
Responsive Parallel Computation: Bridging
Competitive and Cooperative Threading

Stefan K. Muller
Carnegie Mellon University, USA

smuller@cs.cmu.edu

Umut A. Acar
Carnegie Mellon University, USA;

Inria, France
umut@cs.cmu.edu

Robert Harper
Carnegie Mellon University, USA

rwh@cs.cmu.edu

Abstract
Competitive and cooperative threading are widely used ab-
stractions in computing. In competitive threading, threads
are scheduled preemptively with the goal of minimizing re-
sponse time, usually of interactive applications. In coopera-
tive threading, threads are scheduled non-preemptively with
the goal of maximizing throughput or minimizing the com-
pletion time, usually in compute-intensive applications, e.g.
scientific computing, machine learning and AI.

Although both of these forms of threading rely on the
same abstraction of a thread, they have, to date, remained
largely separate forms of computing. Motivated by the recent
increase in the mainstream use of multicore computers, we
propose a threading model that aims to unify competitive
and cooperative threading. To this end, we extend the classic
graph-based cost model for cooperative threading to allow for
competitive threading, and describe how such a cost model
may be used in a programming language by presenting a
language and a corresponding cost semantics. Finally, we
show that the cost model and the semantics are realizable
by presenting an operational semantics for the language that
specifies the behavior of an implementation, as well as an
implementation and a small empirical evaluation.

CCS Concepts •Software and its engineering → Paral-
lel programming languages; Concurrent programming
languages; Functional languages

Keywords Parallelism, Cost Models, Cost Semantics, Oper-
ational Semantics, Scheduling

1. Introduction
The idea of multiple threads sharing an address space is
one of the most widely applicable abstractions in computer

[Copyright notice will appear here once ’preprint’ option is removed.]

science. Over many years of research and practice, two forms
of threading have emerged: competitive threading and co-
operative threading. Although they both rely on essentially
the same abstraction of threads, these two forms of thread-
ing differ and complement each other in their domain of
applications, the form of scheduling that they use, and their
performance goals, as summarized by the table below.

Application Scheduling Goal

Competitive Interactive Preempt. Responsiveness
Cooperative Parallel Non-preemp. Throughput

Broadly used in interactive systems [33], the work on
competitive threads goes back to early systems such as
Xerox’s STAR [56] and Cedar [59]. Such systems rely on
threads to implement responsive interaction between the
different components of the systems (e.g., I/O subsystem,
the network) and between the system and the users [33].
Maximizing responsiveness is the main performance goal in
interactive systems, since this is key to the user experience.
To this end, threads are scheduled preemptively, often based
on priorities [7, 24, 27, 33].

Cooperative threading is broadly used in fine-grained par-
allelism, and its use goes back to early parallel programming
languages such as Id [5] and Multilisp [30], but it has re-
gained fresh popularity with the increasing mainstream avail-
ability of multicore computers. Parallel applications, usually
drawn from areas such scientific computing, physical simu-
lations, machine learning and AI, and discrete optimization,
are usually compute-intensive and use threads to reduce exe-
cution time. To this end, they break up the computation into
smaller threads that can be run in parallel and rely on a non-
preemptive scheduler to map the threads onto processors. The
goal of the scheduler is to minimize the execution time of a
parallel application by maximizing throughput.

It is technically possible to use competitive threading to
implement parallel programs by, for example, creating a small
number of system threads and manually scheduling the work
of an application over them. This approach, however, can
result in complex, low-level, and error-prone code. There
has therefore been much work on specialized programming

1 2018/12/21

languages and language extensions for parallel systems, in-
cluding NESL [10], OpenMP, Cilk [26], Fork/Join Java [41],
X10 [18], TBB [36], TPL [42], parallel Haskell [17, 39],
parallel ML [25, 37, 50] and Habanero Java [35]. To en-
sure high performance, these systems rely on non-preemptive
schedulers such as work stealing [2, 4, 13], depth-first sched-
ulers [11], and priority schedulers [34].

As shared memory multicore computers have become
the common platform for essentially all applications, rang-
ing from compute-intensive to interactive, many applications
would benefit from a threading model that bridges competi-
tive and cooperative threading. In such a model, an applica-
tion can create both competitive and cooperative threads and
expect them to be scheduled optimally, that is, to maximize
both throughput and responsiveness. For example, an appli-
cation that interacts with a user as it also performs parallel
compute-intensive tasks mixes throughput-oriented parallel
computation with responsiveness-oriented interaction.

In this paper, we propose a language and accompanying
cost model that combines the competitive and cooperative
threading models. We build on a popular graph-based cost
model for parallel computing (e.g. [13, 38]), which goes back
to the 1960s [28], in which an execution of a parallel program
is represented with a Directed Acyclic Graph (DAG or simply
dag). We extend this model (Section 2) to allow instructions
to be assigned priorities, foreground and background, which
correspond to high-priority and low-priority. We then present
a scheduling principle, called prompt scheduling, which
generalizes the standard greedy scheduling [4, 15] to bound
both the run-time and responsiveness of a computation. To
establish the bound, we make an important assumption that
requires the absence of priority inversions in which high-
priority computations depend on low-priority ones.

Like all other dag-based cost models, our model allows
reasoning about run-time and responsiveness but it leaves
an important gap: it only applies to a specific execution of
the program rather than the program. To close this gap, we
present a small core language (Section 3), called λip, which
we equip with a cost semantics, following prior language-
based cost models [8, 9, 29]. The language supports coop-
erative threading based on the popular fork-join paradigm
and competitive threading based on two constructs for asso-
ciating priorities with computations. Furthermore, it has a
type system based on linear temporal logic that guarantees
that well-typed programs avoid the above-mentioned priority
inversions. The result is the ability to reason about cost at the
level of the program rather than that of the execution.

The dag-based cost models and the cost semantics are
both abstract notions of cost that have little value unless they
can be realized by an implementation. We show that the cost
semantics of λip is theoretically realizable by giving a transi-
tion system (Section 4) that specifies the implementation of
a language runtime, and proving that the operational seman-
tics matches the cost semantics. The operational semantics

function fib n =

if n <= 1 then n

else

let (a, b) = par (fib (n - 1), fib (n - 2))

in a + b

Figure 1. Code for parallel Fibonnacci.

fib(3)

fib(2)

fib(1)=1fib(1)=1 fib(0)=0

1+0=1

1+1=2

Figure 2. A dag representation of fib(3).

captures important details of an implementation and can be
implemented on a modern multicore machine by providing
a scheduling algorithm. We briefly describe (Section 5) how
such a scheduling algorithm may be implemented.

Finally, we present a prototype implementation of the pro-
posed techniques as an extension to the MLton compiler for
Standard ML and perform a small empirical evaluation. Our
results show that our theoretical bounds predict the practi-
cal run-time and responsiveness of a number of interactive
parallel programs.

2. The DAG Model and Prompt Scheduling
The Standard DAG Model. It is common to represent
parallel computations using directed acyclic graphs or dags.
Vertices of the dag represent instructions of the computation,
each of which executes in one unit of time, which we call a
step. Edges represent dependencies between instructions: an
edge from u to u′ indicates that the instruction represented
by u must execute before u′. For a dag g, we write u �g u′ to
indicate that u is an ancestor of u′ in g. When it is clear from
the context, we drop g and simply write u � u′.

For example, consider the function fib(n), which com-
putes the nth Fibonacci number by performing the two recur-
sive subcalls fib(n-1) and fib(n-2) in parallel1. Figure 1
shows the code for fib. We can represent an execution of
fib(3) as a dag, as shown in Figure 2. For brevity, each vertex
represents a call to fib instead of an individual instruction,
but can be expanded into a chain of instructions if desired.
Vertices with out-degree two “fork” two parallel computa-
tions, which may be executed in two (cooperative) threads.
Vertices with in-degree two “join” two parallel computations;
a join vertex synchronizes its two in-neighbors by waiting for
both of them to complete before executing.

1 While inefficient, this algorithm is commonly used in the literature to
illustrate a simple compute-intensive parallel computation.

2 2018/12/21

function hello i =

if i <= 0 then bg ()

else

let _ = output(‘‘What is your name?’’)

x = input ()

_ = output(‘‘Hello, ’’ ˆ x)

in

hello (i-1)

function fib_hello () = par(fib 3, fg (hello 1))

Figure 3. Fibonacci composed with an interactive process.
par

fib(3)

fib(2)

fib(1)=1fib(1)=1 fib(0)=0

1+0=1

1+1=2

output

input

output

(2, ())

δ

Figure 4. A dag representation of fib_hello.

Our Model. To model responsiveness concerns, we extend
the standard dag model to allow certain portions of a dag,
called foreground blocks, to be specified as foreground or
high-priority computations. A foreground block is specified
by its source and sink vertices. A foreground block with
source s and sink t is written 〈 s

t 〉 and is the vertex-induced
subdag of g consisting of all u such that s �g u �g t.

To account for the latency incurred by input operations,
we weight edges with the number δ ∈ N of steps by which
the operation represented by the source vertex is delayed [45].
More specifically, for a weighted edge (u, u′, δ), if δ = 1, then
u incurs no latency and u′ may execute on the next step. If
δ > 1, then u incurred a latency of δ and u′ may execute
anytime δ steps after u starts executing.

Mathematically speaking, a dag is a tuple (s, t,V, E, F)
consisting of a source vertex s, a sink vertex t, a set V of
vertices (where s, t ∈ V and s �g t), a set E of weighted,
directed edges, and a set F of foreground blocks. We will de-
rive run-time and responsiveness properties for dags that have
no priority inversions, in which a high-priority computation
depends on a low-priority one. Without this property, which
we call well-formedness, we cannot ensure responsiveness.
We say that a dag is well-formed if each foreground block
satisfies the condition that no vertex in the block except for
the source has an incoming edge from outside the block. That
is, for all 〈 s

t 〉 ∈ F and all u , s ∈ 〈 s
t 〉, there does not exist

(u′, u, δ) ∈ E for any u′ < 〈 s
t 〉.

As an example, consider the simple program shown in
Figure 3. The function fib_hello mixes computation and

interaction by computing fib(3) and, in parallel, asking the
user a question and responding to the user’s answer. The
keyword fg indicates that the interaction should be given high
priority (i.e. is a foreground computation). Figure 4 illustrates
the dag for this program. The foreground computation is
drawn within a box. The edge weight δ stands for the latency
incurred by the input instruction. For all other edges, where
the edge weight is 1, we don’t explicitly write the weight.

Cost Metrics: Work, Span, Width. In parallel computing
with cooperative threads, the work of a dag g, which we
write W(g), is defined as the number of vertices in the dag
and span S (g) is defined as the length of the longest path
in the dag. When edge weights are used to account for
latency, work remains the same as in the traditional model,
because time spent blocking on inputs requires delay but no
computational work. The span, on the other hand, is now the
longest weighted path in the dag. The span takes the delays
into account since the computation cannot complete until all
of the inputs are available [45]. As usual, span corresponds to
the time needed to complete the computation with infinitely
many processors. Work now corresponds to the total active
processing time of the computation. With latencies, it may
not be possible to complete the computation in time W(g).

The rest of this section extends the model to account for
prioritized computations and uses the extensions to bound
both the completion time and the responsiveness of interactive
parallel computations. No additional changes are necessary
to the notions of work and span beyond including edge
weights in the span. However, we distinguish between total
and foreground-only work and span. The bounds on the
response time will involve the work and span of only the
foreground blocks, reflecting the desire that the amount of
low-priority computation should not affect responsiveness.
For a foreground block f (which, recall, is itself a subdag of
the overall dag of the computation), we write W(f) and S (f)
for the work and span, respectively of the block. For a graph
g = (s, t,V, E, F), the foreground work W◦(g) and foreground
span S ◦(g) are the sum over all foreground blocks:

W◦(g) ,
∑

f∈F W(f)
S ◦(g) ,

∑
f∈F S (f)

To bound the response time, we define a new notion,
called foreground width, which intuitively corresponds to the
maximum number of foreground blocks that can be executing
at the same time. Formally, we say that two foreground blocks
f1 and f2 are serial if there exists a directed path in the graph
from a vertex of f1 to a vertex of f2 or vice versa. A set of
foreground blocks F′ ⊂ F is independent if for all f1, f2 ∈ F′,
f1 and f2 are not serial. The foreground width D(g) of a
graph g is

D(g) , max
{
|F′| | F′ ⊂ F ∧ F′ is independent

}
Prompt Schedules. A schedule is an assignment of vertices
to processors at each step such that if a vertex u is executed

3 2018/12/21

at step i, it is ready at step i. A vertex u is ready if all of its
ancestors have executed and its latency requirements (if any)
have expired. A schedule is greedy if as many ready vertices
as possible are executed at each step. Greedy schedules
suffice to minimize run-time (to within a constant factor of
optimal), but not response time of high-priority computations.
To reduce response time, we propose a generalization of
greedy scheduling which we call prompt scheduling. We say
that a schedule is prompt if it is greedy and it also gives
priority to foreground blocks, executing as many foreground
vertices as possible at each step (up to the number of ready
foreground vertices or the number of processors).

Let TP denote the time to execute a given parallel compu-
tation on P processors using a given schedule. Let f = 〈 s

t 〉

be a foreground block. Given a schedule, we define the P-
processor response time, RP(f) as the number of steps be-
tween when s becomes ready and when t is executed (inclu-
sive). We define the total P-processor response time, RP, as
the sum of RP(f) for all foreground blocks in the dag.

The run-time of a greedy schedule of a dag g is bounded
by W(g)

P + S (g) P−1
P [12, 20]. Results such as this are well-

studied in the literature, and often attributed to Brent [15],
who proved a similar result for “level-by-level” schedules.
A similar bound exists for weighted dags such as the ones
we use [45], but without the P−1

P factor, since in this case
it is possible for all processors to be idle at once, which
is not possible in the traditional setting without latencies.
We generalize this bound to prompt schedules, taking into
account both the run-time and the response time. The intuition
behind this proof, and many proofs of Brent-type theorems,
is that, by definition, a greedy schedule (all prompt schedules
are greedy) will either execute P instructions or execute all
ready instructions (an entire “level” of the dag), decreasing
the critical path by 1. To show the bound on the response
time, we similarly show that, if any foreground blocks are
ready, each step decreases the foreground work by P or the
foreground span by the number of ready foreground blocks.

Theorem 1. Consider a parallel computation represented
by a well-formed dag g with foreground width D. If this
computation is scheduled with a prompt schedule, then TP ≤
W(g)

P + S (g) and RP ≤ D W◦(g)
P + S ◦(g).

Proof. Since all prompt schedules are greedy, the bound on
TP follows from the run-time bound for weighted dags [45].
We now show the bound on the response time.

We split the total response time into two components
RB (for steps when all processors are Busy with foreground
work) and RI (for when some processors are Idle or not busy
with foreground work), which we will bound separately by
visualizing each quantity as a bucket to which tokens are
added. The total response time is the total number of tokens
in RB and RI at the end of the computation. We will also need
a bucket WB to track the “busy” component of the work. At a
step i, suppose there are ni ready foreground vertices which

come from Ni foreground blocks. If ni ≥ P, then this is a busy
step: place this step’s Ni tokens in bucket RB and P tokens in
WB. If ni < P, then place Ni tokens in RI .

Since Ni ≤ D, for every P tokens placed in WB, at most D
tokens are placed in RB. So, at any time, RB

D ≤
WB
P .

At the end of the computation, the total number of tokens
in the work bucket is at most W◦(g) since at busy steps, a
prompt schedule will execute only foreground vertices. Thus,
at the end of the computation, RB ≤ D W◦(g)

P .
Now consider a token placed in RI at step i. This token

corresponds to a foreground block f for which at least one
vertex is ready at step i. Let gi be the sub-dag consisting
of vertices of f that have not been executed after step i.
Extend this in the following way to form a dag g∗i . All
vertices and edges in gi are also in g∗i . In addition, for all
edges (u, u′, δ) where u is in f \ gi and u′ is in gi (that is, u
has been executed by the end of step i and u′ has not), if u
was executed in step i − j, add to g∗i vertices u1, . . . , uδ− j−1
and edges (u1, u2, 1), . . . , (uδ− j−1, u, 1) (that is, add a chain of
length δ− j− 1 before u). Note that because g is well-formed,
no vertex of gi may have edges from outside f in g (except
the source of f , but the source must be ready or executed at
step i or no vertex of f would be ready), and so the vertices
of f that are ready at the start of step i + 1 are exactly those
vertices that are contained in gi and have in-degree zero in g∗i .
By the definition of a prompt schedule, it must be the case
that all ready vertices of f at step i are executed at step i, and
so do not appear in g∗i+1. In addition, for any vertex that is
incurring latency at the start of step i and so has a chain before
it in g∗i , the chain is decreased by one vertex in g∗i+1. Together,
these facts mean that every vertex in g∗i with in-degree zero
is not present in g∗i+1, and so the longest path in g∗i+1 is one
shorter than the longest path in g∗i . Since the longest path in
g∗0, by definition, has length S (f), at most S (f) tokens can be
placed in RI corresponding to f . In total, RI ≤ S ◦(g). Take
the total response time to be RB + RI . �

Lower Bounds for Online Scheduling. Given a parallel
computation represented by a well-formed dag g, Theorem 1
gives an upper bound on the running time and the respon-
siveness of a prompt schedule. The run-time bound, like the
similar bound for greedy schedules, is within a factor of two
of optimal, because W(g)/P and S (g) are both, individually,
lower bounds on the computation time. We now show a sim-
ilar result for the bound on the response time under certain
conditions: for the bound, we assume an online scheduling
algorithm that has no prior knowledge of the computation
dag. Specifically, we show that no matter what decisions the
scheduler makes, there exists a dag whose response time is
no lower than half of the given bound.

Recall that the response time is the sum over all foreground
blocks f of the time taken to execute f . Since S (f) is a lower
bound on the time to execute f , S ◦(g), which is the sum of the
spans over all blocks, is a lower bound on response time. Thus,
to establish a 2-approximation, it suffices to show that DW◦/P

4 2018/12/21

. . .

D W◦ − 2D

Figure 5. Intuition for the lower bound proof.

is also a lower bound on response time. This is the only
part of the argument that relies on the online assumption on
the scheduling algorithm. Consider a computation with total
work W◦ + 2D which consists only of D � W◦ foreground
blocks, each of which is sequential, and the two trees of
vertices necessary to fork off and join these foreground blocks.
Once all of the foreground blocks have been spawned, think
of the work of the computation as W◦ “bricks” which are
distributed arbitrarily into D stacks, as illustrated in Figure 5.
At each step, a prompt scheduler will remove one brick from
each of min(D, P) stacks (foreground blocks). When a stack
is empty, that block is complete and no longer counts toward
the response time. Since, by assumption, the scheduler only
knows which blocks are ready (which stacks have a brick on
top) and cannot base its decisions on how large each stack is
(this would require knowing how long a block will take to
execute), we may play a game against the scheduler. Start by
placing two bricks on each stack. Keep the rest of the bricks
hidden. At each step, when the scheduler removes a brick
from a stack, place another brick at the bottom of that stack
until you run out of bricks. In this way, all D blocks will be
ready for at least W◦−2D

min(D,P) steps (the number of steps it will
take to run out of bricks), which will cause the response time
to be at least D W◦−2D

min(D,P) ≈ D W◦
min(D,P) ≥ D W◦

P .

3. A Language for Responsive Parallelism
We introduce a core calculus called λip, which extends a
functional core with constructs for I/O, parallelism and
priority. The type system of λip separates subcomputations by
priority and enforces that high-priority computations do not
depend on low-priority ones. The dynamics of λip is given by
a cost semantics, which computes not only the value of an
expression, but also an execution dag of the kind described
in Section 2, which allows us to reason about cost at the level
of the language, and to apply the prompt scheduling theorem
to the run-time and responsiveness of programs.

To introduce the features of the language, we consider
several simple examples, wherein we use, for convenience,
“syntactic sugar,” such as let binding, that can be easily
expressed in λip. We also make use of base types such as
strings and booleans that are not described in the formalism.

3.1 Syntax and Examples
The syntax of λip is given in Figure 6. Expressions e in-
clude the standard introduction and elimination forms for
base types, functions, pairs and sums: natural numbers n, unit
values, λ-abstractions, application, pairs, projection, injec-

Types τ ::= unit | nat | τ1 → τ2 | τ1 × τ2 | τ1 + τ2 | © τ

Exprs. e ::= x | 〈〉 | n | λx:τ.e | e e | 〈e, e〉 | fst(e) |
snd(e) | inl(e) | inr(e) | case(e){x.e; y.e} |
fix x:τ is e | e ‖ e |
out(e) | inp[d](x.e) | bg(e) | fg(e)

Figure 6. Syntax of λip.

tion, and case analysis. We do not include operations (such as
+ and <) on natural numbers for simplicity, but these could
be added in a straightforward way. The fixed point operator
fix x:τise allows expressing recursion. Parallel tuples e1‖e2
(written par(e1, e2) in examples) allow for fork-join paral-
lelism: the expressions e1 and e2 denote parallel expressions
that may be evaluated in parallel.

Input and Output. The construct inp[d](x.e) binds user
input to the variable x in evaluating e and out(e) outputs the
value of e to the user. The annotation d relates to the cost
semantics; we ignore it for now. Our techniques do not make
assumptions about how exactly input/output is performed
(e.g., via a console, through GUI operations, over a network).
We therefore leave these details unspecified for simplicity.
Because natural numbers are the only interesting base type of
λip, only natural numbers can be input/output; generalization
to other base types such as strings, as used in our examples,
is straightforward. Figure 3 shows an example interactive
function hello that asks the user questions, repeating for a
number of times specified by the argument i.

Prioritized Computation. Now consider a parallel interac-
tive program combining hello and fib from Figure 3:

function fib_hello () = par(fib 43, hello 15)

This code cannot guarantee responsiveness because it does
not distinguish between the competitive thread, executing
hello 15, and the many low-priority computation threads
created by fib 43. A scheduler might get lucky, but in
general, responses to the user could get arbitrarily delayed as
the computation threads starve the interaction.2

As the fib_hello example illustrates, we would like to
enable the programmer to distinguish between high-priority
and low-priority computations. To this end, λip provides two
language constructs, fg(e) and bg(e), that represent, respec-
tively, a foreground computation that runs with high priority,
and a background computation that runs with low priority
from within a foreground block. Using these constructs, we
can write fib_hello so that it runs hello in the foreground
as shown in Figure 3.

In the example fib_hello, foreground and background
computations do not interact in interesting ways. For an exam-
ple where they do, consider a “Fibonacci server”, fib_server,
shown in Figure 7 on the left. The function asks the user

2 Although we do not discuss the details in the paper, we confirmed that
indeed such an implementation has poor responsiveness.

5 2018/12/21

function fib_server () =

let n = input () in

if n < 0 then ()

else

output (fib n);

fib_server ()

function main () =

fib_server ()

function fib_server () =

let n = input () in

if n < 0 then bg ()

else

bg (output (fib n));

fib_server ()

function main () =

fg (fib_server ())

Figure 7. Server (l) without priorities and (r) with priorities.

for an input n (a natural number) and computes the nth Fi-
bonacci number using fib. Because a Fibonacci computation
performs a large amount of work, the input loop could be-
come sluggish. In λip, the programmer can solve this problem
by running fib_server in the foreground and fib in the
background, as shown on the right in Figure 7. The expres-
sion bg (output (fib n)) spawns a new background thread
to perform the Fibonacci computation asynchronously and
output the result. The foreground computation can spawn
many background computations, each of which computes
the requested Fibonacci number in parallel with other back-
ground computations as well as the foreground interactive
server loop.

3.2 Type System
As presented so far, the language allows “priority inversions”
in which foreground code blocks on background computa-
tion. As an example, consider the following variant of the
Fibonacci server:

1 function fib_server_bad () =

2 let n = input () in

3 if n < 0 then bg ()

4 else let fibn = bg (fib n) in

5 output (fg (fibn));

6 fib_server_bad ()

7

8 function main () = fg (fib_server_bad ())

The function fib_server_bad receives the input n from the
user and then creates a background computation fibn to
compute the nth Fibonacci number (Line 4). It then immedi-
ately demands the result for output (Line 5). This program
might not be responsive because a foreground computation
(function fib_server_bad) is waiting on a potentially long-
running background computation.

To prevent such responsiveness problems, the type system
of λip enforces a clean separation between foreground and
background code, using techniques inspired by prior type
systems for staged computation (Section 6). This separation is
sufficient to show (in Section 3.3) that the dags corresponding
to well-typed λip programs are well-formed in the sense of
Section 2 and thus, by Theorem 1, admit prompt schedules
that bound responsiveness and completion time. In this
section, we describe the salient aspects of the type system.

Γ, x : τ @ w ` x : τ@w Γ, x : nat@ w ` x : τ@w′

Γ, x : τ @ w ` e : τ′@w

Γ ` λx:τ.e : τ→ τ′@w

Γ ` e1 : τ→ τ′@w Γ ` e2 : τ@w

Γ ` e1 e2 : τ′@w

Γ ` e : nat@w

Γ ` out(e) : unit@w

Γ, x : nat@ w ` e : τ@w

Γ ` inp[d](x.e) : τ@w

Γ ` e : τ@B

Γ ` bg(e) : © τ@F

Γ ` e : © τ@F

Γ ` fg(e) : τ@B

Figure 8. Selected typing rules for λip

The types τ include unit and natural numbers as base types,
as well as functions, binary tuples and binary sums and the
circle type© τ, which represents background computations.
The typing judgment has the form Γ ` e : τ@w indicating
that e has type τ at “world” w. The world is either F or B,
indicating that the expression is suitable for the foreground
or background, respectively. Contexts Γ have entries of the
form x : τ @ w, indicating that variable x is in the context
with type τ at world w.

Most of the rules allow expressions to type at any world,
but require all subexpressions to be at the same world as
the whole expression. Figure 8 shows the typing rules for
function types as an example. Most of the rules are similar to
these and are omitted for space reasons. Transitions between
worlds are effected by the bg(e) and fg(e) operations. If e has
type τ in the background (world B), then the expression bg(e)
has the type © τ in the foreground (world F). This allows
encapsulated background computations to be created and
passed around in the foreground. If e has type© τ in world
F, then the expression fg(e) has type τ in B. This means
that the result of an encapsulated computation can only
be demanded in the background, which precludes priority
inversions. For example, this restriction will rule out the
function fib_server_bad above, since this function is called
in the foreground and the expression fg fibn cannot be
assigned a type in the foreground.

There are two rules for typing variables. If x : τ @ w is
in the context, the variable x has type τ at world w. We also
allow variables of type nat to type at either world, allowing
foreground code to make use of variables (of type nat)
bound in the background and vice versa. The restriction to
type nat ensures that code can’t “escape” to the wrong world
encapsulated in a function or thread. This is related to the
mobility restriction of Murphy et al. [46], and could easily
be expanded to allow any “mobile” type, including sums and
products (but not functions or encapsulations of type© τ).

3.3 Cost Semantics
We now define a cost semantics for λip, which both computes
the value of an expression and determines an execution dag

6 2018/12/21

of the kind described in Section 2 for a λip program. The
parallel structure of the program, as well as the cost metrics
such as work and span, can be read off from the resulting dag,
and are used to reason about the run-time and responsiveness
of parallel programs.

The cost semantics is given in Figure 9. The judgment e ⇓∆

v; g states that the expression e evaluates to v and has cost
graph g. The judgment is parametrized by ∆ : InputIDs→ 2N,
a mapping which assigns a set of possible delays to each input
identifier d (recall from the syntax that input operations are
tagged with such identifiers). Values v consist of the unit
value, numerals, lambda abstractions, pairs and injections
of values, and a new form of thread handle which abstractly
represents a thread as the value to which it will evaluate and
a handle to the sink of its expression’s cost graph:

v ::= 〈〉 | n | λx:τ.e | 〈v, v〉 | inl(v) | inr(v) | thread[u](v)

Many of the rules for the sequential components of the
language and parallel tuples are based on the cost semantics of
Spoonhower et al. [58]. The rules for generating and joining
with background threads (bg(e) and fg(e), respectively), are
based on Spoonhower’s treatment of futures [57], which share
the property that an asynchronous expression is spawned in
one part of a computation and demanded in another.

The generation of cost graphs is defined as part of the
derivation of the evaluation judgment. A graph may consist
of a single vertex, written [u], or a single edge, written
[(u1, u2, δ)], or may be formed by combining smaller graphs,
which are generally produced from evaluating subexpressions.
In most cases, subexpressions are evaluated sequentially,
represented in the cost graph by combining the cost graphs
of the subexpressions using serial composition g1 ⊕ g2 which
joins the sink of g1 to the source of g2 by an edge of weight 1
(a more general form, ⊕δ, uses an edge of weight δ, as shown
in Figure 11). The empty graph ∅ is an identity for ⊕. In the
rule for e1 ‖ e2, the cost graphs for e1 and e2 are combined
using parallel composition g1 ⊗ g2, which joins the graphs
in parallel with new vertices s and t as the source and sink
(Figure 11). If one of the graphs is empty, the other is simply
composed with s and t.

The rule for bg(e) uses the left parallel composition
operator [57]. The graph g�u “hangs g off of” vertex u
(Figure 11). For the purposes of sequentially composing this
graph with other graphs, u is both the source and the sink,
reflecting the fact that the new thread is executed concurrently
with the continuation of the current thread.

The rule for fg(e) evaluates e to a background thread
and also gets a handle to the sink of the cost graph for
the thread’s expression. The rule adds an edge between the
sink and the vertex representing the fg instruction. In the
rule for fg(e), the cost graph for e is marked as foreground
with the operation g�. This operation produces a foreground
block 〈 s

t 〉 where s and t are the source and sink of g. Finally,

the input rule adds an edge of weight δ, where δ is chosen
nondeterministically from ∆(d).

Figure 10 formally defines the left parallel composition
and foreground block formation rules on graphs. Sequential
and parallel composition are omitted for space reasons.

Recall that, in order to apply the results of Section 2
to the dags generated by the cost semantics, we need to
show that such dags are well-formed. The well-formedness
assumption requires that there are no edges to internal nodes
of foreground blocks. Such an edge would correspond to a
priority inversion in the language, and is ruled out by the type
system, as we will now show. We first show that an expression
that types in the foreground will correspond to a dag with no
nested foreground blocks or external dependencies.

Lemma 1. If · ` e : τ@F and e ⇓∆ v; (s, t,V, E, F), then
F = ∅ and for all (u′, u, δ) ∈ E, we have u ∈ V.

Proof. By induction on the derivation of · ` e : τ@F. �

This result can then be easily extended to show that well-
typed programs produce well-formed dags.

Theorem 2. If · ` e : τ@w and e ⇓∆ v; g, g is well-formed.

Proof. Let g = (s, t,V, E, F). Proceed by induction on the
derivation of e ⇓∆ v; g. The interesting case is the rule
for fg(e′), which adds a foreground block. By inversion,
e′ ⇓∆ v′; (s′, t′,V ′, E′, F′) and by inversion on the typing
rules, · ` e′ : © τ@F. By Lemma 1, F′ = ∅ and for all
(u′, u, δ) ∈ E′, we have u′ ∈ V ′. By the cost semantics, we
have F = {〈 s′

t′ 〉} and E = E′ ∪ {(t, u2, 1), (u1, u2, 1)} Since no
edge is added with a target in 〈 s′

t′ 〉, there is no u ∈ 〈 s′
t′ 〉 such

that (u′, u, δ) ∈ E for u′ < 〈 s′
t′ 〉. No other rule adds an edge to

a vertex of a subdag except to its source, so well-formedness
is preserved. �

4. Semantic Realization
We have thus far established bounds on the responsiveness
and run-time of prompt schedules of well-formed execution
dags (Theorem 1), and defined a language for prioritized
interactive parallelism whose cost semantics generates only
such dags. The cost model provides a theory of the respon-
siveness and efficiency of λip programs with which we can
derive results about programs, but these results remain ab-
stract until we validate them with respect to a lower-level
model. In this section, we give a transition semantics that
specifies an implementation of λip, and show that the cost
attributed to a program by the cost model corresponds to a
more concrete notion of cost in terms of steps of the tran-
sition system. This section will give the broad ideas of the
operational semantics and the correspondence proofs, but
many details are omitted for space reasons. A full treatment
is available in the companion technical report [?].

7 2018/12/21

v ⇓∆ v; ∅

e1 ⇓
∆ λx:τ.e; g1 e2 ⇓

∆ v; g2 [v/x]e ⇓∆ v′; g3 u fresh

e1 e2 ⇓
∆ v′; g1 ⊕ g2 ⊕ [u] ⊕ g3

e ⇓∆ 〈v1, v2〉; g u fresh

fst(e) ⇓∆ v1; g ⊕ [u]

e ⇓∆ 〈v1, v2〉; g u fresh

snd(e) ⇓∆ v2; g ⊕ [u]

e1 ⇓
∆ v1; g1 e2 ⇓

∆ v2; g2

〈e1, e2〉 ⇓
∆ 〈v1, v2〉; g1 ⊕ g2

e1 ⇓
∆ v1; g1 e2 ⇓

∆ v2; g2

e1 ‖ e2 ⇓
∆ 〈v1, v2〉; g1 ⊗ g2

e ⇓∆ inl(v); g1 [v/x]e1 ⇓
∆ v′; g2 u fresh

case(e){x.e1; y.e2} ⇓
∆ v′; g1 ⊕ [u] ⊕ g2

e ⇓∆ inr(v); g1 [v/y]e2 ⇓
∆ v′; g2 u fresh

case(e){x.e1; y.e2} ⇓
∆ v′; g1 ⊕ [u] ⊕ g2

e ⇓∆ v; g g = (s, t,V, E, F) u fresh

bg(e) ⇓∆ thread[t](v); g�u

e ⇓∆ thread[u1](v); g u2 fresh

fg(e) ⇓∆ v; (g�) ⊕ [u2] ∪ {(u1, u2, 1)}

e ⇓∆ v; g u fresh

out(e) ⇓∆ 〈〉; g ⊕ [u]

[n/x]e ⇓∆ v; g u1 fresh u2 fresh δ ∈ ∆(d)

inp[d](x.e) ⇓∆ v; [u1] ⊕δ [u2] ⊕ g

[fix x:τ is e/x]e ⇓∆ v; g u fresh

fix x:τ is e ⇓∆ v; [u] ⊕ g

Figure 9. Cost Semantics.

[u] = (u, u, {u}, ∅, ∅)
[(u1, u2, δ)] = (u1, u2, {u1, u2}, {(u1, u2, δ)}, ∅)
(s, t,V, E, F)�u = (u, u,V ∪ {u}, E ∪ {(u, s, 1)}, F)
(s, t,V, E, F)� = (s, t,V, E, F ∪ {〈 s

t 〉})

Figure 10. Selected graph operations.

g1

g2

δ

s

t

g1 g2
u

g . . .

Figure 11. From left: g1 ⊕δ g2, g1 ⊗ g2, and g�u.

4.1 Operational Semantics
Since the operational semantics is a transition system, it must
be able to represent intermediate states of computation. In
particular, such an intermediate state may have many active
threads of execution. We will name these threads with thread
symbols, for which we use the metavariables a, b, c and
variants. We use these symbols for threads generated by
parallel pairs e1 ‖ e2 as well as background threads. We
also introduce three new expression forms which are not
needed for source programs (i.e. programs that have not
begun evaluation):

e ::= · · · | tid[a] | join[a, b] | in(x.e)

The first, tid[a], is a runtime representation of a background
thread identified by thread symbol a. The second, join[a, b],
is a parallel tuple whose components are being evaluated by
threads a and b. Finally, in(x.e) will be used to represent an
input expression whose latency has expired but which has not
yet produced an input value.

We also introduce thread pools. A thread pool µ is a
mapping from thread identifiers a to pairs (δ, e) of a delay and
an expression, indicating that thread a may run command e
after δ steps. We write a thread pool as

a1 ↪→ (δ1, e1)] . . .] an ↪→ (δn, en)

and the concatenation of two disjoint thread pools as µ1] µ2.
It is straightforward to extend the type system to account

for threads. We sketch the extension here. The expression
typing judgment becomes Γ `Σ e : τ@w, which includes a
thread signature Σ. Thread signatures have entries of the
form a ∼ τ @ w, indicating that thread a is running an
expression of type τ at world w. Most rules are unchanged
from Figure 8 and simply pass the thread signature through.

A new typing judgment, Γ `Σ′ µ : Σ, indicates that the
thread pool µ has the signature Σ. The rules require that
a ∼ τ @ w ∈ Σ if and only if a ↪→ (δ, e) ∈ µ and e has type τ
at world w.

The operational semantics of λip consists of two compo-
nents: local and global [32]. The local semantics concerns
individual threads, and indicates how expressions transition.
Selected rules are presented in Figure 13. The rules in this
figure correspond to two judgments. The judgment e val
indicates that e is an irreducible value. Values are the unit
value, numerals, functions, pairs and injections of values, and
thread handles tid[b]. The local transition judgment is

e | µ 7→∆
a (δ′, e′) | µ] µ′

which states that thread a running e transitions to e′, possibly
spawning new threads, which are collected in µ′. The original
thread pool µ is unchanged; threads are never altered or
removed by local transitions. The thread identifier a is not
important for the local transition, but will be used in some
of the global definitions and results. The new expression e′

will be able to run after a delay of δ′ steps (if δ′ = 0, it can
run immediately). As with the cost semantics, the judgment
is parametrized by a delay assignment ∆.

8 2018/12/21

〈〉 val n val λx:τ.e val

e1 val e2 val

〈e1, e2〉 val

e val

inl(e) val

e val

inr(e) val tid[a] val

e1 | µ 7→
∆
a (δ, e′1) | µ] µ′

e1 e2 | µ 7→
∆
a (δ, e′1 e2) | µ] µ′

e2 | µ 7→
∆
a (δ, e′2) | µ] µ′

(λx:τ.e1) e2 | µ 7→
∆
a (δ, (λx:τ.e1) e′2) | µ] µ′

e2 val

(λx:τ.e1) e2 | µ 7→
∆
a (0, [e2/x]e1) | µ

b fresh c fresh

e1 ‖ e2 | µ 7→
∆
a (0, join[b, c]) | µ] b ↪→ (0, e1)] c ↪→ (0, e2)

µ = b ↪→ (δb, eb)] c ↪→ (δc, ec)] µ′ eb val ec val

join[b, c] | µ 7→∆
a (0, 〈eb, ec〉) | µ

b fresh

bg(e) | µ 7→∆
a (0, tid[b]) | µ] b ↪→ (0, e)

e | µ 7→∆
a (δ, e′) | µ] µ′

fg(e) | µ 7→∆
a (δ, fg(e′)) | µ] µ′

µ = b ↪→ (δ, e)] µ′ e val

fg(tid[b]) | µ 7→∆
a (0, e) | µ

e | µ 7→∆
a (δ, e′) | µ] µ′

out(e) | µ 7→∆
a (δ, out(e′)) | µ] µ′

e val

out(e) | µ 7→∆
a (0, 〈〉) | µ

δ ∈ ∆(d)

inp[d](x.e) | µ 7→∆
a (δ − 1, in(x.e)) | µ in(x.e) | µ 7→∆

a (0, [n/x]e) | µ

Figure 12. Selected local dynamic rules.

Most of the transition rules are straightforward and are
omitted. The complete rules for function application are given
as an example: in e1 e2, the subexpression e1 is stepped
until it is a lambda abstraction, then e2 is stepped until
it is a value, which is then substituted for the variable in
the body of the abstraction using standard capture-avoiding
substitution. A parallel tuple e1 ‖e2 spawns two new threads b
and c to execute e1 and e2, respectively. The local thread a
steps to join[b, c], indicating that this thread is now waiting
for b and c to complete. When both threads have stepped to
irreducible values, join[b, c] steps to a pair of the two values.
In the same vein, bg(e) spawns a new thread b to evaluate e
and returns the thread handle tid[b]. Note that, while threads
spawned by parallel tuples and threads spawned by bg(e) are
treated identically by the semantics (i.e. they are stepped with
the same transitions and not distinguished in the thread pool),
the threads b and c spawned by a parallel tuple are never
referred to by thread handles (e.g. tid[b]) because these
threads are not first class.

The expression fg(e) steps e until it reaches fg(tid[b]),
which then blocks until thread b has evaluated its expression
down to an irreducible value e′, at which point fg(tid[b])
steps to e′. The input rule is the only one which results in a
delay, which is chosen nondeterministically from ∆(d). After
the delay, the new expression in(x.e) nondeterministically
chooses a natural number n to substitute for x in e, represent-
ing the uncertainty in the input from the user or environment.

The global rules in Figure 14 define the transitions of
entire thread pools, i.e. the entire state of the computation.
The judgment µ final states that µ has completed evaluating
and its rules simply require that all threads in µ be irreducible.
The global step relation is

r; µ 7→glo r′; µ′

and has only one rule, which allows some number N of
threads whose delay is 0 to step using the local dynamics.

There is also a counter for the total response time r, which at
each step is incremented by the number of ready foreground
blocks3 (the formal definition of RFB(µ), which counts the
ready foreground blocks in a thread pool, is straightforward
and omitted for simplicity). The new thread pool consists of
the updated threads 1 through N, and the unaltered threads N+

1 through n with their delays (if nonzero) decremented.
Note that the global step relation does not specify a

scheduling strategy, nor does it enforce any constraints on
schedules other than that only ready threads may step. In our
results, we will quantify over valid, prompt schedules: those
that step as many threads as possible, prioritizing threads that
are executing foreground blocks, bounded by the number of
available processors.

We can prove modified progress and preservation results
for the λip semantics. In addition to type safety, it will be-
come important to show that another property of programs,
which we call “well-joinedness”, is preserved throughout exe-
cution. Intuitively, well-joinedness (denoted by the judgment
e wj) requires that join expressions appear only in the part
of an expression which is currently being evaluated4. In par-
ticular, they may not appear encapsulated in functions, or in
expressions which have not yet been evaluated. Details of
the definition of well-joinedness and the safety results are
omitted for space reasons.

4.2 Extended Cost Model
In order to show a correspondence between the cost semantics
and the operational semantics, we must extend the cost
semantics to generate cost graphs not just for expressions

3 Commuting the summations, counting the number of blocks at each step
is equivalent to counting the number of steps taken to execute each block,
which is the response time.
4 For those familiar with evaluation contexts or stack machine seman-
tics, join can only appear in the “hole” of an evaluation context or at
the top of a stack.

9 2018/12/21

∅ final

e val µ final

a ↪→ (δ, e)] µ final

µ = a1 ↪→ (δ1, e1)] . . .] an ↪→ (δn, en) ∀N < i ≤ n.δ′i = max(0, δi − 1)
N ≤ n ∀1 ≤ i ≤ N.δi = 0 ∀1 ≤ i ≤ N.ei | µ 7→

∆
ai

(δ′i , e
′
i) | µ] µ

′
i

r; µ 7→glo r + |RFB(µ)|; a1 ↪→ (δ′1, e
′
1)] . . .] aN ↪→ (δ′N , e

′
N)] aN+1 ↪→ (δ′N+1, eN+1)] . . .] an ↪→ (δ′n, en)] µ′1] . . .] µ

′
N

Figure 13. Global Dynamics.

Expression cost semantics e; µ ⇓∆ v; g

µ = µ′] b ↪→ (δb, eb)] c ↪→ (δc, ec)
eb; µ ⇓∆ v1; g1 ec; µ ⇓∆ v2; g2 u fresh

join[b, c]; µ ⇓∆ 〈v1, v2〉; (u, u, {u}, {(b, u, 1), (c, u, 1)}, ∅)

e; µ ⇓∆ thread[u1](v); g u2 fresh

fg(e); µ ⇓∆ v; (g�) ⊕ [u2] ∪ {(u1, u2, 1)}

µ = µ′] b ↪→ (δ, eb)
e; µ ⇓∆ tid[b]; g eb; µ ⇓∆ v; gb u fresh

fg(e); µ ⇓∆ v; (g�) ⊕ [u] ∪ {(b, u, 1)}

Thread pool cost semantics µl; µg ⇓
∆ v; g

∅; µg ⇓
∆
c {}

µl; µg ⇓
∆
c {G} e; µg ⇓

∆ g g , ∅

a ↪→ (δ, e)] µl; µg ⇓
∆
c {a ↪→ g �δ]G}

Figure 14. Selected extended cost semantics rules.

g �0 = g
(s, t,V, E, F) �δ = [α] ⊕δ g δ > 0, α fresh
(s, t,V, E, F)� = (s, t,V, E, F ∪ {〈 s

t 〉}) @a, δ.(a, s, δ) ∈ E
(s, t,V, E, F)� = (s, t,V, E, F ∪ {〈 t 〉}) ∃a, δ.(a, s, δ) ∈ E

Figure 15. Extended graph operations.

but also for thread pools which can represent programs that
have already begun to execute. As such, dags may no longer
have a single source vertex, though they will continue to have
a single sink vertex (the final instruction of the initial thread).
They will have a source vertex for each ready thread. This
modification is relatively straightforward: for each thread, we
will generate a standard dag like those of Section 3.3, which
we now call a thread graph or thread dag, with a single
source and single sink. These are then composed to form a
configuration graph or configuration dag by adding edges
that correspond to the inter-thread dependencies created
by join and fg.

The judgment e; µ ⇓∆ v; g indicates that the expression e
evaluates to v and has cost graph g in the presence of µ. The
expression being evaluated may refer to threads in µ. These
threads are included so that the value can be generated, but

their cost is not included in g. Most rules for this judgment
do not inspect µ and so are similar to the corresponding rules
in Figure 9. The rules that are new or substantially different
are shown in Figure 16. In addition to the rule for join,
there is now an additional rule for fg(e) handling the case in
which e evaluates to a thread handle tid[b]. In this case, the
expression corresponding to b in the thread pool is evaluated.
The definition of g� is extended for the case in which the
source of g is a join point, i.e. has incoming edges from
outside g. This is handled using a new form of foreground
block 〈 t 〉, which has only a sink t and no source. All vertices
that are ancestors of t are part of the foreground block 〈 t 〉.
The extended graph operations are given in Figure 17.

A configuration graph G mirrors the structure of the thread
pool µ; it is a mapping from thread symbols to thread graphs:

G = a1 ↪→ g1] . . .] an ↪→ gn

The vertices, edges and foreground blocks of a configuration
graph are the union of the vertices, edges and foreground
blocks of the component thread graphs. If a ↪→ ga ∈ G, an
edge (a, u, δ) may be viewed as an edge from the sink of ga

to u. If ga = ∅, this edge is ignored. The metrics such as
work, span and foreground width extend in the natural way
to configuration graphs.

The judgment µl; µg ⇓
∆
c {G} generates a portion of a

configuration graph from the threads in a partial thread pool µl

by generating a thread graph for each thread and composing
any non-empty graphs that result. As above, the whole thread
pool µg is included so that threads may refer to other threads
which are not currently under attention, but these threads are
not included in G. If a thread is delayed with delay δ > 0, its
cost graph is composed serially after a fresh auxiliary vertex
using an edge of weight δ.

The extended cost semantics allows us to assign costs
(work, span, etc.) to programs, as represented by thread pools.
The work and span of a thread pool that is in the middle
of execution can be thought of as the remaining work and
span of the program. The work of a thread pool µ under ∆ is
written W(µ,∆) and is defined as the maximum work over all
dags that can be generated from µ:

W(µ,∆) = max{W(G) | µ; µ ⇓∆
c {G}}

10 2018/12/21

We take the maximum since the cost semantics is nondeter-
ministic. The definitions of S (µ,∆), W◦(µ,∆) and S ◦(µ,∆)
are similar.

For space reasons, we omit the proofs of two results. The
first is the extension of Lemma 1 to handle programs that have
begun to execute. The second is that the operational semantics
and cost semantics agree on values produced by an expression.
The main complication in showing the correspondence of the
cost and operational semantics is that the value thread[v](u)
is produced by the cost semantics but not the operational
semantics. We therefore show that the cost semantics and the
operational semantics are equivalent up to a relation which
relates the two forms of thread handle.

4.3 Cost Bounds for Prompt Scheduling Principle
The main result of this section is showing that the cost
bounds predicted by the cost semantics can be realized by
the operational semantics in that, given a prompt schedule, a
λip program can be evaluated using the operational semantics
in the number of steps and response time predicted by the
prompt scheduling theorem (Theorem 1).

The key step in showing the bound on the computation
time is showing that a global transition step decreases the
total work by P or the total span by 1. The intuition behind
this proof is the same as that of Theorem 1: the scheduler
will either execute P (foreground) instructions or execute
all ready (foreground) instructions. The proof of this lemma
makes heavy use of a technical lemma which shows that if
e | µ 7→∆

a (δ, e′) | µ] µ′ and e; µ ⇓∆ v; g and e′; µ] µ′ ⇓∆

v′; g′, then g′ is the same as g with its source vertex removed.
That is, the local transition decreases the work and span of
the thread’s dag by at least 1.

Lemma 2. Fix ∆ and suppose that · `· µ : Σ and that e is
well-joined for all a ↪→ (δ, e) ∈ µ. If r; µ 7→glo r′; µ′ using a
prompt scheduling policy, then

1. W(µ′,∆) ≤ W(µ,∆)
2. S (µ′,∆) ≤ S (µ,∆)
3. W(µ,∆) −W(µ′,∆) ≥ P or S (µ,∆) − S (µ′,∆) ≥ 1
4. W◦(µ′,∆) ≤ W◦(µ,∆)
5. S ◦(µ′,∆) ≤ S ◦(µ,∆)
6. W◦(µ,∆)−W◦(µ′,∆) ≥ P or S ◦(µ,∆)− S ◦(µ′,∆) ≥ r′ − r.

Proof. See the companion technical report [?]. �

The proof of the response time and computation time
bounds is then straightforward.

Theorem 3. Fix ∆ and let e be such that · `· e : τ@B.
Suppose e; ∅ ⇓∆ v; g If 0; a ↪→ (0, e) 7→T

glo
r; µ using a

prompt scheduling policy and µ final, then T ≤ W(g)
P + S (g)

and r ≤ D(g) W◦(g)
P + S ◦(g).

Proof. Let µ0 = a ↪→ (0, e) and µT = µ and r0 = 0 and rT = r.
We have a sequence 0; µ0 7→glo r1; µ1 7→glo . . . 7→glo
rT ; µT .

For each i, let Wi = W(µi,∆) (and similar for S i, W◦i and
S ◦i . Note that W0 = W(g) (and similar for S , W◦, S ◦) and that
WT = S T = W◦T = S ◦T = 0.

By Lemma 12 and preservation of well-joinedness,

W0

P
+ S 0 ≥ 1 +

W1

P
+ S 1 ≥ · · · ≥ 1 +

WT

P
+ S T = 1

This immediately gives W0
P + S 0 ≥ T .

Let D = D(g). For each i, consider the quantity D W◦i
P +

S ◦i + ri. Note that for i = 0, D W◦i
P + S ◦i + ri = D W◦(g)

P + S ◦(g)
and for i = T , D W◦i

P +S ◦i +ri = r. When ri; µi 7→glo ri+1; µi+1,
by Lemma 12, either

1. W◦i − W◦i+1 ≥ P and ri+1 − ri = |RFB(µi)| ≤ D (the last
inequality is by definition of D) or

2. S ◦i − S ◦i+1 ≥ |RFB(µi)| and ri+1 − ri = |RFB(µi)|

In both cases, the quantity above decreases or remains the
same, so r ≤ D(g) W◦0

P + S ◦0. �

5. Implementation and Evaluation
The operational semantics (Section 4) specifies an implemen-
tation at the level of threads and scheduling decisions. To re-
alize the semantics in practice, we must implement the global
scheduling step by giving a prompt scheduling algorithm.
In order to approximate the operational semantics, which
reschedules at each step, it is necessary to perform some
preemption, using periodic interrupts, so that low-priority
threads can be switched out for high-priority threads.

Next, prompt scheduling requires that, whenever the sched-
uler runs, it maps high-priority threads onto the available pro-
cessors, followed by low-priority threads if any processors
remain. A naı̈ve implementation could use a global priority
queue, but this would not scale beyond just a few processors
due to the cost of synchronization at the queue. A realis-
tic implementation therefore would have to distribute the
queues. There are many ways to achieve this. In this paper,
we build on a recently proposed variant of the work-stealing
algorithm [2]. In our algorithm, each processor has a private
priority queue and a public communication cell, a mailbox, to
which other processors can send threads. At periodic intervals,
each processor attempts to send, or deal, a thread to a random
processor, in priority order, by atomically writing into the
target processor’s mailbox. Each processor then checks its
own queue and mailbox and begins working on the highest-
priority task available. Generalizations of work stealing to
support priorities have been considered before [34] but these
algorithms are not preemptive.

5.1 Implementation
We implemented the basic primitives of our formal language
λip as a Standard ML library, and implemented the preemptive

11 2018/12/21

priority-based work stealing algorithm described above by
building on an existing parallel extension [57, 58] of the
MLton [44] compiler for Standard ML. We have not extended
SML’s type system to implement λip’s temporal type system
because this is less essential for the performance analysis.

5.2 Experimental Setup
The experiments were performed on a 48-core machine
with 125GB of memory and 2.1 GHz AMD CPUs running
Ubuntu 16.04. To account for inherent noise in the data, we
performed each run between 10 and 20 times and each data
point represents the average over the runs. Through empirical
analysis, we found that interrupt intervals in the range of 1-25
milliseconds lead to the best throughput and responsiveness.
For the results reported in this paper, we use a 5ms interval.

Measuring Responsiveness. Empirical analysis of interac-
tive programs can be challenging because it requires isolating
the completion time of potentially small pieces of computa-
tion (such as an interaction with a user) within an application.
For example, prior work proposed operating system modifica-
tions [21]. We use a simpler approach. In our experiments, a
driver program, written in C, reads a sequence of interactive
events (e.g. mouse clicks, key presses) from a trace file. It
simulates these events, records the response of the program
to the event and measures the response time.

5.3 Quantitative Benchmarks
Fibonacci-Terminal. This benchmark performs a parallel
Fibonacci computation, specifically fib(45) (to stand in for
an intensive parallel computation), and simultaneously per-
forms user interaction via a terminal. The user interaction
consists of a loop that repeatedly reads a name from standard
input, and immediately greets the user by name. To ensure
responsiveness, the benchmark designates the terminal com-
putation as high priority and the Fibonacci computation as
low priority. The benchmark terminates once the fib(45)
computation completes.

To assess the responsiveness of the Fibonacci-terminal
benchmark, we run it while varying the number of processors
between 1 and 30 and the rate of interaction between 1 and
50 interactions per second5. In the experiments, the driver
program sends a name on standard input at uniform intervals
to match the desired number of interactions per second. It then
waits for the response from the program. The time between
the input and the response is the response time. We measure
the response time for each input and take the average.

The left plot in Figure 18 shows the speedup (with re-
spect to the sequential version of Fibonacci) of the Fibonacci
computation as a function of the number of processors un-
der varying interaction rates. For comparison, the figure also
shows (in blue squares) the speedup of a standard work steal-
ing scheduler running a Fibonacci computation only (with

5 Due to a technical limitation of the thread-pinning library used by the
runtime, we were unable to use all of the system’s cores.

0 5 10 15 20 25 30

0
5

1
0

2
0

3
0

Processors

S
p

e
e

d
u

p

1 ips

25 ips

50 ips

No interaction

0 10 20 30 40 50

0
2

4
6

8
1

0

Interactions per second

A
v
e

ra
g

e
 r

e
s
p

o
n

s
e

 t
im

e
 (

m
s
)

1 proc

16 procs

30 procs

Figure 16. Speedup (l) and response time (r) for the
Fibonacci-terminal benchmark.

0 5 10 15 20 25 30

0
5

1
0

2
0

3
0

Processors

S
p
e
e
d
u
p

1 ips

25 ips

50 ips

No interaction

0 10 20 30 40 50

0
2
0

4
0

6
0

8
0

Interactions per second

A
v
e
ra

g
e
 r

e
s
p
o
n
s
e
 t
im

e
 (

m
s
)

1 proc

16 procs

30 procs

Figure 17. Speedup (l) and response time (r) for the
Fibonacci-network benchmark.

no interaction). The results show that interaction decreases
the speedup, but not significantly. This is consistent with
our bounds because interaction, which is high-priority, takes
precedence over the low-priority Fibonacci computation. The
right plot in Figure 18 shows the average response time as
a function of the number of interactions per second. The
average response time remains relatively flat even as the
interaction rate increases, which is expected because each
interaction involves little work (just echoing the input name).
We furthermore see that increasing the number of processors
causes an increase in the response time up to a point. This
seems counterintuitive but is likely caused by migrations of
high-priority computations to other processors via a deal,
which can increase response time compared to the local han-
dling of the same interaction. Overall, average response time
remains very good, staying well under 10 milliseconds.

Fibonacci-Network. Our next benchmark has the same
structure as the Fibonacci-terminal but involves more com-
plex interaction. The benchmark opens a socket and listens
for incoming connections. When a connection is received,
it starts an interactive channel, implemented as a new high-
priority thread. The interaction on each channel proceeds as
in Terminal echo above, until the program terminates or the
client disconnects. Because there can be many channels, each
of which is handled by a thread, active at the same time, this
benchmark tests the case where there are many interactive
computations, all of which demand responsiveness.

In this benchmark, the driver program opens a number
of network connections, and sends a line over each at one-
second intervals, staggered so that the messages arrive at uni-
form intervals. The number of network connections opened

12 2018/12/21

0.5 1.0 1.5 2.0

0
4
0
0

8
0
0

1
2
0
0

Interactions per second

A
v
g
.
c
o
m

p
u
ta

ti
o
n
 t
im

e
 (

m
s
)

procs=30

0.5 1.0 1.5 2.0

0
.0

1
.0

2
.0

Interactions per second

A
v
e
ra

g
e
 r

e
s
p
o
n
s
e
 t
im

e
 (

m
s
)

procs=30

Figure 18. The effect of interaction rate for the Fibonacci
server on: (l) Computation time (r) Response time.

0.5 1.0 1.5 2.0

0
4
0
0

8
0
0

1
2
0
0

Clicks per second

A
v
g
.
c
o
m

p
u
ta

ti
o
n
 t
im

e
 (

m
s
)

procs=30

0.5 1.0 1.5 2.0

0
5

1
0

1
5

2
0

2
5

Clicks per second

A
ve

ra
g
e
 r

e
s
p
o
n
s
e
 t
im

e
 (

m
s
)

procs=30

Figure 19. The effect of interaction rate for the convex hull
server on: (l) Computation time (r) Response time.

is the desired number of interactions per second. Figure 19
shows the results. We see again that the Fibonacci computa-
tion scales well with respect to the sequential baseline with
varying levels of interaction. As above, the one-processor
case shows the best responsiveness and the average response
times are good, under 100 milliseconds.

Fibonacci Server. In the above benchmarks, the interactive
and computational parts of the benchmark did not interact,
apart from the fact that they run together. Our next benchmark,
the “Fibonacci server”, simulates an application that receives
queries, each of which requires performing some compute-
intensive task. An interactive, high-priority loop waits for the
user to enter a number on the console. When a number n is
entered, the loop starts the computation of the nth Fibonacci
number in a separate low-priority thread that also prints the
result on the console; the loop continues to listen to further
inputs immediately after starting the Fibonacci computation.

To assess this benchmark, our driver program runs the
benchmark with a trace that inputs the numbers 41 to 45
in increasing order. The driver calculates the response time
as the time between the input and the next prompt, and
the computation time as the time taken to compute each
Fibonacci number. The rate of interaction varies from 0.5
to 2.0 inputs per second. Figure 20 shows the results. As
expected, both numbers begin to increase as the interaction
becomes frequent enough that the Fibonacci computations
overlap. The computations still complete in a timely matter,
and the program remains responsive, with average response
times not exceeding several milliseconds.

Interactive Convex Hull. Our interactive convex hull
benchmark maintains the convex hull of a set of 2D points,

as a user inserts new points by clicking on the screen. A high-
priority loop polls the mouse and, every time the user adds a
point, starts a low-priority thread that computes and draws
the new convex hull. In our experiments, the driver program
simulates five clicks at random points on the screen at regular
intervals and calculates the response time for each click as
the time between the click and drawing of the point, and
the computation time as the time to compute each hull. So
that the hull computations are not trivial, each one includes
1,000,000 random points that are chosen at initialization.
Figure 21 shows the results. As with the Fibonacci server,
the computation times and response times increase with the
interaction rate; this is expected because increased interaction
rate causes multiple convex hull computations to overlap with
each other and with the interaction. The program still remains
responsive to clicks, with response times under 30ms.

5.4 Qualitative Benchmarks
In addition to the relatively simple benchmarks above, we
considered more sophisticated benchmarks. These bench-
marks are more difficult to evaluate quantitatively, but we
assess their performance qualitatively by their usability.

Web Server. A high-priority loop listens for connections
and starts a new high-priority thread for each one. HTTP
requests are logged, and a low-priority thread periodically
performs analytics on the log. We simulate a large analyt-
ics computation by computing a large Fibonacci number in
parallel. As expected, we observe that the background compu-
tations do not interfere with the handling of HTTP requests.

Photo Viewer. Our photo viewer benchmark allows the
user to navigate through a folder of JPEG images, either by
scrolling or jumping to an image. To ensure smooth scrolling,
the user interaction is high priority, and the viewer decodes
the next several images in the background so they will be
ready when requested. If the user selects an image that has
not yet been decoded, it is decoded in the foreground and
displayed. Our experience shows that the viewer is responsive,
indicating that the decoding is proceeding quickly enough to
be effective, and that the background decoding processes do
not hamper the high-priority interaction.

Music Server. A streaming music server listens for network
connections and spawns a thread for each new client. The
client requests a music file from the server, which the server
streams over the connection until the end of the file is reached.
Some clients (perhaps those paying for a higher level of
service) are designated high-priority, and are handled by high-
priority threads; the remaining clients receive low priority.
We tested the server with a relatively small number of clients
(up to 10, both low and high priority), and in our experience,
it maintains a high quality of service for all clients.

13 2018/12/21

6. Related Work
We discussed the most closely related work in the main body
of the paper. Here we take a broader perspective and briefly
describe more remotely related work.

Parallel Computing. Much work has been done on paral-
lel computing with dynamically scheduled, fine-grained and
cooperative threads since the 1970s [5, 10, 17, 18, 25, 26,
30, 35–37, 39, 41, 42, 50]. Nearly all of this work focuses
on maximizing throughput in compute-intensive applications
and relies on cooperative threading. This paper shows that
the language abstractions, dag-based cost models [13, 28, 38]
and cost semantics [8, 9, 29], can be extended to include com-
petitive threading, where threads are scheduled preemptively.

Type Systems for Staged Computation. The type system
of λip is based on that of Davies [19] for binding time
analysis, which is derived from linear temporal logic. This
work influenced much followup work on metaprogramming
and staged computation [40, 47, 49, 60]. These systems allow
a computation at a stage to create and manipulate, but not
eliminate, a computation in a later stage. For example, a
stage 1 computation can create a stage 2 computation as a
“black box” but cannot inspect that computation. We use a
two-stage variant of the© modality of Davies [19], similar
to that of Feltman et al. [23], which inspires some of our
notation. One important difference between stages and the
priorities of our work is that, in our work, computations
belonging to different stages (priorities) can be evaluated
concurrently, whereas in staged computations, evaluation
proceeds monotonically in stage order.

Cost Semantics. The idea of using a cost semantics to
reason about efficiency of programs goes back to the early
1990s [51, 53] and has since been applied in a number of
contexts [8, 9, 43, 53, 54, 58]. Our approach builds directly
on the work of Blelloch and Greiner [9] and Spoonhower
et al. [58], who use computation graphs represented as dags
(directed acyclic graphs) to reason about time and space in
functional parallel programs. These cost models, however,
consider cooperatively threaded parallelism only.

Scheduling. Our prompt-scheduling results generalize
Brent’s classic result for scheduling parallel computa-
tions [15]. Since Brent’s result, much work has been done
on scheduling. Ullman [61], Brent [15], and Eager et al. [20]
established the hardness of optimal scheduling and the greedy
scheduling principle. These early results have led to many
more algorithms [1–3, 13, 16, 22, 26, 30, 48]. More recent
papers showed that priority-based schedulers can improve per-
formance in practice [34, 62, 63]. Our weighted-dag model
builds on the model of Muller and Acar [45], who developed
an algorithm for scheduling blocking parallel programs to
hide latency, but did not consider responsiveness.

Scheduling is also studied extensively in the operating sys-
tems community (a book by Silberschatz et al. [55] presents

a comprehensive overview). There has been significant in-
terest in making operating systems work well on multicore
machines [6, 14]. The focus, however, has been on reducing
contention within the OS and, as in the high-performance
computing community, distributing resources to jobs so that
they can run effectively. Scheduling within a job, which is
our main concern, is less central to systems research.

There has been a great deal of work on scheduling for re-
sponsiveness in queuing theory (Harchol-Balter [31] presents
a comprehensive overview). This line of work assumes a con-
tinuous stream of independent jobs arriving for processing
according to some stochastic process. Such arrival assump-
tions do not quite fit the parallel computing model, where
work is created by a program. In queuing theory, each job is
generally processed by a single processor (or “server”) that
decides at every point in time which of the current jobs to run.
This work, however, typically assumes jobs to be sequential.

Scheduling is also an important concern in real-time com-
puting. Most of this work considers highly structured (usually
synchronous) sequential computations. Saifullah et al. [52]
consider scheduling a set of real-time tasks where each task
is a parallel computation represented by a parallel dag. Their
algorithm infers for each vertex in the dag a deadline and
schedules the vertices according to their deadlines. Their
work assumes that the tasks are independent and are known
in advance, as is the dag structure.

7. Conclusion
This paper takes a step toward uniting cooperative and com-
petitive threading. To this end, we consider a programming
language with fork-join parallelism, interaction, and priori-
ties, and extend the classic cost models for cooperative thread-
ing based on cost graphs and cost semantics to bound both
run-time and responsiveness. Our implementation and experi-
ments suggest that the approach can be made practical. We
leave a number of questions to future work, including the ex-
tension of our techniques to multiple priorities (instead of the
two priorities we consider), the development of an efficient
scheduling algorithm that implements the prompt-scheduling
principle, and a more detailed evaluation.

Acknowledgments
This research is partially supported by grants from the Na-
tional Science Foundation (CCF-1320563, CCF-1408940,
CCF-1629444) and European Research Council (grant ERC-
2012-StG-308246), and by a gift from Microsoft Research.
We thank Tim Harris and Ziv Scully for their feedback.

References
[1] U. A. Acar, G. E. Blelloch, and R. D. Blumofe. The data

locality of work stealing. Theory of Computing Systems
(TOCS), 35(3):321–347, 2002.

14 2018/12/21

[2] U. A. Acar, A. Charguéraud, and M. Rainey. Scheduling
parallel programs by work stealing with private deques. In
PPoPP ’13, 2013.

[3] U. A. Acar, A. Charguéraud, and M. Rainey. Oracle-guided
scheduling for controlling granularity in implicitly parallel
languages. Journal of Functional Programming (JFP), 26:e23,
2016.

[4] N. S. Arora, R. D. Blumofe, and C. G. Plaxton. Thread
scheduling for multiprogrammed multiprocessors. Theory of
Computing Systems, 34(2):115–144, 2001.

[5] Arvind and K. P. Gostelow. The Id report: An asychronous
language and computing machine. Technical Report TR-114,
Department of Information and Computer Science, University
of California, Irvine, Sept. 1978.

[6] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs,
S. Peter, T. Roscoe, A. Schüpbach, and A. Singhania. The
multikernel: A new OS architecture for scalable multicore
systems. In Proceedings of the ACM SIGOPS 22nd Symposium
on Operating Systems Principles, SOSP ’09, pages 29–44,
2009.

[7] G. Blake, R. G. Dreslinski, T. Mudge, and K. Flautner. Evo-
lution of thread-level parallelism in desktop applications. In
Proceedings of the 37th Annual International Symposium on
Computer Architecture, ISCA ’10, pages 302–313, 2010.

[8] G. Blelloch and J. Greiner. Parallelism in sequential functional
languages. In Proceedings of the 7th International Confer-
ence on Functional Programming Languages and Computer
Architecture, FPCA ’95, pages 226–237. ACM, 1995.

[9] G. E. Blelloch and J. Greiner. A provable time and space
efficient implementation of NESL. In Proceedings of the
1st ACM SIGPLAN International Conference on Functional
Programming, pages 213–225. ACM, 1996.

[10] G. E. Blelloch, J. C. Hardwick, J. Sipelstein, M. Zagha, and
S. Chatterjee. Implementation of a portable nested data-parallel
language. J. Parallel Distrib. Comput., 21(1):4–14, 1994.

[11] G. E. Blelloch, P. B. Gibbons, and Y. Matias. Provably efficient
scheduling for languages with fine-grained parallelism. J. ACM,
46:281–321, Mar. 1999.

[12] R. D. Blumofe and C. E. Leiserson. Space-efficient scheduling
of multithreaded computations. SIAM Journal on Computing,
27(1):202–229, 1998.

[13] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded
computations by work stealing. J. ACM, 46:720–748, Sept.
1999.

[14] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, F. Kaashoek,
R. Morris, A. Pesterev, L. Stein, M. Wu, Y. Dai, Y. Zhang,
and Z. Zhang. Corey: An operating system for many cores.
In Proceedings of the 8th USENIX Conference on Operating
Systems Design and Implementation, pages 43–57, 2008.

[15] R. P. Brent. The parallel evaluation of general arithmetic
expressions. J. ACM, 21(2):201–206, 1974.

[16] F. W. Burton and M. R. Sleep. Executing functional programs
on a virtual tree of processors. In Functional Programming
Languages and Computer Architecture (FPCA ’81), pages 187–
194. ACM Press, Oct. 1981.

[17] M. M. T. Chakravarty, R. Leshchinskiy, S. L. Peyton Jones,
G. Keller, and S. Marlow. Data parallel Haskell: a status report.
In Proceedings of the POPL 2007 Workshop on Declarative
Aspects of Multicore Programming, DAMP 2007, Nice, France,
January 16, 2007, pages 10–18, 2007.

[18] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar. X10: an object-
oriented approach to non-uniform cluster computing. In
Proceedings of the 20th annual ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and
applications, OOPSLA ’05, pages 519–538. ACM, 2005.

[19] R. Davies. A temporal-logic approach to binding-time analysis.
In LICS, pages 184–195, 1996.

[20] D. L. Eager, J. Zahorjan, and E. D. Lazowska. Speedup
versus efficiency in parallel systems. IEEE Transactions on
Computing, 38(3):408–423, 1989.

[21] Y. Endo, Z. Wang, J. B. Chen, and M. Seltzer. Using latency to
evaluate interactive system performance. In Proceedings of the
Second USENIX Symposium on Operating Systems Design and
Implementation, OSDI ’96, pages 185–199, New York, NY,
USA, 1996. ACM.

[22] D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn. Parallel
job scheduling - A status report. In Job Scheduling Strategies
for Parallel Processing (JSSPP), 10th International Workshop,
pages 1–16, 2004.

[23] N. Feltman, C. Angiuli, U. A. Acar, and K. Fatahalian. Auto-
matically splitting a two-stage lambda calculus. In Proceedings
of the 25 European Symposium on Programming, ESOP, pages
255–281, 2016.

[24] K. Flautner, R. Uhlig, S. Reinhardt, and T. Mudge. Thread-
level parallelism and interactive performance of desktop appli-
cations. In Proceedings of the Ninth International Conference
on Architectural Support for Programming Languages and
Operating Systems, ASPLOS IX, pages 129–138, 2000.

[25] M. Fluet, M. Rainey, J. Reppy, and A. Shaw. Implicitly
threaded parallelism in Manticore. Journal of Functional
Programming, 20(5-6):1–40, 2011.

[26] M. Frigo, C. E. Leiserson, and K. H. Randall. The implemen-
tation of the Cilk-5 multithreaded language. In PLDI, pages
212–223, 1998.

[27] C. Gao, A. Gutierrez, R. G. Dreslinski, T. Mudge, K. Flautner,
and G. Blake. A study of thread level parallelism on mobile
devices. In Performance Analysis of Systems and Software
(ISPASS), 2014 IEEE International Symposium on, pages 126–
127, March 2014.

[28] R. L. Graham. Bounds on multiprocessing timing anomalies.
SIAM Journal on Applied Mathematics, 17(2):416–429, 1969.

[29] J. Greiner and G. E. Blelloch. A provably time-efficient parallel
implementation of full speculation. ACM Transactions on
Programming Languages and Systems, 21(2):240–285, Mar.
1999.

[30] R. H. Halstead. Multilisp: a language for concurrent symbolic
computation. ACM Transactions on Programming Languages
and Systems, 7:501–538, 1985.

[31] M. Harchol-Balter. Performance Modeling and Design of
Computer Systems: Queueing Theory in Action. Cambridge

15 2018/12/21

University Press, 2013.

[32] R. Harper. Practical Foundations for Programming Languages.
Cambridge University Press, New York, NY, USA, 2012.

[33] C. Hauser, C. Jacobi, M. Theimer, B. Welch, and M. Weiser.
Using threads in interactive systems: A case study. In Proceed-
ings of the Fourteenth ACM Symposium on Operating Systems
Principles, SOSP ’93, pages 94–105, New York, NY, USA,
1993. ACM.

[34] S. Imam and V. Sarkar. Load balancing prioritized tasks
via work-stealing. In Euro-Par 2015: Parallel Processing
- 21st International Conference on Parallel and Distributed
Computing, pages 222–234, 2015.

[35] S. M. Imam and V. Sarkar. Habanero-Java library: a Java 8
framework for multicore programming. In 2014 International
Conference on Principles and Practices of Programming on the
Java Platform Virtual Machines, Languages and Tools, PPPJ
’14, pages 75–86, 2014.

[36] Intel. Intel threading building blocks, 2011. https://www.
threadingbuildingblocks.org/.

[37] S. Jagannathan, A. Navabi, K. Sivaramakrishnan, and L. Ziarek.
The design rationale for Multi-MLton. In ML ’10: Proceedings
of the ACM SIGPLAN Workshop on ML. ACM, 2010.

[38] J. Jaja. An introduction to parallel algorithms. Addison Wesley
Longman Publishing Company, 1992.

[39] G. Keller, M. M. Chakravarty, R. Leshchinskiy, S. Peyton Jones,
and B. Lippmeier. Regular, shape-polymorphic, parallel arrays
in Haskell. In Proceedings of the 15th ACM SIGPLAN
international conference on Functional programming, ICFP
’10, pages 261–272, 2010.

[40] T. B. Knoblock and E. Ruf. Data specialization. In Proceedings
of the ACM SIGPLAN 1996 Conference on Programming
Language Design and Implementation, PLDI ’96, pages 215–
225, 1996.

[41] D. Lea. A Java fork/join framework. In Proceedings of the
ACM 2000 conference on Java Grande, JAVA ’00, pages 36–43,
2000.

[42] D. Leijen, W. Schulte, and S. Burckhardt. The design of a task
parallel library. In Proceedings of the 24th ACM SIGPLAN con-
ference on Object Oriented Programming Systems Languages
and Applications, OOPSLA ’09, pages 227–242, 2009.

[43] R. Ley-Wild, U. A. Acar, and M. Fluet. A cost semantics for
self-adjusting computation. In Proceedings of the 26th Annual
ACM Symposium on Principles of Programming Languages,
POPL ’09, 2009.

[44] MLton. MLton web site. http://www.mlton.org.

[45] S. K. Muller and U. A. Acar. Latency-hiding work steal-
ing: Scheduling interacting parallel computations with work
stealing. In Proceedings of the 28th ACM Symposium on Par-
allelism in Algorithms and Architectures, SPAA ’16, pages
71–82, 2016.

[46] T. Murphy, VII, K. Crary, R. Harper, and F. Pfenning. A
symmetric modal lambda calculus for distributed computing.
In Proceedings of the 19th IEEE Symposium on Logic in
Computer Science (LICS), pages 286–295. IEEE Press, 2004.

[47] A. Nanevski and F. Pfenning. Staged computation with names
and necessity. J. Funct. Program., 15(5):893–939, 2005.

[48] G. J. Narlikar and G. E. Blelloch. Space-efficient scheduling
of nested parallelism. ACM Transactions on Programming
Languages and Systems, 21, 1999.

[49] F. Pfenning and R. Davies. A judgmental reconstruction of
modal logic. Mathematical Structures in Computer Science,
11:511–540, 2001.

[50] R. Raghunathan, S. K. Muller, U. A. Acar, and G. Blelloch.
Hierarchical memory management for parallel programs. In
Proceedings of the 21st ACM SIGPLAN International Confer-
ence on Functional Programming, ICFP 2016, pages 392–406,
New York, NY, USA, 2016. ACM.

[51] M. Rosendahl. Automatic complexity analysis. In FPCA ’89:
Functional Programming Languages and Computer Architec-
ture, pages 144–156. ACM, 1989.

[52] A. Saifullah, D. Ferry, J. Li, K. Agrawal, C. Lu, and C. D. Gill.
Parallel real-time scheduling of DAGs. IEEE Trans. Parallel
Distrib. Syst., 25(12):3242–3252, 2014.

[53] D. Sands. Complexity analysis for a lazy higher-order language.
In ESOP ’90: Proceedings of the 3rd European Symposium on
Programming, pages 361–376, London, UK, 1990. Springer-
Verlag.

[54] P. M. Sansom and S. L. Peyton Jones. Time and space profiling
for non-strict, higher-order functional languages. In Principles
of Programming Languages, pages 355–366, 1995.

[55] A. Silberschatz, P. B. Galvin, and G. Gagne. Operating system
concepts (7. ed.). Wiley, 2005.

[56] D. C. Smith, C. Irby, R. Kimball, B. Verplank, and E. Harslem.
Designing the star user interface. BYTE Magazine, 7(4):242–
282, 1982.

[57] D. Spoonhower. Scheduling Deterministic Parallel Programs.
PhD thesis, Carnegie Mellon University, Pittsburgh, PA, USA,
2009.

[58] D. Spoonhower, G. E. Blelloch, R. Harper, and P. B. Gibbons.
Space profiling for parallel functional programs. In Interna-
tional Conference on Functional Programming, 2008.

[59] D. C. Swinehart, P. T. Zellweger, R. J. Beach, and R. B.
Hagmann. A structural view of the cedar programming
environment. ACM Trans. Program. Lang. Syst., 8(4):419–
490, Aug. 1986.

[60] W. Taha and T. Sheard. MetaML and multi-stage programming
with explicit annotations. Theoretical Computer Science, 248
(1):211 – 242, 2000.

[61] J. Ullman. NP-complete scheduling problems. Journal of
Computer and System Sciences, 10(3):384 – 393, 1975.

[62] M. Wimmer, D. Cederman, J. L. Träff, and P. Tsigas. Work-
stealing with configurable scheduling strategies. In Proceed-
ings of the 18th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP ’13, pages 315–316,
2013.

[63] M. Wimmer, F. Versaci, J. L. Träff, D. Cederman, and P. Tsigas.
Data structures for task-based priority scheduling. In Proceed-
ings of the 19th ACM SIGPLAN Symposium on Principles and

16 2018/12/21

Practice of Parallel Programming, PPoPP ’14, pages 379–380, 2014.

17 2018/12/21

