuing system. Four parameters
are examined in our computations: λ , σ , ρ , and κ .

Their default values are set as: 1=λ , 8.0=σ , 2.0=ρ ,
2.0=κ .

Figure 1 (a) gives the relative slowdown for
different utilizations and different reservation ratios.
We observe that RS increases when the reservation
ratio, κ , increases given a fixed utilization. When κ
is close to bρ−1 , RS is increasing dramatically and

 4

tends to be ∞ (we limit the maximum value of RS as
30 in the figure). Figure 1 (a) also shows that, for a
given reservation ratio, RS increases when the
utilization, bρ , increases. When bρ is close to κ−1 ,

RS is increasing dramatically and tends to be ∞ .
Figure 1(b) shows the effect of κ and bλ on RS . For a
given bλ , RS increases when κ increases and tends to
be ∞ . For a given κ , RS also increases when bλ
increases. However, it increases too slowly to
differentiate it from the graph. This indicates that the
change of bλ does not have the same impact on RS as
κ does. We find the variation of bσ has a similar
impact on relative slowdown as that of bλ , so we don’t
give its graph here. Figure 1 (c) gives the variation of

RS for different combinations of bλ and bσ . It shows
that there is a maximum RS (in this case it is 1.67)
whatever bλ and bσ are when κ and bρ are fixed.
Based on these graphs, we conclude that the utilization
and the reservation ratio are two dominant parameters
in determining RS for an M/G/1 FCFS queuing system.
Figure 1(d) gives the relative slowdown for different
utilizations and different reservation ratios in an M/G/1
RR queuing system. It presents the same pattern as
Figure 1(a). However, the curves in Figure 1(d) are
relatively steeper than those in Figure 1(a). For the
same utilization and reservation ratio, the relative
slowdown tends to be smaller. This indicates a RR
queuing discipline more favors reservation than a
FCFS queuing discipline.

3.3. Task scheduling under resource
reservation

In scientific computing, applications often require

real-time, deadline-bound execution. Resources are
reserved in advance for application running so that the
application can be completed before its deadline. In
current reservation-based scheduling strategies
[10][12], CPU resources are allocated and reserved
only based on the application’s deadline constraints.
The effect of resource reservation on local jobs’
performance is not considered. Consequently, the
potential task scheduling failure is ignored.

We propose failure-minimization scheduling to
address this problem. The goal of failure-minimization
scheduling is to minimize the reservation failure rate
while satisfying the deadline requirement of the remote
task. In this study, we assume that the reservation
failure rate is in proportional to the users’ discomfort
probability, which is the probability that a user will

feel discomforted when reservation occurs [2]. So the
goal of failure-minimization scheduling is turned to
minimize the users’ discomfort while satisfying the
deadline requirement of the remote task.

Let us suppose that we have a list of machine,
},{ ,21 qmmmM K= and each machine km has a

cumulative probability distribution (CDF) of
discomfort in terms of relative slowdown,

][)(xSPxB Rkk ≤= . The CDF can be obtained based
on the measurement history. The remote task with a
workload of ϖ has a deadline of DT for its execution.
The single sequential task scheduling problem for
failure-minimization can be formulated as finding a
machine im where)(iRi SB is the minimal and iT is

less than or equal to DT . iT is the remote task

completion time and iRS is the correspondent relative

slowdown on machine im . According to formula (2)
and (4), to get a minimal relative slowdown, the
reservation ratio should be as small as possible.
However, κ is bounded by the deadline constraint. So
the minimum iκ is decided by

iD
i T τ

ωκ = . (7)

After identifying the reservation ratio, we can
calculate relative slowdown with formula (2) and (4).
Then we can use the given CDF of discomfort to find
the correspondent probability of discomfort on each
resource. We will allocate the remote task to the
machine which has the minimum probability of
discomfort and make advance reservation on it.

The successful running of a parallel application
requires the successful fulfillment of resource

RS

λ
σ

ρ
κ

RS RS

κ

λ

RS

ρ
κ

Figure. 1. Effect of parameters on relative
slowdown

(c) (d)

(a) (b)

 5

reservation on each machine where the subtask of the
application is running. Suppose that the probability of
reservation failure on each resource is independent.
The probability of successful reservation for the
parallel application is the production of the probability
of successful reservation on each resource. Since we
use user’s discomfort to represent the reservation
failure rate, we define a metric of global discomfort as

∏ −−=)(1(1 iRiD SBG to reflect the failure
probability of resource reservation for the whole
application. Our goal of parallel task scheduling is thus
to minimize the global discomfort. We assume that the
remote task can be arbitrarily partitioned and the CDF
of discomfort on each resource is independent. The
parallel task scheduling problem for failure-
minimization can be formulated as finding a machine
set },,{ ln21 mmmM lls K= where the global discomfort

is the minimal and lkT is less than or equal to DT . If
we assume that the unit of execution time and
application workload is one-second, we can use
dynamic programming to solve this problem. However,
it is too costly when the application workload or the
system scale is large. A heuristic task-scheduling
algorithm in Figure 2 is thus proposed. From the
definition of global discomfort, we can see a machine
set with fewer machines may lead to a smaller DG .
However, the increased workload on each machine
would require a larger reservation ratio to satisfy the
deadline constraint and thus lead to a bigger DG . This
tradeoff indicates machines should be selected
carefully and priority should be given to those
machines which can take more application workload
with less user’s discomfort. We define a metric of safe
workload as τκω ** 1.0Ds T= to reflect how much
workload of an external application can be supported
by a resource with a user’s discomfort probability of
0.1. 1.0κ is the correspondent reservation ratio for a
relative slowdown which leads to a user’s discomfort
probability of 0.1. The heuristic algorithm includes two
basic steps. The first step of this algorithm is to sort
each lightly loaded machine with sω . A higher value

sω of a machine indicates this machine has more
available computing power for an application and thus
should be considered first. The second step of this
algorithm is to use the bi-section search to find the
local optimal based on the ordering. To partition the
application workload among a given machine set

},,{ 21 sjss mmm K , we apply an equal-discomfort
partition strategy. That is, each machine is assigned
with a workload so that the probabilities of discomfort
on different machines are the same. It is based on the

intuition that the production of probabilities of user’s
comfort)(1(iRi SB− tends to be maximum if each of
them is the same. Let β denote this discomfort
probability. Then)(1 β−

skB is the correspondent

relative slowdown on machine skm and the
reservation ratio is

))((11 βκ −−= skskRsk BS . (8)

Since ∑
=

=
j

k
sk

1

ωϖ and skskDsk T τκω **= , we

have

sk

j

k
skskRD BST τβϖ *))((*

1

11∑
=

−−= . (9)

β is the solution of formula (9). After calculating
β , we can use formula (8) to get the reservation ratio
on each machine.

4. Implementations

In this study, we apply the DSRT 2.0 software for
CPU reservation. DSRT is a dynamic soft real time
scheduler and has been widely used in Grid
communities [17]. DSRT is a part of the QualMan
(QoS-aware resource management) middleware, which

Assumption: a remote task can be partitioned into any size
of sub-tasks. Each sub-task will be assigned to a machine
respectively.
--
Begin
List a set of idle machines that are lightly loaded over an
observed time period, },{ ,21 qmmmM K= ;

Sort the list of idle machines in a decreasing order with sω ,

},{' ,21 qcccM K= ;

1=a , qb = ;
Repeat
 2/)(bac +=
 /*)(xf denotes))((xCGD

where
},{)(,21 xcccxC K= */

 If)}(),(),(min{)(cfbfafaf = then cb =
 Else If)}(),(),(min{)(cfbfafbf = then ca =
 Else If)1()(+< cfcf then cb =
 Else ca =
Until ba =+1
If)()(bfaf < then
 Assign parallel task to the machine set)(aC ;
Else Assign parallel task to the machine set)(bC ;
End

Figure 2. Heuristic task scheduling algorithm

 6

consists of a set of resource servers (schedulers and
brokers) to provide QoS, negotiation, admission, and
reservation capabilities for sharing resources such as
CPU, network, and memory. It was designed to support
QoS requirements of distributed multimedia
applications.

DSRT is the implementation of the CPU server of
QualMan middleware. A major component of DSRT is
the resource scheduler, named the dispatcher. A
priority scheduling mechanism is applied to
differentiate the processing of real-time (RT) processes
and time-sharing (TS) processes. The dispatcher runs
at the highest fixed-priority. It wakes up periodically to
dispatch RT processes by moving them between the
waiting priority (the lowest fixed-priority) and the
running priority (the second highest fixed-priority).
When the dispatcher sleeps, the RT process with the
running priority is scheduled. When no RT processes
exist, the dispatcher yields its CPU control and then TS
processes are executed using the fair time-sharing
scheduler of UNIX. In the current DSRT Linux
implementation, the real-time process has to call the
yield API to explicitly generate the yield signal. In this
work, we treat the external application as a RT process.
We monitor the resource usage of the external
application. When the required resource reservation is
satisfied during each time slot, a yield sign is raised
and the external application is sent to a waiting queue
until the start of the next time slot. Figure 3 gives the
basic flowchart of the dispatcher.

5. Experimental Results and Analysis

Experimental testing has been conducted to verify

the correctness of the proposed relative slowdown
metric and the associated analytical results with
extensive and rigid simulations. We also carry out
experiments on a real system with an updated DSRT,
based on trace files collected from the real
environments. Experimental results show that the
proposed relative slowdown is practically applicable.

We build a simulation model of an M/G/1 queuing
system. The model is composed of a local job
generator, a waiting queue, a scheduler, and a server.
The local job generator generates local job traffic that
follows Poisson arrival and different service time
distributions. In our simulation model, we support
three types of service time distributions: Exponential
distribution, Gamma distribution, and Pareco
distribution. When a job arrives, it first enters the
waiting queue and stays until the server is available.
We assume that there is no limitation on the job queue
size. The scheduler decides how to schedule jobs in the
waiting queue. Two queuing disciplines are supported
in our model: FCFS and RR. Each job in the RR queue

is scheduled to occupy the CPU server for a fixed time
slice (the default value is 0.0001 second) in turn.

In our simulation, we first examine the impact of
reservation on local jobs’ performance. The simulation
runs 50 times for each parameter set. Figure 4 gives the
variation of relative slowdown with different
utilization and reservation ratios for Exponential
distribution. Gamma, and Pareco distribution present
the same pattern. Compared with the analytical results
given in Figure 1 (a), we find that the simulation
results present a similar performance impact of
resource reservation. To further evaluate the
correctness of the analytical results given in formula (2)
and (4), we test the prediction error in the simulation.
Figure 5 plots the mean and variation of percentage
prediction error with different reservation periods from
2000 seconds to 10000 seconds when the reservation
ratio is 0.2 and the utilization is 0.15. The percentage
prediction error is defined as |Pr|

tMeasuremen
tMeasuremenediction −

where the predicted value is calculated by the formula
(2) and (4) and the measured value is collected from
simulation results. The top graph in Figure 5 shows the
mean of prediction error and the bottom one gives the
standard deviation of prediction error. We observe that

Assign running priority

Enter the sleep state

Assign running priority
to the RT process

Raise the yield sign

 Used up all reserved
resource quota? NO

Figure 3. A flowchart of dispatcher

0.
1

0.
3

0.
5

0.
7

0.
9 0.1

0.3
0.5

0.7
0.9

0

1

2

3

4

5

6

7

8

9

8-9

7-8

6-7

5-6

4-5

3-4

2-3

1-2

0-1

Figure 4. The variation of relative slowdown with
different utilizations and reservation ratios

ρ

RS

κ

 7

both mean and variation are very small with the three
distributions. The longer the reservation period, the

smaller the mean and variation of the prediction error.
In our simulation, we also examine square prediction
error, which is defined as 2)(Pr tMeasuremenediction − .
It presents similar results. These results demonstrate
the correctness of the analysis of relative slowdown.

Simulations are also conducted to test the
efficiency of the proposed heuristic failure-
minimization scheduling algorithms for parallel
processing. The machine set sizes are 20, 30, and 40
respectively. We use Weibull distribution to describe
the user’s discomfort probability since it is often used
to describe failure rate in practice. Notice our
scheduling can be applied with any empirical
distributions. The shape and scale parameters vary on
each machine. We compare the performance of the five
scheduling strategies: heuristic, random, fast-speed,
light-load. Fast-speed and light-load scheduling means
that machines are selected based on their speeds and
loads respectively. For example, Fast5 represents the
first 5 fastest machines are selected for task allocation.
Figure 6 gives the 5th, 50th, and 95th percentiles of
failure rate (the global discomfort) over 100
simulations for each scheduling policy. We can
observe that not only the average reservation failure
rate with heuristic scheduling is much lower than those
with other scheduling algorithms, but also the variation
of the failure rate with heuristic scheduling is rather
smaller than others.

To test the applicability of the proposed relative
slowdown and the efficiency of the scheduling
algorithms in practice, we conduct experiments on a
real system with the updated resource reservation tool,

DSRT. The performance measure mechanisms
discussed in Section 4 are used to measure system
parameters. The experimental platform is the IIT
(Illinois Institute of Technology) cluster of the DOT
Grid Testbed [18]. It contains one server and 13
computing nodes. The server has two 2.4GHz CPUs
and 2.5 GB main memory, and each node has four
2.4GHz CPUs and 2.5 GB main memory. The
operating system is Linux 2.4.20-8.

The lifetime of local jobs is simulated with 2.0/x
where x is a randomly generated number between 0
and 1. This distribution follows the observation of real-
life processes [19]. Two classes of external
applications are used in the experiments. One is meta-
task, which consists of a set of independent indivisible
subtasks. A typical example of meta-task is the
parameter sweep application, a widely used grid
application [4]. In the test, we generate a synthetic
meta-task. Each of its subtasks is a computation
intensive program. Another is parallel program. We
use Cactus parallel application, a numerical simulation
of a 3D scalar field [20]. In the experiment, the server
and three nodes, iit01, iit02, and iit03 are used. The
utilization on these machines is set as 0.2 and the
reservation ratio as 0.2. FCFS queuing discipline is
enforced on each resource. Table 1 gives the actual
CPU part occupied by the external applications and the
measured relative slowdown of local jobs. It shows that
the measurement is close to the analytical result (the
calculated relative slowdown is 1.33). We notice that
Cactus occupies less resource than expected. This
might be due to the synchronization and
communication among processes.

Table 1. Performance of external applications and
local jobs under reservation

Reservation periods (hours) Measurements 1 2 4 8
CPU occu. 20% 20% 20% 20% Meta-

task RS 1.35 1.29 1.30 1.33
CPU occu. 19.1% 18.3% 17.6% 17.9%

Cactus
RS 1.27 1.37 1.38 1.35

Figure 6. Failure rates with different
scheduling algorithms

Figure 5. The mean and variation of prediction
error with different reservation periods

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

2000 4000 6000 8000 10000

reservation period

p
r
e
d
i
c
t
i
o
n

e
r
r
o
r
(
%
)

expo(FIFO)

gamma(FIFO)

pareto(FIFO)

expo(RR)

gamma(RR)

pareto(RR)

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

2000 4000 6000 8000 10000

reservation period

p
r
e
d
i
c
t
i
o
n

e
r
r
o
r

s
t
d

expo(FIFO)

gamma(FIFO)

pareto(FIFO)

expo(RR)

gamma(RR)

pareto(RR)

 8

5. Conclusion

Resource reservation is an effective mechanism to

warrant QoS of the remote tasks in a shared
environment. While much effort has been made on
how to build the service agreement between local
resource organizations and external applications, the
influence of resource reservation on local jobs is not
well understood. The research of appropriate
scheduling and management of resource reservation is
still in its infancy.

In this study, we first introduce a relative slowdown
metric to measure the slowdown of resource
reservation on local jobs. Using results in queuing
system, we next derive formulae for calculating the
proposed relative slowdown metric. Based on the
derived formula, we examine the effects of different
system parameters on the relative slowdown. We also
investigate the effect of reservation on the completion
time of external applications. After identifying the
impact of resource reservation on both local jobs and
external applications, we present sequential task
scheduling and parallel task scheduling algorithms
under resource reservation. Finally, we conduct
extensive and rigid simulations to verify the
correctness of the relative slowdown metric and the
scheduling algorithms. The experimental results match
the analytical results well. We also conduct
experiments on production systems with an updated
resource management tool, DSRT, under the DOT Grid
environment. Experimental results show our study
provides a suitable solution to balance the need of
remote and local users in a shared environment. We
plan to explore the potential of these scheduling
strategies further in our future work to fully embed
them into Grid computing environments.

Acknowledgment

This research is supported in part by national
science foundation under NSF grant ACI-0305355,
EIA-0224377, ANI-0123930, and EIA-0130673.

Reference:

[1] I. Foster and C. Kesselman, The Grid: Blueprint for a

New Computing Infrastructure, 2nd Edition, Morgan-
Kaufman, 2004.

[2] Gupta, B. Lin, P. Dinda, “Measuring And
Understanding User Comfort With Resource
Borrowing,” in: Proc. of the 13th IEEE International
Symposium on High Performance Distributed
Computing, Honolulu, Hawaii, 2004.

[3] D. Nurmi, J. Brevik, and R. Wolski, “Modeling
Machine Availability in Enterprise and Wide-area
Distributed Computing Environments,” UCSB

Computer Science Technical Report (CS2003-28), 2003.
[4] F. Berman, R. Wolski, H. Casanova, W. Cirne, et al.

“Adaptive computing on the Grid using AppLeS,” IEEE
Trans. Parallel Distrib. Systems, 14 (2003) pp. 369-382.

[5] R. J. Al-Ali, K. Amin, G. V. Laszewski, O. F. Rana, D.
W. Walker, M. Hategan, N. Zaluzec, “Analysis and
Provision of QoS for Distributed Grid Applications,” J.
Grid Comput. 2(2) (2004) pp. 163-182.

[6] I. Foster, A. Roy, V. Sander, “A quality of service
architecture that combines resource reservation and
application adaptation,” in: Proc. of The International
Workshop on Quality of Service, June 2000, pp. 181-
188.

[7] R. Wolski, N. T. Spring, J. Hayes, “The network
weather service: a distributed resource performance
forecasting service for metacomputing,” J. Future
Generation Computing Systems, 15 (1999) pp. 757-768.

[8] X.-H. Sun, M. Wu, “Grid Harvest Service: A System for
Long-Term, Application-Level Task Scheduling,” in:
Proc. of 2003 IEEE International Parallel and
Distributed Processing Symposium, Nice, France, April
2003.

[9] L. Gong, X.-H. Sun, Edward F. Waston, “Performance
modeling and prediction of non-dedicated network
computing,” IEEE Trans. Comput. 51 (2002) pp. 1041-
1055.

[10] K. Keahey and K. Motawi, “The Taming of the Grid:
Virtual Application Services,” Technical Memorandum
ANL/MCS-TM-262, May 2003.

[11] J. Cao and F. Zimmermann, “Queue scheduling and
advance reservations with COSY,” in Proc. of the 18th
International Parallel and Distributed Processing
Symposium, New Mexico, April 2004.

[12] G. Singh, C. Kesselman, E. Deelman, “Performance
Impact of Resource Provisioning on Workflows,” in CS
Tech report 05-850, 2005, University of Southern
California.

[13] A. Acharya, G. Edjlali, J. Saltz, “The utility of
exploiting idle workstations for parallel computation,”
in: Proc. SIGMETRICS, 1997, pp. 225-236.

[14] J. Wei, X. Zhou, and C.-Z. Xu, “Robust Processing Rate
Allocation for Proportional Slowdown Differentiation
on Internet Servers,” IEEE Transactions on Computers,
Vol. 54, No. 8, (2005) pp. 964-977.

[15] D. Gross, C. M. Harris, Fundamentals of Queuing
Theory, 3rd Edition, John Wiley & Sons, 1998.

[16] M. Wu, X.-H. Sun, Y. Chen, “Resource reservation in
an M/G/1 queuing system,” IIT Computer Science
Technical Report (CS2005-02), 2005.

[17] DSRT2.0, http://cairo.cs.uiuc.edu/software/DSRT-
2/dsrt-2.html.

[18] DOT, http://www.dotresearch.org/.
[19] M. Harchol-Balter and A. Downey, “Exploiting process

lifetime distributions for dynamic load balancing,” in:
Proc. of the 1996 ACM Sigmetrics Conf. Measurement
and Modeling of Computer Systems, 1996, pp. 13-24.

[20] G. Allen, W. Benger, T. Goodale, H.-C. Hege, G.
Lanfermann, A. Merzky, T. Radke, E. Seidel, J. Shalf,
“Cactus Tools for Grid Applications,” Cluster
Computing, 4 (2001) pp. 179-188.

