
Latency-Hiding Work Stealing

Scheduling Interacting Parallel Computations with Work Stealing

Stefan K. Muller
Carnegie Mellon University

Pittsburgh, PA, USA

smuller@cs.cmu.edu

Umut A. Acar
Carnegie Mellon University

Pittsburgh, PA, USA

umut@cs.cmu.edu

With the rise of multicore computers, parallel applications
no longer consist solely of computational, batch workloads,
but also include applications that may, for example, take
input from a user, access secondary storage or the network,
or perform remote procedure calls. Such operations can in-
cur substantial latency, requiring the program to wait for
a response. In the current state of the art, the theoretical
models of parallelism and parallel scheduling algorithms do
not account for latency.

In this work, we extend the dag (Directed Acyclic Graph)
model for parallelism to account for latency and present a
work-stealing algorithm that hides latency to improve per-
formance. This algorithm allows user-level threads to sus-
pend without blocking the underlying worker, usually a sys-
tem thread. When a user-level thread suspends, the algo-
rithm switches to another thread. Using extensions of ex-
isting techniques as well as new technical devices, we bound
the running time of our scheduler on a parallel computation.
We also briefly present a prototype implementation of the
algorithm and some preliminary empirical findings.

1. INTRODUCTION
Recent hardware advances have brought shared-memory

parallelism to the mainstream. These advances have moti-
vated significant research and development in programming
languages and language extensions for parallelism, including
OpenMP, Cilk [15], Fork/Join Java [22], Habanero Java [19],
TPL [23], TBB [20], X10 [10], parallel ML [14], and paral-
lel Haskell [21], many of which have had significant impact.
In these systems, the programmer expresses parallelism at
an abstract level without directly specifying how to create
threads and map them onto processors.

In such parallel languages, the runtime system creates the
user-level threads, which we simply refer to as threads (they
are also known as tasks, strands, sparks, etc.), and relies on
a scheduler to map the threads onto the processors. The
scheduler does not require a priori knowledge of the thread
structure—it works online as part of the runtime system.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SPAA ’16, July 11-13, 2016, Pacific Grove, CA, USA

c© 2016 ACM. ISBN 978-1-4503-4210-0/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2935764.2935793

The efficiency and performance of a parallel language cru-
cially depends on the scheduler. Many theoretical results
have been shown for parallel scheduling, including bounds
on runtime and space use [7, 16, 26] as well as locality [1, 6].
Furthermore, the schedulers have been shown to be very
effective in practice [15, 2, 30].

The focus of both the theory and experimental analysis
of parallel scheduling has been on scheduling computations
where threads, once started, are not expected to perform
latency-incurring operations, such as waiting for a request
from a client or waiting for a response from a remote ma-
chine. Popular parallel scheduling algorithms such as work
stealing are therefore non-preemptive: they run a thread to
completion, never changing to another thread without com-
pleting one. This is generally adequate in the traditional ap-
plications of parallelism, such as in high-performance com-
puting, where workloads are heavily computational. In such
workloads, operations rarely incur latency and thus tech-
niques such as busy-waiting or blocking can be used without
significantly harming performance.

Modern workloads of multicore and parallel hardware,
however, are not solely computational but also include ap-
plications that communicate with external agents such as
the user, the file system, a remote client or server, etc. For
example, a parallel server may communicate with clients to
obtain requests and fulfill them. Since the client may not
respond to a request immediately, threads in such an ap-
plication can incur latency. In such applications, allowing
the scheduler to preempt the latency-bound thread and run
another thread that can perform useful work could greatly
improve performance by hiding the latency.

Latency hiding is a classic technique performed by operat-
ing system (OS) schedulers. Silbershatz and Galvin’s book
presents a comprehensive review of these techniques [27].
These techniques, however, are unlikely to carry over to
parallel scheduling of user-level threads for several reasons.
First, a typical parallel scheduler must carefully control the
order in which threads are executed, since it is likely schedul-
ing interdependent threads, while a typical OS scheduler
schedules independent jobs which are less sensitive to such
ordering. Second, OS schedulers manage a relatively small
number of jobs (in the hundreds or perhaps thousands),
whereas a typical parallel scheduler will have to manage
many more (millions or more) threads. Third, operating sys-
tem schedulers can use a relatively large scheduling quantum
(granularity), whereas parallel schedulers usually schedule
fine-grained threads that can perform tiny amounts of work.

In this paper, we propose a model that represents math-

ematically the behavior of parallel computations that can
incur latency and develop a latency-hiding scheduling algo-
rithm for such computations. With our scheduling algo-
rithm, a user-level thread that incurs latency can suspend,
allowing another thread to run in its place.

Our model (Section 2) extends a standard model of par-
allel computations as Directed Acyclic Graphs, or dags, by
allowing edges of the dag to include non-unit weights that
represent the latency incurred by an instruction. Compu-
tational instructions (e.g., integer or floating point arith-
metic) incur no latency. This is represented with unit-weight
or light edges. Operations that communicate, such as I/O
operations, remote procedure calls, or messaging primitives
can incur latency, which is represented with non-unit weight
(heavy) edges. We define the span or the depth of such a
weighted computation dag to include the latency, by cal-
culating the longest weighted path in the dag. As in the
traditional model, we use the term work to refer to the total
computational work of the dag, excluding edge weights.

Our scheduling algorithm (Section 3), like traditional work-
stealing algorithms, uses deques (double-ended queues) to
store the ready threads to be executed. Instead of one
deque per worker, however, our algorithm can use many de-
ques per worker to keep track of suspended threads which
were switched out in favor of other work. Our algorithm
is online and does not require knowledge of the dag or the
edge weights (latencies) but requires knowing which edges
are heavy and which edges are light.

To analyze the efficiency of the algorithm, in addition to
the traditional notions of work and span, we rely on a notion
of suspension width, which measures the number of heavy
edges that cross a source-sink partition of the computation
dag. Suspension width is related to the notion of s-t cuts in
flow algorithms.

For a dag with W work, S span and U ≥ 1 suspension
width, we prove that the latency-hiding work-stealing algo-
rithm yields a P -processor runtime bound of

O

(

W

P
+ SU(1 + lgU)

)

,

amortized and in expectation (Section 3). When U = 0, all
edges are light (with weight 1). In this case, our algorithm
behaves identically to standard work stealing, achieving the
bound O

(

W
P

+ S
)

. We note that, in our bounds, work W

does not include latency, indicating that our scheduler is
able to avoid incurring any latency that does not fall on the
critical path (S) of the computation.

We have completed a prototype implementation of the
algorithm and obtained some preliminary empirical results
(Section 6). These results show that, for computations with
significant latency, latency-hiding work stealing can improve
speedups compared to the standard work-stealing algorithm,
which does not hide latency. Our evaluation also suggests
that the factors involving U in the runtime bound might not
hinder practical speedups and that our algorithm can handle
computations with large numbers of suspended threads.

2. WEIGHTED DAG MODEL
We extend the traditional Directed Acyclic Graph (dag)

model of parallel computations to account for computations
that may suspend. Throughout the paper, we mostly follow
the terminology of Arora, Blumofe, and Plaxton [5].

fork

x = input() x = 2 * x

y = 6 * 7

x + y

δ

Figure 1: An example weighted dag

We represent a multithreaded/parallel computation with
a weighted dag. Vertices of the dag represent single instruc-
tions of a thread, each of which is assumed to perform one
step of work. Operations that require more than one step
of work can be represented by a chain of instructions. An
edge from u to v indicates a dependence between instruc-
tions u and v, requiring u to be executed before v. In a
multithreaded or parallel program, an edge from u to v can
originate from three conditions: (1) u comes before v within
a single program thread; (2) u spawns a new thread whose
first instruction is v, (3) the threads containing u and v syn-
chronize, e.g., via a join, requiring u to execute before v. We
order the edges in the dag such that when a vertex u spawns
a new thread whose first instruction is v, v is the right child
and the other child, which is the continuation of u in the
same thread, is the left child.

We label each edge with its latency, a positive integer
weight, and write (u, v, δ) for an edge from u to v with
weight δ. If δ = 1, then we refer to the edge as a light
edge. In this case, there is no latency between u and v, and
thus v may be scheduled and use the results of u immedi-
ately after u executes. If δ > 1, then we refer to the edge as
a heavy edge. In this case, there is a δ-step latency between
u and v, and v may use the results of u only after δ steps.
Thus v cannot be scheduled to execute for at least δ steps.

As an example, consider a toy parallel program that cre-
ates two threads. The first thread multiplies 6 × 7 and re-
turns the result. The second thread requests an integer x

from the user, doubles x, and returns it. The program then
waits for both threads to complete and adds the returned
values. Since the user may not respond immediately, the
reading of the variable x incurs a latency. Figure 1 shows
the dag for an execution of this program where reading the
input x takes δ steps. Throughout the paper, the weight
of 1 is omitted from light edges, and these are drawn as
thin lines while heavy edges are drawn as thick lines. This
example demonstrates a common use case of the model in
which instructions, like input() of the example, perform a
unit of work and start an operation (a console input, file
read, network operation, etc.) that takes δ − 1 time steps
to complete. Such an operation is easily modeled, as in the
figure, by a vertex whose outgoing edge(s) has/have weight
δ. In the rest of this paper, our examples will be drawn from
this simple form of latency-incurring operation, though the
model might allow for more general forms of latency.

We make several assumptions regarding dags:

• A dag has exactly one root, which has in-degree zero,
and exactly one final vertex, which has out-degree zero.

• The out-degree (number of outgoing edges) of a ver-
tex is at most two, i.e., an instruction may spawn or
synchronize with at most one other thread.

• If vertex v has a heavy incoming edge, i.e., there exists
an edge (u, v, δ) with δ > 1, then v has in-degree 1.

• The dag is deterministic, that is, its structure is in-

dependent of the decisions made by the scheduler. In
the case of weighted dags, this assumption requires
that the latency of an instruction does not depend on
when the instruction is executed.

The first two assumptions are common in the literature. The
third assumption seems to cause no loss of generality, be-
cause a vertex with multiple heavy in-edges can be replaced
with multiple vertices, with edges distributed to meet this
restriction. The final assumption could be relaxed by con-
sidering the set of possible dags and stating time bounds and
other properties in terms of the worst case over all possible
dags, but we do not consider this here.

We say that a vertex is enabled when all of its parents have
executed and it is ready when it is enabled and all latency
requirements expire. Consider a vertex v and let u be the
last parent of v to execute. If the edge (u, v, δ) is light, then v

is enabled and ready immediately after u is executed. If the
edge (u, v, δ) is heavy, then v is enabled immediately after
u is executed, but ready only δ steps after u is executed.
(Note that by the third assumption above, v has only one
heavy in-edge.)

We define the span of a weighted dag to be the longest
weighted path in the dag. If a dag has no heavy edges, then
this reduces to the traditional, unweighted notion of span
(which simply counts the edges along a path). We define
the work of a weighted dag as the total number of vertices
in the dag. The definition of the work is unchanged from the
traditional model—weights do not count toward the work.

To analyze our scheduling algorithm on weighted dags, we
introduce a new measure, U , the suspension width, of a dag.

Definition 1 (Suspension width). Consider a paral-
lel computation represented by a dag G = (V,E) with ver-
tices V and edges E ⊂ V × V × N. Let s be the root vertex
and t be the final vertex of G. Let P be the set of all parti-
tions (S, T) of G (where S⊎T = V and S and T each induce
a connected subdag of G) such that s ∈ S and t ∈ T . We
define the suspension width of G as the maximum number,
over all partitions, of heavy edges that cross the partition.
More precisely,

U = max
(S,T)∈P

|{(u, v, δ) : u ∈ S, v ∈ T, (u, v, δ) ∈ E | δ > 1}| .

The suspension width of a dag is the maximum number of
heavy edges that cross a source-sink partition. This notion
is similar to an s-t cut in flow networks, which inspires our
notation. The main differences are that s-t cuts generally
do not require that the cut induce connected components
and they include all source-to-sink edges, rather than certain
(heavy) edges as we do here.

The suspension width is relevant to scheduling of weighted
dags because it is the maximum number of vertices that can
be suspended at any point during the run of the computa-
tion. To see this, at the end of step i of the execution, let Si

consist of the instructions that have been executed and Ti

consist of the instructions that have not been executed. By
construction, Si ⊎ Ti = V and Si contains the root vertex
and Ti contains the final vertex. The suspended vertices at
the end of step i are exactly those in the set

{v | (u, v, δ) ∈ E, u ∈ Si, v ∈ Ti, δ > 1}

Since each suspended vertex has exactly one in-edge, the
number of suspended vertices is equal to the number of

heavy edges crossing the partition (Si, Ti) which, by defi-
nition is no greater than U .

Offline scheduling problem. Given a dag and a num-
ber P of processors (workers), a schedule is an assignment
of vertices of the dag to worker-step pairs (p, i), such that
each worker executes at most one vertex per step and each
vertex is ready when it is executed.

The offline scheduling problem requires finding a short
schedule for a computation represented by a given weighted
or unweighted dag on P workers. For unweighted dags,
finding an optimal solution is NP-hard [31], but Brent [8]
showed that a “level-by-level” schedule on P workers has
length within a factor of two of optimal. Future work [12]
proved a similar bound for greedy schedules, which are de-
fined by keeping all workers busy on steps when there are at
least P ready vertices.

We now generalize these results to show that a greedy
schedule gives us a similar bound for weighted dags.

Theorem 1. Consider a parallel computation with work
W and span S. Any greedy schedule of this computation for
P workers has length at most W

P
+ S.

Our proof, which appears in the companion technical re-
port [25], uses much the same technique as the ABP proof
for unweighted dags [5]. The intuition is that, if all workers
are busy at a step, then they are “making progress” on the
work of the computation, but if any workers are idle on a
step, then they are“making progress” on the span by execut-
ing all vertices at a level in the dag and/or “counting down”
the latencies of heavy edges. Our bound is slightly different
from that of ABP, W

P
+S P−1

P
, since in weighted dags, at any

step, it is possible for all workers to be idle and waiting for
suspended vertices, whereas with unweighted dags, at least
one worker must be busy at each step.

Online scheduling problem. The online scheduling
problem for unweighted or weighted dags requires scheduling
a dag as its structure is revealed during the execution. In
particular, a scheduler operates in rounds. On each round,
a scheduler may execute an instruction v and learn what
new vertices become enabled and possibly ready as a re-
sult. Executing v may enable the children of v but not all
children of v become ready immediately because they may
suspend due to a heavy incoming edge. Furthermore, in the
case of weighted dags, the scheduler does not know the edge
weights of heavy edges and thus does not know how long it
will be before suspended vertices become ready, though it
does know whether outgoing edges are heavy or light.

In the rest of the paper, we present an algorithm that
solves the online parallel scheduling problem for weighted
dags, and an analysis of this algorithm. Our analysis uses
the completed dag, including edge weights, in an a posteri-
ori fashion, but the scheduler does not use this information
since, in general, such information is usually not available in
a realistic computation.

3. ALGORITHM
Our algorithm is a variant of work stealing and, as such,

uses deques to store the ready vertices to be executed. In-
stead of one deque per worker (thread), however, our algo-
rithm can use many deques per worker, only one of which is
active at a time. To obtain work, the worker pops a vertex

from the bottom of its active deque. If the worker suc-
cessfully removes a vertex from the bottom of its deque, it
executes that vertex in one step. The execution of the ver-
tex may enable zero, one or two new vertices. If a newly
enabled vertex is ready, then it is executed or pushed onto
the bottom of the deque in the usual way. If however, the
vertex suspends (corresponding to a heavy edge in the dag),
the algorithm pairs the suspended vertex with the active
deque—the suspended vertex belongs to the active deque—
and goes back to its active deque to obtain work. If a worker
finds its deque to be empty, it first checks if it owns another
deque that can become active. If so, it switches to that
deque. Otherwise, it becomes a thief. To obtain work, a
thief randomly chooses any deque and attempts to remove,
or steal, the vertex at the top of the chosen deque, the vic-
tim. When a thief successfully steals a vertex, it starts a
new deque and makes the new deque its active deque.

The algorithm outlined above is almost complete, except
for one crucial point: it does not deal with suspended ver-
tices that resume (become ready). In every round, our
scheduler checks for suspended vertices that have resumed
since the last round. Since there can be arbitrarily many
resumed vertices at a check point, a worker cannot handle
them by itself without harming performance. To solve this
problem, new work is injected into the computation that
will execute the resumed vertices in parallel. More specifi-
cally, the scheduler partitions the resumed vertices accord-
ing to the deques to which they belong and, for each deque,
spawns a function that will, in a parallel for loop, execute
the resumed vertices belonging to that deque.

Figure 3 shows the pseudocode for the algorithm, which
we now describe in more detail.

Deques and Sets. Each worker owns a collection of de-
ques. Each deque is either ready, if it has work, or suspended
if it is empty and there is a suspended vertex which will even-
tually be returned to it. At any point, one of the deques of
each worker is designated as the active deque. The worker
also has a set readyDeques of its (non-active) ready deques,
and a set resumedDeques of deques for which a suspended
vertex has resumed since the last round. A summary of state
changes of deques is shown in Figure 2. Table 1 lists the op-
erations and fields we require for operating on deques, sets
of deques, and sets of vertices. We assume that all listed
operations take (possibly amortized) constant time. In ad-
dition, we assume iteration (using for loops) over sets is
possible and, in particular, that parallel operations over ver-
tex sets are possible (using pfor loops) in linear work and
logarithmic span in the size of the set.

Several implementations of work-stealing deques exist (e.g.
[5, 11, 2]) which provide the required guarantees. Our set-
ting satisfies the requirements of these implementations since
each deque is always owned by the same single worker. At
the end of this section, we describe an implementation of
the other required data structures.

Suspended Vertices. When a vertex v suspends and
the active deque is q, a callback callback(v, q) is installed
to be run when v resumes 1. The callback adds v to the
set q.resumedVertices, which tracks the (newly) resumed
vertices belonging to q, decrements q.suspendCtr to indi-

1In practice, this may be implemented by, e.g. signal han-
dlers or polling in a separate (system) thread.

Member Description
Deques q

q.popTop() Pop the top vertex of deque q

q.popBottom() Pop the bottom vertex of q
q.pushBottom(v) Push v to the bottom of q
q.free() Free the deque q
q.suspendCtr A counter of q’s suspended vertices
q.resumedVertices A set of q’s resumed vertices
newDeque() Create a new, empty deque
randomDeque() Return any allocated deque

Deque sets qs
qs.add(q) Add q to set qs
qs.removeAny() Remove any deque from qs

qs.remove(q) Remove q from qs

Vertex sets vs
vs.add(v) Add v to set vs
vs.clear() Clear the set vs
vs.size The size of set vs

Table 1: Deque and set interfaces

ready active

freedsuspended

vertex
resumes

deque
switch

becomes empty
(no susp. vertices)

becomes empty
(with susp. vertices)

Figure 2: Transitions of deque states

cate that q has one fewer suspended vertex and, if this has
not already been done, adds q to the set of resumed deques.

The function addResumedVertices() iterates over the set
of resumed deques. For each such deque q, a closure is al-
located which executes all of the resumed vertices for q in
a parallel for loop. This closure is encapsulated in a new
vertex, which is pushed onto the bottom of q. Finally, q is
added to the set of ready deques for this worker.

Scheduling loop. Execution starts by setting one worker’s
assignedVertex to the root of the computation and setting
the activeDeque of every worker to an empty deque (Line 25
in Figure 3). Execution then jumps to execute the main
scheduler loop, shown between lines 31 and 56 of Figure 3.
We refer to one iteration of the loop as a round of the sched-
uler. If a worker has an assigned vertex on a round, it takes
the following actions:

1. Execute the vertex to get zero, one or two (possibly
suspended) children.

2. Handle the right child (if present). If it is suspended,
the function handleChild increments the suspension
counter of the active deque and installs the callback.
Otherwise, the child is pushed onto the bottom of the
active deque.

3. Call addResumedVertices().

4. Handle the left child (if present) as described above.

Actions 2, 3 and 4 are done in this order so that the left
child will have higher priority than the right child and the
pfor tree. This ensures that our scheduler is not preemptive:
the current task continues running until it finishes.

1 function callback(v, q)

2 q.resumedVertices.add(v)

3 q.suspendCtr = q.suspendCtr - 1

4 if (q.resumedVertices.size == 1)

5 resumedDeques.add(q)

6

7 function addResumedVertices()

8 for (q in resumedDeques)

9 v = vertex({ pfor (u in q.resumedVertices)

10 u.execute() })

11 q.pushBottom(v)

12 readyDeques.add(q)

13 resumedDeques.remove(q)

14 q.resumedVertices.clear()

15

16 function handleChild(v)

17 q = activeDeque

18 if (v.isSuspended)

19 v.installCallback(callback(v, q))

20 q.suspendCtr = q.suspendCtr + 1

21 else

22 q.pushBottom(v)

23

24 // Assign root to worker zero.

25 assignedVertex = NULL

26 activeDeque = newDeque() // Initial deque

27 if (self == WorkerZero)

28 assignedVertex = rootVertex

29

30 // Run scheduling loop.

31 while (!computationDone)

32 // Execute assigned vertex.

33 if (assignedVertex <> NULL)

34 (left, right) = assignedVertex.execute()

35 if (right <> NULL)

36 handleChild(right)

37 addResumedVertices()

38 if (left <> NULL)

39 handleChild(left)

40 assignedVertex = activeDeque.popBottom()

41 else

42 if (activeDeque.suspendCtr = 0)

43 activeDeque.free()

44 activeDeque = NULL

45 // First, try to resume a ready deque.

46 new = readyDeques.removeAny()

47 if (new <> NULL)

48 activeDeque = new

49 else // Make steal attempt.

50 victim = randomDeque()

51 assignedVertex = victim.popTop()

52 if (assignedVertex <> NULL)

53 activeDeque = newDeque()

54 addReadyVertices()

55 if (assignedVertex == NULL)

56 assignedVertex = activeDeque.popBottom()

Figure 3: Pseudocode for the scheduling algorithm

Processor 1

v1

Processor 2 Processor 3

v2 v3

Active

Suspended

Figure 4: Illustration of work stealing

If a worker doesn’t have an assigned vertex, it attempts
to switch its active deque to another ready deque. If suc-
cessful, the new deque becomes the active deque and its
bottom vertex becomes the assigned vertex. If all deques
are suspended, the worker becomes a thief and steals the
top vertex from a randomly chosen deque (note that, un-
like in most conventional work stealing schedulers, a steal
targets deques and not workers; the victim deque is chosen
uniformly at random from all deques). If the steal is suc-
cessful, newDeque() is called to generate a new active deque;
the children (if any) of the stolen vertex will be pushed to
this new deque. Finally, whether a deque switch or steal
attempt occurred, addResumedVertices() is called.

Figure 4 illustrates an example state of the scheduler. Ac-
tive deques and vertices are shown with gray backgrounds.
Suspended vertices are shown as dashed circles below the
deque with which they are associated. Suppose that, in the
next round, suspended vertices v1, v2 and v3 will resume
and be returned to their respective deques. Assuming none
of the active vertices enable new work, the active deques
of processors 1 and 2 will become empty. Processor 1 will
switch its active deque. Processor 2 will steal work from one
of the other processors and create a new deque. Processor 3
will continue working from its active deque.

Deque and Set implementation. To implement the
operations of Table 1 efficiently, the algorithm maintains a
global (across all workers) array of deques, called gDeques.
This may be a growable array (resizes will require a full
synchronization and should be rare, in order to amortize the
cost of the synchronization and the copy) or, if acceptable
for the application, a fixed-size array. There is also a global
counter, gTotalDeques, which indicates the array index of
the next deque to be allocated.

Each worker p maintains a set emptyDeques of indices
of deques previously owned by p which have been freed
by free(). Whenever possible, newDeque() will reuse a
deque from emptyDeques rather than allocating a new one.
If no empty deques are available, it increments gTotalDe-

ques using an atomic fetch-and-add (or other synchroniza-
tion primitives). The next deque in the array is allocated
and becomes the active deque. This implementation of newD-
eque() is shown in Figure 5. The implementation of free()
does not actually deallocate the deque, but simply adds it to
the emptyDeques set. The array implementation makes the
implementation of randomDeque() quite straightforward: it
simply chooses a random index between 0 (inclusive) and

1 function newDeque()

2 dequeToReturn = emptyDeques.removeAny()

3 if (dequeToReturn == NULL)

4 i = fetch_and_add(gTotalDeques, 1)

5 gDeques[i] = new Deque

6 dequeToReturn = gDeques[i]

7 return dequeToReturn

Figure 5: The newDeque function

gTotalDeques (exclusive). The chosen deque may have been
“freed”, in which case the steal will fail. Since our worst-case
asymptotic analysis assumes that the maximum number of
deques are allocated, the (somewhat loose) upper bound we
prove is not impacted by stealing from freed deques. Our
implementation (Section 6) uses a more optimized policy.

A set of deques may be implemented as a doubly-linked
list, allowing for constant-time removal. Since removal is
not necessary for sets of vertices, but parallel operations
(for which lists are unsuitable) are, vertex sets may be im-
plemented as growable arrays, with amortized constant-time
addition. In a language with garbage collection, clear can
be implemented in constant time by simply destroying the
pointer to the array. Without garbage collection, the cost
of freeing each element can be charged to the corresponding
calls to add, and so the amortized cost of the three opera-
tions will still be constant.

4. ANALYSIS
To bound the running time of the latency-hiding work-

stealing scheduler, we first bound the number of rounds in
terms of the work of the computation and the number of
steal attempts. Based on this result, in Sections 4.1 and 4.2,
we establish an upper bound of O(W

P
+ SU(1 + lgU)) on

the expected number of rounds by bounding the number of
steal attempts. Our analysis is based on an analysis of work
stealing for dedicated environments [3], which simplifies the
analysis of Arora et al. [5] for multiprogrammed environ-
ments. Finally, in Section 4.3, we use an amortization argu-
ment to show that, on average, each round takes constant
time. This gives the desired bound on the running time.

We first establish an upper bound on the number of rounds
in an execution in terms of the work of the computation
and the number of steal attempts (Lemma 1). Our proof
accounts for deque switches performed during execution and
the additional work injected into the computation to process
the resumed vertices. Such additional work comes in the
form of the parallel for (pfor) loops that execute resumed
vertices. For n resumed vertices, such a pfor loop unfolds
into a tree, which we call a pfor tree (its vertices are pfor
vertices) with lg n span and n leaves, each of which executes
one of the resumed vertices (which itself expands into a dag).

Lemma 1. Consider a parallel computation with work W

and span S executed on P workers by our algorithm. The
number of rounds taken to complete the computation is at
most 4W

P
+ R

P
, where R is the number of steal attempts.

Proof. At each round, each worker places a token into
one of three buckets: the work bucket if it executes an in-
struction (including a pfor vertex), the switch bucket if it

switches deques or the steal bucket if it attempts to steal.
At the end of the computation, the number of tokens in the
work bucket is equal to W +Wpfor , where Wpfor is the num-
ber of pfor vertices. Since a (binary) tree has at most as
many internal vertices as leaves and the leaves of a pfor tree
are included in W , we have W +Wpfor ≤ 2W . At a round i,
if worker p places a token in the switch bucket, it now has an
active deque which is ready, and an assigned vertex. It will
therefore place a token in the work bucket on round i + 1,
so at the end of the computation, there are at most as many
tokens in the switch bucket as there are in the work bucket,
and the number of tokens in these two buckets together is at
most 4W . By definition, the number of tokens in the steal
bucket is exactly R. Since P tokens are placed per round,
the number of rounds is as desired.

Given this result, to bound the number of rounds, it suffices
to bound the number of steal attempts byO(PSU(1+lgU)).

4.1 Enabling trees and the potential function
An enabling tree is a tree derived from a computation

dag, which represents the relationship between vertices in
a particular execution. As opposed to the computation dag,
an enabling tree is a purely runtime notion and there can be
many possible enabling trees for a given dag. Enabling trees
are not constructed by the algorithm; we simply use them
as technical devices for the analysis. In the unweighted case
(e.g. [5]), an edge (u, v) of the dag is an enabling edge and is
included in the enabling tree if executing u enables v. In this
way, tracing up from the leaves of the enabling tree gives a
record of when vertices were added to deques.

We extend the concept of an enabling tree to account for
heavy edges in a way that will be made precise later in this
section. In keeping with the intuitive notion of an enabling
tree described above, suspended vertices should be added to
the enabling tree at the point at which they become ready.
This means that heavy edges will not appear in the enabling
tree. Consider the computation dag shown in Figure 6(a).
When heavy edges and non-enabling light edges are removed
from the dag, the suspended vertices that are the targets of
these edges (vertices 4 and 9) will have no parent in the dag.
This induces a spanning tree consisting of the components
of the dag that are connected with only light edges, shown
in Figure 6(b). Suppose that, after vertex 3 executes, ver-
tex 4 resumes. We then consider vertex 3 to have enabled
vertices 4, 5 and 6 and place vertex 4 in the enabling tree
accordingly2. If after vertex 5 executes, vertex 9 becomes
ready, this relationship is represented in the enabling tree as
well. The final enabling tree is shown in Figure 6(c).

The above discussion glosses over two points. First, the
construction violates our assumption that vertices have at
most two outgoing edges. This is easily solved by adding
an additional vertex and distributing the outgoing edges ac-
cordingly, a process sometimes called “ternarization”. The

2The term “enabling tree”, which comes from prior work,
unfortunately clashes with our terminology, in which vertex
4 was already enabled and is now ready. One way to make
sense of this is to think of the enabling tree as building up
an unweighted program which is consistent with the execu-
tion of the weighted program. For example, the behavior of
our scheduler on the example dag “looks like” the behavior
of standard work stealing on a dag where vertex 3 is a 3-
way fork enabling vertices 4, 5 and 6 (where the out-degree
restriction is temporarily relaxed to allow this).

(a)

1

2

3

45 6

7 8 910

11

12

13

14

42

(b)

1

2

3

45 6

7 8 910

11

12

13

14
(c)

1

2

3

5 6

10

4

7 8

11 13

14

9

12

(d)

1

2

3

A

5

6

10PF

154

7 8

11

13

14

9

12

Figure 6: Construction of a possible enabling tree: (a) the input dag (b) spanning forest of the light-edge
components (c) the enabling tree (d) the enabling tree with restricted out-degree and pfor trees (assuming
a new vertex 15, which resumes at the same time as vertex 4)

exact construction will be detailed below. Second, if mul-
tiple suspended vertices resume at the same time, they are
not added to the enabling tree directly. Rather, the root of
the pfor tree is added at the correct location and it will, in
turn, spawn all of the suspended vertices (and their dags).
In the context of the example, suppose that there is another
vertex, 15, which resumes in the same round as vertex 4.
Figure 6(d) shows an enabling tree including an auxiliary
vertex A to reduce the out-degree of vertex 3 and a pfor
vertex PF, which spawns vertices 4 and 15.

At a more precise level, construction of the enabling tree
proceeds as follows. All vertices and all enabling edges
(which are all light) are included in the enabling tree. To
determine where to add pfor trees in the enabling tree, we
proceed by cases on whether the pfor is added to the active
deque or a non-active deque. If a pfor vertex v′ is added to
the active deque, then the scheduler just executed a vertex
u from the active deque. Proceed by cases on what kinds
of children, if any, u enables. If u enables no children, we
simply add an auxiliary edge (u, v′, 1) to join the pfor tree
to u. If u had a left child v, we add an auxiliary vertex u′

and auxiliary edges (u, u′, 1), (u′, v′, 1) and (u′, v, 1), where
v is considered the left child of u′. If u had a right child r,
the edge (u, r, 1) is unchanged. In Figure 6(d), vertex 3 is
u, vertex 5 is v, PF is v′ and vertex 6 is r.

In the second case, suppose a pfor tree rooted at v′ is
added to a non-active deque q, and let i be the round in
which it is added. If q is non-empty, let u be the bottom
vertex in q and j be the round in which it was added to
the deque. If q is empty, let u be the last instruction to
execute from q and j be the round in which it executed. To
maintain the intuitive property that the enabling tree can
be used as a record of additions to the deques, we wish to
add v′ as a descendant of u in the enabling tree. However,
it is also important for the analysis to make sure that v′ is
at a depth in the enabling tree corresponding to when it is
added to the deque. To account for the time between when
u was executed or added to the deque and when v′ is added,
we add a chain of i− j − 1 auxiliary vertices u1, . . . , ui−j−1

and auxiliary edges

(u, u1, 1), (u1, u2, 1), . . . (ui−j−1, v, 1)

The depth d(v) of v in the enabling tree is the length
of the path from the root to v in the enabling tree. The
depth dG(v) of v in the original dag G is the length of the
longest weighted path from the root to v in G. Let S∗ (the
“enabling span”) be the longest path in the enabling tree
at the end of the computation. Observe that, by the time a
suspended vertex whose incoming edge has weight δ becomes
ready, the worker will not have proceeded deeper than δ

levels in the dag (it may even have proceeded fewer, if it
backtracked), and so the pfor tree for a suspended vertex v

will be reinserted into the enabling tree at a depth no more
than a factor of lgU greater than dG(v), even considering
auxiliary and and pfor vertices. Thus, the enabling span
is O(S(1 + lgU)). This key fact will be a direct result of
Lemma 2, which shows a number of invariants about the
enabling tree and the execution of the scheduler.

Lemma 2. Consider an execution of a multithreaded com-
putation represented by a dag G, which results in an enabling
tree with enabling span S∗. At the end of a round i, the fol-
lowing conditions hold:

1. For all vertices u ∈ G already executed or currently
ready, d(u) ≤ (2 + lgU)dG(u).

2. For all ready or executed pfor vertices u which have
depth d in a pfor tree, d(u) ≤ (2+lgU)dG(v)− lgU+d

for all v in the pfor tree of u.

3. Let u be a suspended vertex whose parent u′ came from
deque q, with the in-edge (u′, u, δ) for some δ, and
which was enabled in round i − k, for k ≥ 0. If v

was the last instruction executed from deque q and
was executed in round i − j, for j ≥ 0, then d(v) ≤
(2 + lgU)dG(u

′) + 2k − j.

4. Let u be a suspended vertex whose parent u′ came from
deque q, with the in-edge (u′, u, δ) for some δ, and
which was enabled in round i−k, for k ≥ 0. If v is the
assigned vertex of p, then d(v) ≤ (2 + lgU)dG(u

′) +
2(k + 1).

5. Let v1, . . . , vk be the vertices in any deque, from bottom
to top and v0 be the assigned vertex if this deque is
the active deque of a worker. Let u0, . . . , uk be their

parents in the enabling tree. For all 1 ≤ i ≤ k, vertex
ui is an ancestor of ui−1 in the enabling tree, and this
ancestor relationship is proper for i > 1.

The proof appears in the companion technical report [25].
It is now straightforward to show that the enabling tree is
no more than a factor of lgU deeper than the original dag.

Corollary 1. Consider a computation represented by a
dag G with span S. When run to completion using the
scheduler, if the enabling tree has enabling span S∗, then
S∗ ∈ O(S(1 + lgU)).

Proof. Let v be the deepest vertex in the enabling tree
(that is, d(v) ≥ d(u) for all u in the enabling tree). By
definition, S∗ = d(v). The deepest vertex in the enabling
tree will be in G (it will not be a auxiliary vertex or a pfor
vertex, since these always have descendants which are in G).
By condition 1 of Lemma 2, we have

S
∗ = d(v) ≤ (2 + lgU)dG(v) ≤ (2 + lgU)S ≤ 2S(1 + lgU)

We now define the potential function which we will use
to show the bound on the number of steal attempts. Let
w(v) = S∗ − d(v) be the weight of a vertex v and define the
potential of v at round i as follows:

φi(v) =

{

32w(v)−1 v is assigned at the start of round i

32w(v) otherwise

Each non-active deque with suspended vertices has an ex-
tra potential

φ
E
i (q) =

2 · 32w(v)−2j q is empty
and last executed v in round i− j

2 · 32w(v)−2j v is the bottom vertex of q
and was added in round i− j

0 q is the active deque

The extra potential decreases over time, simulating the ex-
ecution of the chains of auxiliary vertices added to the en-
abling tree when suspended deques resume. The total po-
tential of a deque q with vertices v1, . . . , vk is:

Φi(q) = φ
E
i (q) + Σk

j=1φi(vj)

4.2 Bounding steal attempts
At the beginning of a round i, let

• Ai be the set of assigned vertices.

• Di be the set of ready deques.

• Si be the set of suspended deques.

• Φi(Ai) = Σv∈Ai
φi(v)

• Φi(Di) = Σq∈Di
Φi(q)

• Φi(Si) = Σq∈Si
Φi(q)

• Φi = Φi(Ai) + Φi(Di) + Φi(Si)

We note that Φi is the total potential for the computation
at the start of round i. At the start of the computation, the
computation consists only of the root, which has weight S∗,
so the potential is 32S

∗
−1. At the end of the computation,

no vertices are remaining, so the final potential is 0.
The next two lemmas show important properties of the

potential function: first, that a constant fraction of the total
potential of a deque sits at the top of the deque, accessible
to a steal. Next, that executing a vertex decreases the total
potential by a constant fraction of that vertex’s potential.

Lemma 3 (Top-heavy Deques). Consider any round
i and any deque q ∈ Di. The topmost vertex in q’s deque
contributes at least 2/3 of the total potential of q.

Proof. It can be shown from Condition 5 of Lemma 2
that if v1, . . . , vk are the vertices of q, then w(u1) < · · · <
w(uk). The lemma follows from this fact and the definition
of the potential function.

Lemma 4. Consider any round i and let v ∈ Ai.

Φi − Φi+1 ≥
5

9
φi(v)

Proof. By cases on what scheduler actions follow the
execution of v.

Furthermore, potential does not increase during compu-
tation. The proof of this lemma appears in the companion
technical report [25].

Lemma 5. For any round i, Φi+1 ≤ Φi.

Lemma 6 is used to show how steal attempts decrease the
potential. See [5] for the proof.

Lemma 6 (Balls and Weighted Bins). Suppose that
P balls are thrown independently and uniformly at random
into P bins, where for i = 1, . . . , P , bin i has a weight Wi.
The total weight is W = ΣP

i=1Wi. For each bin i, define the
random variable Xi as

Xi =

{

Wi if some ball lands in bin i

0 otherwise

If X = ΣP
i=1Xi, then for any β in the range 0 < β < 1,

we have Pr[X ≥ βW] > 1− 1
(1−β)e

.

To show the bound on steal attempts, we divide the com-
putation into phases, with at least P (U + 1) steal attempts
in each phase. We will then bound the number of phases.
The reason U is relevant in this bound is that, at any time,
each worker may have up to U+1 deques, each of which may
be targeted by a steal. In the parlance of the Balls and Bins
Lemma, there are thus O(PU) bins (deques) into which we
throw balls (steal attempts). We first show this bound on
the number of deques. In the proof, we consider the imple-
mentation of newDeque() given at the end of Section 3, in
which deques are never deallocated but are recycled.

Lemma 7. At all times during execution of the scheduler,
no worker owns more than U + 1 allocated deques.

Proof. By induction on the sequence of actions taken by
the scheduler. The only action that adds a deque is a call
to newDeque(), which only occurs on a steal. A steal only
occurs if there are no ready deques, and newDeque() only
allocates a new deque if there are no empty deques (including
the active deque, which will have just been added to the list
if it is not suspended). Therefore, if a new deque is allocated,
all deques owned by the worker must be suspended. There
can be at most U such deques.

We now show that any phase, with constant probability,
decreases the total potential by a constant fraction of the
potential in the deques.

Lemma 8. Consider any round i and any later round j

such that at least P (U +1) steal attempts occur from rounds
i (inclusive) to j (exclusive). Then

Pr[Φi −Φj ≥
2

9
Φi(Di)] >

1

4

Proof. Suppose a steal in round k > i targets a non-
empty deque q ∈ Di, of which v is the top vertex. After
round k, vertex v will be assigned (by the thief or by the
victim or another thief if there is contention). By Lemma 3,
v contributes at least 2

3
of the potential of q, and assigning

it decreases its potential, so

Φi(q)−Φi+1(q) ≥
2

3
φi(v) ≥

2

3

2

3
Φi(q) =

4

9
Φi(q)

Next, we use the Balls and Bins Lemma to establish the
total decrease in potential. In the setting of the lemma, let
Wq = 4

9
Φi(q) if q ∈ Di and Wq = 0 otherwise. Therefore, in

the setting of the lemma, X is the total decrease in potential
after P (U + 1) steal attempts and W = 4

9
Φi(Di). By the

lemma, using β = 1
2
, we have

Pr[Φj − Φi ≥
2

9
Φi(Di)] > 1−

1

(1− 1
2
)e

>
1

4

Putting the above results together shows the desired bound
on the number of steal attempts.

Theorem 2. Consider a computation with work W , span
S and suspension width U > 1. The number of rounds taken
by the latency-hiding work-stealing scheduler on P workers
is O(W

P
+ SU(1 + lgU)) in expectation.

Proof. Consider a phase which consists of the rounds
[i, j). Let u ∈ Ai. After u is executed on round i, the
potential drops by at least 5

9
φi(u) (by Lemma 4), so we

have Φi − Φj ≥ 5
9
Φi(Ai).

Let q ∈ Si. By the definition of the potential, for some k,

Φi(q)− Φj(q) ≥ 2 · 32w(v)−2(i−k) − 2 · 32w(v)−2(j−k)

= (1− 32(j−i))Φi(q)
> 8

9
Φi(q)

Summing over all deques in Si, Φi − Φj ≥ 8
9
Φi(Si).

From Lemma 8, we know that Pr[Φi−Φj ≥ 2
9
Φi(Di)] >

1
4
,

so since Φi = Φi(Di) + Φi(Ai) +Φi(Si), with probability at
least 1

4
, the potential decreases by a factor of at least 2

9
.

Define a successful phase to be a phase in which the to-
tal potential decreases by a factor of at least 2

9
. Since the

starting potential is 32S
∗
−1 and the final potential is 0 and

potential is always an integer, we require at most

(2S∗ − 1) log9/7 3 < 10S∗ − 5 ∈ O(S∗) ∈ O(S(1 + lgU))

successful phases. Since each phase has Θ(PU) steal at-
tempts, there are O(PSU(1+lg U)) steal attempts in expec-
tation. The desired bound on the number of rounds follows
from Lemma 1.

For the case U = 1, no pfor trees will be added and
each worker will maintain exactly one deque because when
a worker’s deque becomes empty, it will always be freed
and subsequently reused for the stolen work. A bound of
O(W

P
+S) rounds for this case can be shown using the same

techniques as for the unweighted case [3, 5]

...

Figure 7: Partial dag for map and reduce

1 function distMapReduce(f, g, id, lo, hi)

2 n = hi - lo

3 if n = 0 then return id

4 else if n = 1 then

5 x = getValue(lo) // May suspend

6 return f(x)

7 else

8 piv = (lo + hi) / 2

9 (res1, res2) =

10 fork2(distMapReduce(f, g, id, lo, piv),

11 distMapReduce(f, g, id, piv, hi))

12 return g(res1, res2)

Figure 8: Example: distributed map and reduce.

4.3 Running time
Each round of the scheduler takes (amortized) time O(1).

Theorem 3. If Ip is the number of instructions executed
by worker p, then Ip ∈ O(W

P
+ SU(1 + lgU)).

Proof. All operations outside of calls to addResumed-

Vertices() and callbacks are constant-time. We amortize
the non-constant work done by a worker over the rest of the
work done by the worker. In particular, we “charge” the
work done for a suspended vertex v to v’s parent (which
was executed by the same worker and spawns at most two
children). See the companion technical report for a more
detailed version of the proof.

5. EXAMPLES
The two examples in this section illustrate an application

of our techniques and also show how to achieve extremal
values of U , which is relevant because the time bound of our
scheduler depends on U .

Distributed map and reduce. Consider a computation
in which we wish to map a function f(x) over each of a large
set of n values x, and then combine the resulting values with
an associative binary operation g(x, y) with identity id. To
introduce latency, suppose that each value is stored on a
different remote server (or must be obtained from a remote
user). Pseudocode for this example is shown in Figure 8.
In this computation, it is possible for each of the n calls
to getValue() to be suspended at once, and so U = n. The
top of the dag for this example is shown in Figure 7.

Server. For an example that minimizes U , consider a
program similar to the map and reduce example, but which
takes its inputs one-by-one from a user. This code appears

...

...

...

Figure 9: Partial dag for the “server”

1 function server(f, g)

2 input = getInput() // May suspend

3 if input = "Done" then return 0

4 else

5 (res1, res2) = fork2(f(input), server(f, g))

6 return g(res1, res2)

Figure 10: Example: the “server”

in Figure 10. The code gets input from the user. If the user
enters “Done”, the identity value is returned up the tree. If
the user enters a number x, the computation forks; in paral-
lel, f(x) is computed, and a recursive instance of the server
is run. In the end, all of the branches join and the values are
reduced with g. In this computation, getting user input may
incur a substantial amount of latency. However, server() is
not called recursively until after getInput() returns, and so
only one operation may be suspended at a time and U = 1.
Part of this dag is shown in Figure 9, with . . . indicating
branches that lead to f(x) computations.

6. IMPLEMENTATION
We have developed a proof-of-concept implementation of

our scheduling algorithm by extending a more traditional
work-stealing algorithm developed by Spoonhower et al. [29,
28] for a parallel implementation of Standard ML. The lan-
guage has support for fork-join parallelism and futures. Their
scheduler and our extension are written entirely in Standard
ML. Our implementation largely follows the description in
Section 3 with a few exceptions.

• As usual, our scheduler operates at the granularity of
threads rather than instructions and is only invoked
when the current thread ends, requires synchronization
(with another thread) or suspends.

• Suspended threads are placed in a list, tagged with
the event on which they are waiting. Each event is
polled when the scheduler is invoked. The overhead of
this operation is acceptable for reasonable suspension
widths and task granularities.

• We sometimes use theoretically less efficient data struc-
tures or policies, favoring simplicity and practicality.

• Rather than targeting a random deque, steals target a
worker and then choose randomly from that worker’s
ready deques. This requires synchronization between
the two workers but decreases the number of failed
steals because steals won’t target empty deques.

6.1 Preliminary experiments
We implemented a variant of the map and reduce example

of Section 5 and performed a preliminary experimental eval-
uation. In our implementation of this benchmark, we cal-
culate the Fibonacci number of each input using the naive
recursive parallel Fibonacci algorithm and sum the results
modulo a large constant. In order to control the latency as-
sociated with taking each input, the benchmark simulates a
latency of δ milliseconds by sleeping for δ milliseconds and
then immediately returning 30. Thus each Fibonacci calcu-
lation computes the 30th Fibonacci number. We have run
this benchmark using both our latency-hiding scheduler and
Spoonhower’s traditional work-stealing scheduler.

Figure 11 shows the self-speedup curves for our scheduler,
labeled LHWS, and the standard work-stealing scheduler,
labeled WS. For all curves, the speedup shown is relative
to the one-processor run of WS. In all of these experiments,
the number of elements (remote server connections)is 5,000.
Note that, in this example, this is equal to the suspension
width. The first (leftmost) plot shows the case when the la-
tency δ is 500ms (a very high latency, which might represent
waiting for user input or for data which requires some com-
putation on a remote server). This plot shows that latency-
hiding work stealing delivers superlinear speedups, as much
as 3 times larger speedup than standard work stealing. The
superlinear speedups are expected with latency hiding be-
cause the standard work stealer does not hide latency. In
the second plot, δ is 50ms. Latency-hiding still provides sub-
stantial speedup benefit. The third plot shows that, when δ

is smaller (1ms), there is less benefit to hiding latency. In
the limit, if latency is expected to be small, programmers
might wish to wait for operations to complete.

7. RELATED WORK
We know of relatively little other work that has considered

the problem of scheduling user-level parallel computations
which involve operations that may incur a latency.

In terms of the models and analysis presented, perhaps the
most closely related work to ours is BATCHER [4], which
uses work stealing to schedule threads that perform accesses
on a concurrent data structure. In order to avoid synchroniz-
ing concurrent accesses, accesses are batched and performed
all at once. As a result, an operation on the data structure
will block, incurring a latency, until the next batch of op-
erations is executed. A major difference with our work is
that, in BATCHER, the scheduler decides when to execute
a batch and thus has some control over latency, whereas
our scheduler has no control over the latency of an opera-
tion. Another difference is that their scheduling algorithm
employs two deques per worker, whereas in our algorithm
the number of deques can grow dynamically based on the
suspension width of the dag and the scheduling decisions.

Many other variants of work stealing have been considered
in the literature (e.g., [9, 17, 15, 7, 2]). Mattheis, et al. [24]
investigate modifications to work stealing in order to make
it suitable for real-time applications, in particular stream
processing. They focus on minimizing the completion time
(response time) of particular threads; the latency incurred
by threads themselves is not considered. Spoonhower [28]
presents a comprehensive treatment of work stealing and
considers variants with multiple deques per worker. The goal
of these variations is to minimize the number of deviations
from a single-processor depth-first order. In one variation,
when a thread waits for another thread or future, the entire
deque is suspended and a new one is created. In another,

0 5 10 15 20 25 30

0
2

0
4

0
6

0

proc

s
p

e
e

d
u

p

●

algo=LHWS

algo=WS

●

●

●

●

●

●

●

0 5 10 15 20 25 30

0
5

1
0

1
5

2
0

2
5

3
0

proc

s
p

e
e

d
u

p

●

algo=LHWS

algo=WS

●

●

●

●

●

●

●

0 5 10 15 20 25 30

0
5

1
0

1
5

2
0

2
5

3
0

proc

s
p

e
e

d
u

p

●

algo=LHWS

algo=WS

●

●

●

●

●

●

●

δ = 500ms δ = 50ms δ = 1ms

Figure 11: Experimental results of prototype implementation

when a suspended thread resumes, a new deque is created
to execute it. Neither of these exactly corresponds to our
approach, where a delay does not suspend an entire deque,
and new deques are created on steals, not resumes.

In more remotely related work, scheduling for reduced
latency has been an important consideration in queuing-
theoretic scheduling. For an excellent review of this vast
literature, we refer the interested reader to Harchol-Balter’s
book [18]. The focus of the research in this area is mini-
mizing the latency of a job, i.e., the response time, rather
than scheduling a single parallel job that includes operations
that can incur latency, which is our focus. Most of the work
on queuing-theoretic scheduling considers sequential jobs.
One exception is the work on gang scheduling in the context
of supercomputing. Feitelson, Rudolph and Schwiegelshohn
have a nice survey on this topic [13]. Gang scheduling fo-
cuses primarily on the problem of scheduling parallel jobs
on a number of processors, rather than scheduling a single
parallel job for fast completion.

Many systems use lightweight threads, which allow la-
tency hiding but have higher overhead than fine-grained
tasks. As an intermediate approach, Concurrent Cilk [32]
schedules tasks using work stealing, but lazily promotes tasks
to lightweight threads when they perform blocking opera-
tions. Since this is essentially accomplished by blocking the
deque of the suspended task and spawning a new lightweight
worker thread to start on a new deque, the approach is
similar to our algorithm, but Concurrent Cilk spawns new
worker threads more eagerly than our algorithm creates new
deques. Our approach, which continues to schedule sus-
pended tasks as fine-grained tasks, also avoids the additional
state and thread-scheduling overhead associated with (even
lightweight) threads.

8. CONCLUSION
In this work, we have extended the traditional dag model

of parallel computation to model computations with latency-
incurring operations such as I/O, secondary storage access
and communication with remote machines. We have also de-
veloped a latency-hiding work-stealing scheduler, which can
efficiently schedule latency-incurring computations without

stalling workers when one thread incurs latency and sus-
pends. Our algorithm generalizes standard work-stealing
schedulers to use multiple deques per worker, and reduces to
the standard algorithm on computations in which no threads
suspend. Our theoretical analysis shows that the scheduler is
able to hide latency from the typically dominant“work”com-
ponent but can incur an overhead for latency that falls on
the critical path. Finally, our prototype implementation and
initial evaluation give evidence that this approach can be
practical and has the potential to significantly improve the
performance of computations that perform latency-incurring
operations without penalizing the computations that don’t
incur such latency.

Acknowledgments

This research is partially supported by the National Science
Foundation under grant numbers CCF-1320563 and CCF-
1408940 and by Microsoft Research.

We would also like to thank Guilherme Rito for his con-
tributions to early versions of this work, as well as Guy
Blelloch, Robert Harper, Angelina Lee and the anonymous
reviewers for their helpful feedback.

References

[1] U. A. Acar, G. E. Blelloch, and R. D. Blumofe. The
data locality of work stealing. Theory of Computing
Systems (TOCS), 35(3):321–347, 2002.

[2] U. A. Acar, A. Charguéraud, and M. Rainey. Schedul-
ing parallel programs by work stealing with private de-
ques. In Proceedings of the 19th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Program-
ming, PPoPP ’13, 2013.

[3] U. A. Acar and S. K. Muller. A proof of work stealing
for dedicated multiprocessors. Technical Report CMU-
CS-16-114, Carnegie Mellon University School of Com-
puter Science, Dec. 2016.

[4] K. Agrawal, J. T. Fineman, K. Lu, B. Sheridan,
J. Sukha, and R. Utterback. Provably good scheduling
for parallel programs that use data structures through

implicit batching. In Proceedings of the 26th ACM Sym-
posium on Parallelism in Algorithms and Architectures,
SPAA ’14, pages 84–95, 2014.

[5] N. S. Arora, R. D. Blumofe, and C. G. Plaxton. Thread
scheduling for multiprogrammed multiprocessors. The-
ory of Computing Systems, 34(2):115–144, 2001.

[6] G. E. Blelloch, J. T. Fineman, P. B. Gibbons, and H. V.
Simhadri. Scheduling irregular parallel computations
on hierarchical caches. In Proceedings of the 23rd ACM
Symposium on Parallelism in Algorithms and Architec-
tures, SPAA ’11, pages 355–366, 2011.

[7] R. D. Blumofe and C. E. Leiserson. Scheduling mul-
tithreaded computations by work stealing. J. ACM,
46:720–748, Sept. 1999.

[8] R. P. Brent. The parallel evaluation of general arith-
metic expressions. J. ACM, 21(2):201–206, 1974.

[9] F. W. Burton and M. R. Sleep. Executing functional
programs on a virtual tree of processors. In Func-
tional Programming Languages and Computer Archi-
tecture (FPCA ’81), pages 187–194. ACM Press, Oct.
1981.

[10] P. Charles, C. Grothoff, V. Saraswat, C. Donawa,
A. Kielstra, K. Ebcioglu, C. von Praun, and V. Sarkar.
X10: an object-oriented approach to non-uniform clus-
ter computing. In Proceedings of the 20th annual ACM
SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, OOPSLA ’05,
pages 519–538. ACM, 2005.

[11] D. Chase and Y. Lev. Dynamic circular work-stealing
deque. In SPAA ’05, pages 21–28, 2005.

[12] D. L. Eager, J. Zahorjan, and E. D. Lazowska. Speedup
versus efficiency in parallel systems. IEEE Transactions
on Computing, 38(3):408–423, 1989.

[13] D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn.
Parallel job scheduling - A status report. In Job
Scheduling Strategies for Parallel Processing (JSSPP),
10th International Workshop, pages 1–16, 2004.

[14] M. Fluet, M. Rainey, J. Reppy, and A. Shaw. Implicitly
threaded parallelism in Manticore. Journal of Func-
tional Programming, 20(5-6):1–40, 2011.

[15] M. Frigo, C. E. Leiserson, and K. H. Randall. The
implementation of the Cilk-5 multithreaded language.
In PLDI, pages 212–223, 1998.

[16] J. Greiner and G. E. Blelloch. A provably time-efficient
parallel implementation of full speculation. ACM
Transactions on Programming Languages and Systems,
21(2):240–285, Mar. 1999.

[17] R. H. Halstead, Jr. Implementation of Multilisp: Lisp
on a Multiprocessor. In Proceedings of the 1984 ACM
Symposium on LISP and functional programming, LFP
’84, pages 9–17. ACM, 1984.

[18] M. Harchol-Balter. Performance Modeling and De-
sign of Computer Systems: Queueing Theory in Action.
Cambridge University Press, 2013.

[19] S. M. Imam and V. Sarkar. Habanero-java library: a
java 8 framework for multicore programming. In 2014
International Conference on Principles and Practices of
Programming on the Java Platform Virtual Machines,
Languages and Tools, PPPJ ’14, pages 75–86, 2014.

[20] Intel. Intel threading building blocks, 2011. https://
www.threadingbuildingblocks.org/.

[21] G. Keller, M. M. Chakravarty, R. Leshchinskiy, S. Pey-
ton Jones, and B. Lippmeier. Regular, shape-
polymorphic, parallel arrays in haskell. In Proceedings
of the 15th ACM SIGPLAN international conference
on Functional programming, ICFP ’10, pages 261–272,
2010.

[22] D. Lea. A Java fork/join framework. In Proceedings of
the ACM 2000 conference on Java Grande, JAVA ’00,
pages 36–43, 2000.

[23] D. Leijen, W. Schulte, and S. Burckhardt. The design
of a task parallel library. In Proceedings of the 24th
ACM SIGPLAN conference on Object Oriented Pro-
gramming Systems Languages and Applications, OOP-
SLA ’09, pages 227–242, 2009.

[24] S. Mattheis, T. Schuele, A. Raabe, T. Henties, and
U. Gleim. Work stealing strategies for parallel stream
processing in soft real-time systems. In Proceedings of
the 25th International Conference on Architecture of
Computing Systems, ARCS’12, pages 172–183, Berlin,
Heidelberg, 2012. Springer-Verlag.

[25] S. K. Muller and U. A. Acar. Latency-hiding work steal-
ing. Technical Report CMU-CS-16-112, Carnegie Mel-
lon University School of Computer Science, May 2015.

[26] G. J. Narlikar and G. E. Blelloch. Space-efficient
scheduling of nested parallelism. ACM Transactions
on Programming Languages and Systems, 21, 1999.

[27] A. Silberschatz, P. B. Galvin, and G. Gagne. Operating
system concepts (7. ed.). Wiley, 2005.

[28] D. Spoonhower. Scheduling Deterministic Parallel Pro-
grams. PhD thesis, Carnegie Mellon University, Pitts-
burgh, PA, USA, 2009.

[29] D. Spoonhower, G. E. Blelloch, R. Harper, and P. B.
Gibbons. Space profiling for parallel functional pro-
grams. In International Conference on Functional Pro-
gramming, 2008.

[30] O. Tardieu, B. Herta, D. Cunningham, D. Grove,
P. Kambadur, V. Saraswat, A. Shinnar, M. Takeuchi,
and M. Vaziri. X10 and APGAS at petascale. In Pro-
ceedings of the ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming, PPoPP ’14,
pages 53–66, 2014.

[31] J. Ullman. NP-complete scheduling problems. Jour-
nal of Computer and System Sciences, 10(3):384 – 393,
1975.

[32] C. S. Zakian, T. A. Zakian, A. Kulkarni, B. Chamith,
and R. R. Newton. Concurrent cilk: Lazy promotion
from tasks to threads in c/c++. In International Work-
shop on Languages and Compilers for Parallel Com-
puting, pages 73–90. Springer International Publishing,
2015.

