HPC Performance Metrics: Should We Drop FLOPS?
International Workshop on Performance Analysis and Optimization of High-End Computing Systems

Jeffrey S. Vetter
ORNL and Georgia Tech

http://ft.ornl.gov
Vetter@computer.org
Agreed – PEAK FLOPS are cheap and getting cheaper...

With a Staggering Potential

Assume we scale entire current single core chip & replicate to fill 280 sq mm die

Peter Kogge, 2007
Many factors influence Value!
Productivity is a Function of Many Variables

Subjective Values:
- Site-specific
 - Project Utility
 - Job Utility

Objective Measurable System Properties:
- System-level Utilization
- Job-level Utilization
 - System Availability
 - Computational Resources

System Costs:
- Development Costs
 - System Costs

T + \frac{c_{adms} n_{adms} T + Nc_{proj} \tilde{t}_{proj}}{U_{sys} E_{util} E_{adm} A_{sys} E_{job} R}

- System Lifetime
- Admin Costs
Observations

- **At one time, architectures and applications were relatively simple**
 - FLOP throughput was easy to calculate and predict for both architectures and applications
 - The PEAK FLOPs metric remains easy to calculate and to use to scope initial designs

- **Applications and architectures are becoming much more complex**
 - HPC Challenge recognizes more complex criteria
 - Focus on memory (I/O) operations and the storage hierarchy
 - Spatial and temporal locality, yet this can be difficult to measure
 - Package designs and signaling rates are ‘relatively’ flat
 - Many of today’s procurements include performance criteria other than PEAK
 - DOE, DOD, NSF

- **Many other metrics are very difficult (impossible) to quantify**
 - Subjective, non-linear development time efforts
 - Predicting sustained performance, reliability on radically new architectures and software systems
 - Simulators don’t scale well
 - Analytical models don’t capture full complexity of features
We need science-based metrics!!

- Application-specific measures that relate to better/more science
 - POP uses simulation years per day
- Methods to predict their performance accurately
 - Using scalable simulators, symbolic modeling tools, code analysis tools
 - Targeting complex architectures like multicore, accelerators (e.g., CELL, GPUs)
- Solve the inverse problem for ‘perfect’ HPC architecture
- Joule metrics in DOE have characterized science-based metrics for ~12 applications
Modeling Assertions Provide Scalable Prediction Methods

- **Barotropic driver**
 - **div** (divergence operator)
 - divergence 4-point stencil
 - \(\text{MPI} _\text{Isend}((\text{jmt}-2 \times \text{gcell}) \times \text{gcell})\)
 - \(\text{MPI} _\text{Isend}(\text{imt} \times \text{gcell})\)
 - < 1 KBytes

- **pcg** (preconditioned conjugate gradient)
 - 9-point stencil w/ 4 weights
 - \(\text{MPI} _\text{Isend}((\text{jmt}-2 \times \text{gcell}) \times \text{gcell})\)
 - \(\text{MPI} _\text{Isend}(\text{imt} \times \text{gcell})\)
 - < 1 KBytes

- **grad** (gradient operator)
 - gradient 4-point stencil
 - \(\text{MPI} _\text{Isend}(\text{jmt} \times \text{gcell})\)
 - < 1 KBytes

- Until converges

- **global sum of physical 2D array**
 - \(\text{MPI} _\text{Allreduce}(\text{work})\)
 - 8 Bytes
POP Scaling

- Symbolic performance models for limited scalability Barotropic phase:
 - Number of floating-point operations
 - Number of load-store operations
 - MPI message sizes and patterns
- Error bounds:
 - Convergence rates of Conjugate Gradient iterations

10x workload = ~1110x LS operations
10x workload = ~950x FP operations
10x workload = ~10x MPI message volume

10x workload = ~150x LS operations
10x workload = ~90x FP operations
10x workload = ~6x MPI message volume
AMBER Scaling

- **Sander program in AMBER framework:**
 - Biomolecular MD simulations
 - Explicit solvant method
 - Particle Mesh Ewald (PME) approximation

- **Assumptions about input configurations:**
 - Cubic box with periodic boundaries
 - Constant Residual value

100x workload = ~65x physical memory requirements

100x workload = ~97x MPI message volume (bytes)

100x workload = ~1x physical memory requirement

100x workload = ~2x MPI message volume

Message count on 1M cores = 400,000x on single core
Science Based Metrics are the Ultimate Goal

- Capture the full application and architecture interactions to advance science

- Difficult to predict accurately
 - Use proxies instead
 - FLOPS
 - Memory, I/O operations

- Build performance prediction environments that
 - are accurate, efficient, scalable
 - Use combination of techniques: simulators, symbolic modeling
"HPC Performance Metrics: Should We Drop FLOPS?"

As computer architectures have advanced, making floating-point operations relatively inexpensive, it is still very ingrained in HPC to compare systems by their FLOPS rates, and to optimize algorithms to minimize their floating-point operation count even at the cost of increased memory bandwidth demands or programming effort.

Should we drop FLOPS as a metric? If the answer is yes, then is there a way to gracefully (or perhaps suddenly) move to a metric other than FLOPS that has the predictive value and ease-of-analysis that FLOPS had in the 1960s and 1970s?