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Abstract 

Resource sharing across different computers and 
organizations makes it possible to support diverse, 
dynamic changing resource requirements of distributed 
applications. Reservation mechanisms have been used 
to reserve resources for external applications through 
service level agreements between local resource 
organizations and external applications. However, the 
effects of resource reservation on local applications, 
and therefore the trustfulness of the successful 
fulfillment of the service agreement, have been 
ignored. In this paper, we investigate the effect of 
resource reservation on external applications as well 
as local jobs, and design efficient task scheduling 
algorithms considering the tolerance of local jobs to 
resource reservation. Extensive simulations and 
implementation experiments have been carried out to 
confirm our analysis results. Experimental results 
show that the relative slowdown metric and the failure-
minimization scheduling algorithms proposed in this 
study are practically effective and have a real 
potential. 
 
 
1. Introduction 

 
Resource sharing has become common place in 

distributed computing. The sharing exists not only in 
computation resources but also in communication 
resources and storage resources. In Grid computing, 
virtual organizations coordination has been proposed to 
enable resource sharing among disparate groups of 
organizations and individuals [1].  

A challenging issue, however, arises in this new 
situation: how external applications (i.e. applications 
that are being managed by external organizations or 
individuals) and local applications (i.e. jobs that are 
managed by the local resource administration domain) 
share resources appropriately. To satisfy external 
applications’ required Quality-of-Service, reservation 

is proposed as a mechanism of resource sharing among 
external applications and local jobs. 

Some fundamental problems still exist: how much 
and how long resources should be reserved for external 
applications? If little resource is reserved, the external 
application may have to run for a long time. If resource 
is over reserved, the performance of local jobs may be 
greatly affected. Recent research [2][3] has shown that 
local users often power cycle the resource immediately 
if uncomfortable machine slowness is observed. This 
indicates that an inappropriate resource reservation will 
result in a failed fulfillment of the service level 
agreement. The lack of a unified analysis of the 
performance impact of resource reservation on local 
jobs and external applications prevents the adoption of 
resource reservation among individuals and 
organizations and thus the appropriate delivery of 
resource sharing in distributed computing, especially in 
Grid computing.  

In this study, we propose a new performance metric, 
the relative slowdown, to quantify the performance 
impact of resource reservation. We model the local job 
process with an M/G/1 queuing system and analyze the 
effect of system parameters on relative slowdown. We 
investigate both first-come-first-serve (FCFS) and 
round-robin (RR) queuing disciplines. Efficient 
algorithms are designed and implemented considering 
local jobs’ tolerance to reservation. A user-level soft 
real time CPU scheduler, DSRT, is updated to enable 
resource reservation in a general computing platform. 
Extensive simulations have been carried out to verify 
our analytical results, and experimental studies have 
been conducted to confirm the correctness and 
effectiveness of the newly proposed metric in real 
production systems. 

The rest of this paper is organized as follows. 
Section 2 reviews some related work. Section 3 
introduces the proposed relative slowdown metric and 
presents the analytical results. Task scheduling 
algorithms under reservation are then given. Section 4 
presents implementation details of CPU reservation 
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and system parameter measurement. Section 5 presents 
the simulation and experimental results. Finally, in 
Section 6, we summarize the current work and discuss 
future work. 

 
2. Related work 

 
Several sharing policies have been deployed in 

distributed systems. In SETI@home, Entropia, and 
Condor, an external application is allowed to run only 
when no keyboard and/or mouse activities are detected 
on local resources. This sharing mechanism ensures 
that external applications do not interfere with the 
execution of local jobs, but it cannot provide the QoS 
guarantee for external applications. Another sharing 
mechanism [4] is that external applications compete 
with local jobs for resource occupancy. This sharing 
mechanism cannot assure the desired level of QoS of 
applications either. The third sharing policy is that 
resources are reserved for the execution of external 
applications to satisfy their QoS requirements [5]. In 
Grid computing, resource reservation is enabled with 
the General-purpose Architecture for Reservation and 
Allocation (GARA) [6]. 

Scheduling methodologies in shared environments 
have been widely studied. AppLeS [4] is a well-known 
task scheduling system for Grid computing. Scheduling 
algorithms in the AppLeS are supported by short-term 
resource availability prediction provided by NWS 
services [7]. In contrast, a long-term, application-level 
performance prediction and task scheduling system, 
namely Grid Harvest Service (GHS) system, is 
proposed recently [8]. Both AppLeS and GHS 
scheduling provide the estimate of application 
completion time. However, neither of them can 
guarantee that an application will be finished for a 
given deadline because resource availabilities may 
vary during the time. Virtual Application Service 
(VAS), a deadline-bound system, makes scheduling 
decision based on resource reservation [10]. According 
to the application information, VAS determines the 
CPU resources to support the application QoS. 
However, the scheduling decision is made only based 
on the application QoS requirement. It doesn’t consider 
the impact of reservation on local jobs. 

Research in performance impact of resource 
reservation has attracted increasing attention recently 
[11][12]. J. Cao et al implement a light weight job 
scheduler, COSY, to support both queue scheduling 
and advance reservation [11]. They carry out 
experiments to observe the impact of advance 
reservation on the mean waiting time, resource 
utilization, and the reject rate. The performance impact 
of resource provisioning on the completion time of 
workflows has been studied by G. Singh et al [12]. 

Their simulation results have shown that the workflow 
completion time is reduced by 50% using reservations. 
Their work has demonstrated the importance of the 
analysis of performance impact of reservation in 
scheduling algorithm designing. However, they are 
observational in nature. There is no analytical result on 
the reservation impact on local jobs and external 
applications. 

 
3. Performance modeling and analysis 

 
We call an external application the remote task. In 

order to identify the impact of resource reservation on 
local jobs and the remote task respectively, we build up 
a model to describe the local job process. The arrival of 
the resource owner’s local job is assumed to follow a 
Poisson distribution with rateλ . The execution time of 
local jobs is assumed to follow a general distribution 
with mean µ/1  and standard deviationσ . µ  is also 
called the service rate. The job arrival assumption is 
based on the observations of hyperexponential machine 
usage patterns reported by researchers in Wisconsin-
Madison, Berkeley, Maryland and et al [13]. The 
general service assumption is a generalization of the 
observed machine usage pattern. Based on our 
assumption, the resource owner’s local job process is 
an M/G/1 queuing system. Notice this model has been 
widely used in literature [9][14].  

 
3.1. Effects of resource reservation on local 
jobs and the remote task  

 
To make an appropriate resource reservation, we 

need to identify the effect of resource reservation on 
the performance of local jobs. In queuing systems, an 
often used performance measure is the mean waiting 
time, which is defined as the average waiting time of 
local jobs [15]. Two waiting time metrics are widely 
used in the literature. One is the waiting time in queue. 
Another is the waiting time in system. Because it is 
easier for users to feel and measure how long their jobs 
are finished than how much time their jobs may stay in 
a “queue”, we choose waiting time in system to 
investigate the impact of resource reservation on local 
jobs and simply call it waiting time throughout the 
study. 

When a certain part of CPU resource is reserved for 
an external application, the CPU resource available to 
local jobs is reduced. As a result, the local job’s 
waiting time will be increased in general. To determine 
whether a reservation is accepted or not, local users are 
naturally concerned about how much the average 
waiting time is affected. Let aW  denote the mean 
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waiting time of local jobs after reservation and bW  
denote the mean waiting time of local jobs before 
reservation. We can use either ba WW −  or ba WW /  to 
describe the change of the average waiting time. The 
latter is a more appropriate performance metric for our 
study since it gives the relative variation of the waiting 
time. The former reflects the absolute increased value 
of the waiting time. It can be used to compare the 
effects of different reservation quotas on local job 
performance at one resource. It may be insufficient, 
however, to compare the effects of the same 
reservation quota for different resources with different 
local job demands. For example, 10-second increased 
waiting time caused by reservation indicates a lot of 
performance change for local jobs at the average of 10-
second waiting time but a little for local jobs at the 
average of 200-second waiting time. This is because 
users are more likely to anticipate short delays for 
small jobs and are willing to tolerate longer delay for 
large jobs [19]. Based on the above discussion, we 
introduce a new performance metric, relative 
slowdown ( RS ) to reflect the impact of resource 
reservation on local jobs. 
Definition 1 The relative slowdown of local jobs on a 
resource for a given reservation is the ratio of the 
average waiting time with reservation and the average 
waiting time without reservation. 

We name the new performance metric as the 
relative slowdown because ba WW /  has a similar 
format as the performance metric in the queuing 
system, slowdown, which is defined as the ratio of the 
waiting time and the job’s workload. In this study, we 
focus on the reservation of CPU resource. We use κ  
to represent the reserved part of CPU resource. We call 
it the reservation ratio. 

Two queuing disciplines are widely used in a 
general computer system for choosing which job in the 
queue is to be serviced next. They are first-come-first-
serve (FCFS) and round-robin (RR). In a FCFS queue, 
jobs are served in the order of their arrival times. After 
one is finished, the next one will be served. In a RR 
queue, each job in the queue is served in a quantum of 
time and all jobs are served in turn.  
Theorem 1. Given a M/G/1 FCFS queuing system 
where the local jobs’ arrival rate is λ . Let κ  be the 
reservation ratio. Then the mean waiting time after 
reservation and the relative slowdown, are 
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machine utilization and  σ  is the service time standard 
deviation. 

Please note that 01 >>− κρ  holds in the above 
equation. Otherwise the system cannot arrive at a 
steady state after reservation and the average waiting 
time will be infinite. 
Theorem 2. Given a M/G/1 RR queuing system where 
the local jobs’ arrival rate is λ . Let κ be the 
reservation ratio. Then the mean waiting time after 
reservation and the relative slowdown, are 

)1( ρκλ
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ρ
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The proof of Theorem 1 and 2 is given in [16]. 
We have introduced the RS  metric to describe the 

impact of resource reservation on local job completion 
time. What is the effect of reservation on the remote 
task execution time is another interesting problem. Let 
ϖ  denote the workload of the remote task, T  denote 
the completion time of the remote task and τ  denote 
the resource computing capacity of a resource where 
the remote task executes. Since the reserved CPU 
resource is dedicated to the execution of the remote 
task, the task completion time can be expressed as 

κτ
ϖ=T     (5) 

On the other hand, if a remote task has a 
requirement of the completion time, T , we can 
calculate the correspondent reservation ratio, κ , using 

τ
ϖκ
T

=     (6) 

 
3.2 Effect of system parameters on relative 
slowdown 

 
Using formula (2), we examine the effects of 

different system parameters on the relative slowdown 
in an M/G/1 FCFS queuing system. Four parameters 
are examined in our computations: λ , σ , ρ , and κ . 

Their default values are set as: 1=λ , 8.0=σ , 2.0=ρ , 
2.0=κ . 

Figure 1 (a) gives the relative slowdown for 
different utilizations and different reservation ratios. 
We observe that RS  increases when the reservation 
ratio, κ , increases given a fixed utilization. When κ  
is close to bρ−1 , RS  is increasing dramatically and 
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tends to be ∞ (we limit the maximum value of RS  as 
30 in the figure). Figure 1 (a) also shows that, for a 
given reservation ratio, RS  increases when the 
utilization, bρ , increases. When bρ  is close to κ−1 , 

RS  is increasing dramatically and tends to be ∞ . 
Figure 1(b) shows the effect of κ  and bλ  on RS . For a 
given bλ , RS  increases when κ  increases and tends to 
be ∞ . For a given κ ,  RS  also increases when bλ  
increases. However, it increases too slowly to 
differentiate it from the graph. This indicates that the 
change of bλ  does not have the same impact on RS  as 
κ  does. We find the variation of bσ  has a similar 
impact on relative slowdown as that of bλ , so we don’t 
give its graph here. Figure 1 (c) gives the variation of 

RS  for different combinations of bλ  and bσ . It shows 
that there is a maximum RS  (in this case it is 1.67) 
whatever bλ  and bσ  are when κ  and bρ  are fixed. 
Based on these graphs, we conclude that the utilization 
and the reservation ratio are two dominant parameters 
in determining RS  for an M/G/1 FCFS queuing system. 
Figure 1(d) gives the relative slowdown for different 
utilizations and different reservation ratios in an M/G/1 
RR queuing system. It presents the same pattern as 
Figure 1(a). However, the curves in Figure 1(d) are 
relatively steeper than those in Figure 1(a). For the 
same utilization and reservation ratio, the relative 
slowdown tends to be smaller. This indicates a RR 
queuing discipline more favors reservation than a 
FCFS queuing discipline.  

 
3.3. Task scheduling under resource 
reservation 

 
In scientific computing, applications often require 

real-time, deadline-bound execution. Resources are 
reserved in advance for application running so that the 
application can be completed before its deadline. In 
current reservation-based scheduling strategies 
[10][12], CPU resources are allocated and reserved 
only based on the application’s deadline constraints. 
The effect of resource reservation on local jobs’ 
performance is not considered. Consequently, the 
potential task scheduling failure is ignored.  

We propose failure-minimization scheduling to 
address this problem. The goal of failure-minimization 
scheduling is to minimize the reservation failure rate 
while satisfying the deadline requirement of the remote 
task. In this study, we assume that the reservation 
failure rate is in proportional to the users’ discomfort 
probability, which is the probability that a user will 

feel discomforted when reservation occurs [2]. So the 
goal of failure-minimization scheduling is turned to 
minimize the users’ discomfort while satisfying the 
deadline requirement of the remote task. 

Let us suppose that we have a list of machine, 
},{ ,21 qmmmM K=  and each machine km  has a 

cumulative probability distribution (CDF) of 
discomfort in terms of relative slowdown, 

][)( xSPxB Rkk ≤= . The CDF can be obtained based 
on the measurement history. The remote task with a 
workload of ϖ  has a deadline of DT  for its execution. 
The single sequential task scheduling problem for 
failure-minimization can be formulated as finding a 
machine im  where )( iRi SB  is the minimal and iT  is 

less than or equal to DT . iT  is the remote task 

completion time and iRS  is the correspondent relative 

slowdown on machine im . According to formula (2) 
and (4), to get a minimal relative slowdown, the 
reservation ratio should be as small as possible. 
However, κ  is bounded by the deadline constraint. So 
the minimum iκ  is decided by 

iD
i T τ

ωκ = .   (7) 

After identifying the reservation ratio, we can 
calculate relative slowdown with formula (2) and (4). 
Then we can use the given CDF of discomfort to find 
the correspondent probability of discomfort on each 
resource. We will allocate the remote task to the 
machine which has the minimum probability of 
discomfort and make advance reservation on it. 

The successful running of a parallel application 
requires the successful fulfillment of resource 

RS

λ
σ

ρ
κ

RS RS

κ

λ

RS

ρ
κ

Figure. 1. Effect of parameters on relative 
slowdown 

(c) (d)

(a) (b) 
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reservation on each machine where the subtask of the 
application is running. Suppose that the probability of 
reservation failure on each resource is independent. 
The probability of successful reservation for the 
parallel application is the production of the probability 
of successful reservation on each resource. Since we 
use user’s discomfort to represent the reservation 
failure rate, we define a metric of global discomfort as 

∏ −−= )(1(1 iRiD SBG  to reflect the failure 
probability of resource reservation for the whole 
application. Our goal of parallel task scheduling is thus 
to minimize the global discomfort. We assume that the 
remote task can be arbitrarily partitioned and the CDF 
of discomfort on each resource is independent. The 
parallel task scheduling problem for failure-
minimization can be formulated as finding a machine 
set },,{ ln21 mmmM lls K=  where the global discomfort 

is the minimal and lkT  is less than or equal to DT . If 
we assume that the unit of execution time and 
application workload is one-second, we can use 
dynamic programming to solve this problem. However, 
it is too costly when the application workload or the 
system scale is large. A heuristic task-scheduling 
algorithm in Figure 2 is thus proposed. From the 
definition of global discomfort, we can see a machine 
set with fewer machines may lead to a smaller DG . 
However, the increased workload on each machine 
would require a larger reservation ratio to satisfy the 
deadline constraint and thus lead to a bigger DG . This 
tradeoff indicates machines should be selected 
carefully and priority should be given to those 
machines which can take more application workload 
with less user’s discomfort. We define a metric of safe 
workload as τκω ** 1.0Ds T=  to reflect how much 
workload of an external application can be supported 
by a resource with a user’s discomfort probability of 
0.1. 1.0κ  is the correspondent reservation ratio for a 
relative slowdown which leads to a user’s discomfort 
probability of 0.1. The heuristic algorithm includes two 
basic steps. The first step of this algorithm is to sort 
each lightly loaded machine with sω .  A higher value 

sω  of a machine indicates this machine has more 
available computing power for an application and thus 
should be considered first. The second step of this 
algorithm is to use the bi-section search to find the 
local optimal based on the ordering. To partition the 
application workload among a given machine set 

},,{ 21 sjss mmm K , we apply an equal-discomfort 
partition strategy. That is, each machine is assigned 
with a workload so that the probabilities of discomfort 
on different machines are the same. It is based on the 

intuition that the production of probabilities of user’s 
comfort )(1( iRi SB− tends to be maximum if each of 
them is the same. Let β  denote this discomfort 
probability. Then )(1 β−

skB  is the correspondent 

relative slowdown on machine skm  and the 
reservation ratio is 

))(( 11 βκ −−= skskRsk BS .   (8) 

Since ∑
=

=
j

k
sk

1

ωϖ  and skskDsk T τκω **=  , we 

have 

sk

j

k
skskRD BST τβϖ *))((*

1

11∑
=

−−= . (9) 

β  is the solution of formula (9). After calculating 
β , we can use formula (8) to get the reservation ratio 
on each machine. 
 
4. Implementations 
 

In this study, we apply the DSRT 2.0 software for 
CPU reservation. DSRT is a dynamic soft real time 
scheduler and has been widely used in Grid 
communities [17]. DSRT is a part of the QualMan 
(QoS-aware resource management) middleware, which 

Assumption: a remote task can be partitioned into any size 
of sub-tasks. Each sub-task will be assigned to a machine 
respectively. 
------------------------------------------------------------------ 
Begin 
List a set of idle machines that are lightly loaded over an 
observed time period, },{ ,21 qmmmM K= ; 

Sort the list of idle machines in a decreasing order with sω , 

},{' ,21 qcccM K= ; 

1=a , qb = ; 
Repeat 
       2/)( bac +=  
      /* )(xf  denotes ))(( xCGD

where 
},{)( ,21 xcccxC K=  */ 

      If )}(),(),(min{)( cfbfafaf =  then cb =  
      Else If )}(),(),(min{)( cfbfafbf =  then ca =  
      Else If )1()( +< cfcf  then cb =  
      Else ca =  
Until ba =+1  
If  )()( bfaf <  then 
     Assign parallel task to the machine set )(aC ; 
Else Assign parallel task to the machine set )(bC ; 
End 

Figure 2. Heuristic task scheduling algorithm
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consists of a set of resource servers (schedulers and 
brokers) to provide QoS, negotiation, admission, and 
reservation capabilities for sharing resources such as 
CPU, network, and memory. It was designed to support 
QoS requirements of distributed multimedia 
applications.  

DSRT is the implementation of the CPU server of 
QualMan middleware. A major component of DSRT is 
the resource scheduler, named the dispatcher. A 
priority scheduling mechanism is applied to 
differentiate the processing of real-time (RT) processes 
and time-sharing (TS) processes. The dispatcher runs 
at the highest fixed-priority. It wakes up periodically to 
dispatch RT processes by moving them between the 
waiting priority (the lowest fixed-priority) and the 
running priority (the second highest fixed-priority). 
When the dispatcher sleeps, the RT process with the 
running priority is scheduled. When no RT processes 
exist, the dispatcher yields its CPU control and then TS 
processes are executed using the fair time-sharing 
scheduler of UNIX. In the current DSRT Linux 
implementation, the real-time process has to call the 
yield API to explicitly generate the yield signal. In this 
work, we treat the external application as a RT process. 
We monitor the resource usage of the external 
application. When the required resource reservation is 
satisfied during each time slot, a yield sign is raised 
and the external application is sent to a waiting queue 
until the start of the next time slot. Figure 3 gives the 
basic flowchart of the dispatcher.  

 
5. Experimental Results and Analysis 

 
Experimental testing has been conducted to verify 

the correctness of the proposed relative slowdown 
metric and the associated analytical results with 
extensive and rigid simulations. We also carry out 
experiments on a real system with an updated DSRT, 
based on trace files collected from the real 
environments. Experimental results show that the 
proposed relative slowdown is practically applicable. 

We build a simulation model of an M/G/1 queuing 
system. The model is composed of a local job 
generator, a waiting queue, a scheduler, and a server. 
The local job generator generates local job traffic that 
follows Poisson arrival and different service time 
distributions. In our simulation model, we support 
three types of service time distributions: Exponential 
distribution, Gamma distribution, and Pareco 
distribution. When a job arrives, it first enters the 
waiting queue and stays until the server is available. 
We assume that there is no limitation on the job queue 
size. The scheduler decides how to schedule jobs in the 
waiting queue. Two queuing disciplines are supported 
in our model: FCFS and RR. Each job in the RR queue 

is scheduled to occupy the CPU server for a fixed time 
slice (the default value is 0.0001 second) in turn.  

In our simulation, we first examine the impact of 
reservation on local jobs’ performance. The simulation 
runs 50 times for each parameter set. Figure 4 gives the 
variation of relative slowdown with different 
utilization and reservation ratios for Exponential 
distribution. Gamma, and Pareco distribution present 
the same pattern. Compared with the analytical results 
given in Figure 1 (a), we find that the simulation 
results present a similar performance impact of 
resource reservation. To further evaluate the 
correctness of the analytical results given in formula (2) 
and (4), we test the prediction error in the simulation. 
Figure 5 plots the mean and variation of percentage 
prediction error with different reservation periods from 
2000 seconds to 10000 seconds when the reservation 
ratio is 0.2 and the utilization is 0.15. The percentage 
prediction error is defined as |Pr|

tMeasuremen
tMeasuremenediction −  

where the predicted value is calculated by the formula 
(2) and (4) and the measured value is collected from 
simulation results. The top graph in Figure 5 shows the 
mean of prediction error and the bottom one gives the 
standard deviation of prediction error. We observe that 

Assign running priority 

Enter the sleep state 

Assign running priority 
to the RT process

Raise the yield sign 

 Used up all reserved 
resource quota? NO 

Figure 3. A flowchart of dispatcher 
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both mean and variation are very small with the three 
distributions. The longer the reservation period, the 

smaller the mean and variation of the prediction error. 
In our simulation, we also examine square prediction 
error, which is defined as  2)(Pr tMeasuremenediction − . 
It presents similar results. These results demonstrate 
the correctness of the analysis of relative slowdown. 

Simulations are also conducted to test the 
efficiency of the proposed heuristic failure-
minimization scheduling algorithms for parallel 
processing. The machine set sizes are 20, 30, and 40 
respectively. We use Weibull distribution to describe 
the user’s discomfort probability since it is often used 
to describe failure rate in practice. Notice our 
scheduling can be applied with any empirical 
distributions. The shape and scale parameters vary on 
each machine. We compare the performance of the five 
scheduling strategies: heuristic, random, fast-speed, 
light-load. Fast-speed and light-load scheduling means 
that machines are selected based on their speeds and 
loads respectively. For example, Fast5 represents the 
first 5 fastest machines are selected for task allocation. 
Figure 6 gives the 5th, 50th, and 95th percentiles of 
failure rate (the global discomfort) over 100 
simulations for each scheduling policy. We can 
observe that not only the average reservation failure 
rate with heuristic scheduling is much lower than those 
with other scheduling algorithms, but also the variation 
of the failure rate with heuristic scheduling is rather 
smaller than others.  

To test the applicability of the proposed relative 
slowdown and the efficiency of the scheduling 
algorithms in practice, we conduct experiments on a 
real system with the updated resource reservation tool, 

DSRT. The performance measure mechanisms 
discussed in Section 4 are used to measure system 
parameters. The experimental platform is the IIT 
(Illinois Institute of Technology) cluster of the DOT 
Grid Testbed [18]. It contains one server and 13 
computing nodes. The server has two 2.4GHz CPUs 
and 2.5 GB main memory, and each node has four 
2.4GHz CPUs and 2.5 GB main memory. The 
operating system is Linux 2.4.20-8. 

The lifetime of local jobs is simulated with 2.0/x 
where x is a randomly generated number between 0 
and 1. This distribution follows the observation of real-
life processes [19]. Two classes of external 
applications are used in the experiments. One is meta-
task, which consists of a set of independent indivisible 
subtasks. A typical example of meta-task is the 
parameter sweep application, a widely used grid 
application [4].  In the test, we generate a synthetic 
meta-task. Each of its subtasks is a computation 
intensive program. Another is parallel program. We 
use Cactus parallel application, a numerical simulation 
of a 3D scalar field [20]. In the experiment, the server 
and three nodes, iit01, iit02, and iit03 are used. The 
utilization on these machines is set as 0.2 and the 
reservation ratio as 0.2. FCFS queuing discipline is 
enforced on each resource. Table 1 gives the actual 
CPU part occupied by the external applications and the 
measured relative slowdown of local jobs. It shows that 
the measurement is close to the analytical result (the 
calculated relative slowdown is 1.33). We notice that 
Cactus occupies less resource than expected. This 
might be due to the synchronization and 
communication among processes.     

 

Table 1. Performance of external applications and 
local jobs under reservation 

Reservation periods (hours) Measurements 1 2 4 8 
CPU occu. 20% 20% 20% 20% Meta-

task RS  1.35 1.29 1.30 1.33 
CPU occu. 19.1% 18.3% 17.6% 17.9% 

Cactus
RS  1.27 1.37 1.38 1.35 

Figure 6. Failure rates with different 
scheduling algorithms 

Figure 5. The mean and variation of prediction 
error with different reservation periods
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5. Conclusion 
 
Resource reservation is an effective mechanism to 

warrant QoS of the remote tasks in a shared 
environment. While much effort has been made on 
how to build the service agreement between local 
resource organizations and external applications, the 
influence of resource reservation on local jobs is not 
well understood. The research of appropriate 
scheduling and management of resource reservation is 
still in its infancy. 

In this study, we first introduce a relative slowdown 
metric to measure the slowdown of resource 
reservation on local jobs. Using results in queuing 
system, we next derive formulae for calculating the 
proposed relative slowdown metric. Based on the 
derived formula, we examine the effects of different 
system parameters on the relative slowdown. We also 
investigate the effect of reservation on the completion 
time of external applications. After identifying the 
impact of resource reservation on both local jobs and 
external applications, we present sequential task 
scheduling and parallel task scheduling algorithms 
under resource reservation. Finally, we conduct 
extensive and rigid simulations to verify the 
correctness of the relative slowdown metric and the 
scheduling algorithms. The experimental results match 
the analytical results well. We also conduct 
experiments on production systems with an updated 
resource management tool, DSRT, under the DOT Grid 
environment. Experimental results show our study 
provides a suitable solution to balance the need of 
remote and local users in a shared environment. We 
plan to explore the potential of these scheduling 
strategies further in our future work to fully embed 
them into Grid computing environments. 
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