
Illinois Institute of Technology Homework #6
CS 450 - Operating Systems October 21, 2002

Homework # 7 – DUE: 11:59pm November 15, 2002
NO EXTENSIONS WILL BE GIVEN

1. Overview

In this assignment you will implement that FILES module of OSP. This is an in depth assignment and
probably more complex than the last one. You will need to start preparing immediately.

2. Getting Set Up

Now that you’ve gotten a little more used to how OSP works, you should have a decent idea how to
start. Create a directory off your home directory called as6. Into this directory copy the following files
for the assignment:

~osp/asg6.sparc64/Makefile

~osp/asg6.sparc64/files.c

~osp/asg6.sparc64/dialog.c

3. What To Do

You will implement the missing functions at the end of the file files.c. These functions are:
files_init, which should perform any required initializations to your data structures, openf, which
is called by a process requesting access to a file, closef, which is called by a process when it is done
with the file, readf to get data from an open file, writef to put data into a file, and notify_files,
which is called by routines in the DEVICES module to let the FILES module know that an I/O request
has been completed.

You will also have to implement internal routines for file creation and deletion. These routines are not
part of the interface, but are necessary for the implementation. Read section 1.8 in the OSP manual
carefully, and follow the guidelines below.

4. Grading

For your program, credit will be given for style, correctness, and completeness. Elements important to
good style include:

• discussion - see below,

• documentation - especially function headers,

• modularity - a function should not (usually) extend beyond a single page, and

• readability - the various functions should be visually separated.

At the end of your program, you should create two sections, as per the last assignment. One called
“Implementation and Design Analysis” where you explain the design choices made in the assignment
and another called “Statistic Explanation” where you comment on how the statistics differ for par.low
and par.high.

The correctness of your implementation reflects the ability of your program to run to completion
without errors on both parameter files. There is no “right” solution, however solutions with extremely
poor performance relative to that of the OSP.demo program will be penalized accordingly.

1



CS450-001/051/091/092/251 Assignment 7 2

The completeness of your implementation is based on whether your solution implements merely a
simple array, or a more advanced method for finding files, such as a hash or tree (see below).

To cover the question I know will be asked, this assignment will be worth an amount of points N

where N will be determined at a future point in time and will be same value of N that was use for the
previous assignment; it is dependent on how many projects will be assigned.

A solution that does not conform to these guidelines will not receive full credit.

5. Hashing and Search Trees

To get full points for completeness you must use some load balancing scheme for the devices as men-
tioned in the last paragraph of page 39 in the OSP manual. You should review the discussion of
dev_entry_node on page 33.

The OSP manual suggests, on page 38, that the file directory be organized as either a search tree
or a hash table. For this assignment you will do the following. Both of these will result in higher
performance that a standard array. What you implement is up to you.

Hashing You may choose any hashing strategy you like with the following restriction. You must
implement a strategy that goes beyond simple hashing. You may choose to implement a collision
resolution strategy, an extensible hashing strategy, or tree structured “buckets.” You should
explain clearly your choice and the strategy you used to implement it.

Balanced Trees Any strategy that guarantees a log(n) look-up time will suffice, but keep in mind
that a simple tree implementation can become skewed, so some means of height balancing must
be used.

6. A Few Random Notes

• I expect you may have some trouble with the above data structures, so I recommend that you get
your implementation working with a simple directory structure first, and work on the directory
data structure after you have debugged the rest of you code.

• Any good data structures book will discuss both hashing and balanced trees, and I recommend
that you review that material before you start coding. The CS430 textbook (by Cormen, Lieserson
and Rivest) is a wonderful resource for these.

• You may be uncertain about the appropriateness of a particular choice of data structure. Is it
enough? Is it too much? If you are unsure check with the TA before you begin coding.

• Explain clearly the choices you’ve made in your implementation. Do not assume that the TA can
read your mind (or your code).

• I am working on a version of this for Windows. It may or may not be released in time for it to
be of use to you. If it does come out, your software MUST still work under Unix. The Windows
software is intended for remote students who are severely hindered by high ping times to the
CS450 machine.

• Hopefully you all learned a valuable lesson about not waiting until a day or two before the
assignment is due to complete it. It may not be possible to do so many extensions next time, and
the TA’s may not be available.

• Remember what was said about reading the manual? Many students never did. If you read the
manual it explains very well everything that needs to be done for the project.

Fall 2002 Illinois Institute of Technology



CS450-001/051/091/092/251 Assignment 7 3

7. Handing In Your Assignment

There are two simulation runs that are used with this set of programs. When you submit your program
using the hand_in script, you should use these files (in this order):

~osp/asg6.sparc64/par.high

~osp/asg6.sparc64/par.low

The file par.low is a simulation with a low frequency of I/O events and par.high is a file with a high
frequency of I/O events. If you wish to compare your results with that of the standard file system see:

~osp/asg6.sparc64/run.low

~osp/asg6.sparc64/run.high

Make sure that your name and login name are included in your source file. Also include the descriptions
mentioned previously as a block of comments. Use the hand_in procedure to post your work to the
submissions directory by 11:59:59pm of the due date. Make sure to save copies of your program for
your own reference. If we need to get more information from you, we will contact you.

NOTICE:

Unauthorized collaboration or assistance is prohibited. If you have a question, ask the

teaching assistants. Do not copy code from a neighbor. Students who participate in copy-

ing will receive an ’E’ grade for the course. The same penalty applies for students who

fail to adequately protect their accounts.

Appendix

Data Structures

I’ve included this section as helpful information to get you started on the project. The first thing is
that you need to get familiar with the following structures:

typedef struct file_dir_entry_node FILE_DIR_ENTRY;

struct file_dir_node {

char *filename;

INODE *inode;

int *hook;

};

This is a simple element that correlates filenames to their appropriate inode. This is the structure that
after you get it working as a simple array you will want to optimize into some sort of tree or hash to
minimize lookup time from filename to inode. Note, because of the typedef, you can refer to this as
just FILE_DIR_ENTRY (ie FILE_DIR_ENTRY *myFile;).

typedef struct inode_node INODE;

struct inode_node {

int inode_id; /* set by programmer (optional) */

Fall 2002 Illinois Institute of Technology



CS450-001/051/091/092/251 Assignment 7 4

int dev_id; /* device id; index into Dev_Tbl */

int filesize;

int count; /* # of files assoc’d with i-node */

int allocated_blocks[MAX_BLOCK];

/* info on where file is stored */

int *hook;

};

It should be clear here that you don’t need to have inode id’s for inodes. It’s completely at your
discretion. The filesystem is recreated each and every time, so the inodes for files will change from run
to run. You might also want to refer to Dev Tbl, which is on page 34 of the OSP manual, but I’ve
included it here.

typedef struct dev_entry_node DEV_ENTRY;

struct dev_entry_node {

int dev_id; /* device id - index into Dev_Tbl; */

/* set by the simulator */

BOOL busy; /* the busy flag; true if busy */

BOOL free_blocks[MAX_BLOCK];

/* block i is free if and only if */

/* free_blocks[i] == true */

IORB *iorb; /* iorb serviced by this device */

int *dev_queue /* optional ptr to device queue */

int hook;

};

DEV_ENTRY Dev_Tbl[MAX_DEV];

I’m not going to real far into depth here. But you can imagine that you’ll have to check the free block
to see if you can write to a block. Also you need to set all the blocks to free when you start it up.

typedef struct ofile_node OFILE;

/* entry in the table of open files */

struct ofile_node {

int ofile_id; /* used by the trace facility; */

/* set by the simulator */

int dev_id; /* device where file resides */

int iorb_count; /* # of this file’s pending iorb’s */

INDOE *inode; /* pointer to this files i-node */

int *hook;

};

This will form your table of open files. It contains information on what device the file is on and also
the INODE that it resides in.

Procedure Descriptions

This section will give brief overviews of what each function should do. They are not the only way to
do this assignment. I would suggest trying your own way, then trying to figure out these ways.

Fall 2002 Illinois Institute of Technology



CS450-001/051/091/092/251 Assignment 7 5

openf

openf() takes two parameters, filename which is your standard C character string, and a pointer
to an OFILE that is allocated by the simulator. openf() must fill in all the proper values for this.
First it searches the directory for filename, if its not there, you have to create it. Because no
routines outside of the files.c call your create file routine, it can be private.
The OFILE template is initialized by setting the inode field to the location where the file exists
and then setting the iorb count to 0. You will need to copy the device id from inode to to the
OFILE, this is a bit of redundancy, but pays off for performance. After this the count field of the
inode is incremented. There cannot be a case where a file cannot be opened because it operates
a little like Unix where if a file doesn’t exist, it is created.

closef

closef() simply closes a file and removes its entry from the list. See page 40 for more details. It
is important that the failure conditions are checked.

files init

files_init() creates all of the data structures you need. You should iterate over all of the devices
(from 0 to MAX DEV-1) and set their free blocks to MAX_BLOCK. For each block on that device you
need to set it free. You can set an individual block j on device i via Dev_Tbl[i].free_blocks[j] = free;.
Then you need to iterate over free_files[] from 0 to MAX OPENFILE-1 and set each entry to
true. Finally iterate over each free_inode[] from 0 to MAX OPENFILE-1 and set each entry
to true.
You may choose to use different structures than free_inode[] and free_files[]. That is your
choice however you do it. In any case you need an easy way to tell if a slot is free or not. Arrays
are good for that sort of thing because access is always indexed.

readf and writef

These functions start out pretty similar. An OFILE template is passed in. This information must
be filled in. The first thing that you need to do is to locate the OFILE that matches the start of
the template that is passed in. I have a little helper routine called locate_ofile that iterates
through my list of open files and returns open_files_tbl[i] if it equals the OFILE that is passed
in. This function will not work right out of the box, but it should give you an idea how to index
stuff.

PRIVATE

OFILE *locate_ofile(file)

OFILE *file;

{

int i;

i = 0;

while((i < MAX_OPENFILE) && (open_files_tbl[i] != file))

i++;

if (i == MAX_OPENFILE)

return(NULL);

return open_files_tbl[i];

}

If for some reason we get a NULL when that function returns, we’ve got something weird going on
and need to call osp_abort() so we can stop it.

Fall 2002 Illinois Institute of Technology



CS450-001/051/091/092/251 Assignment 7 6

Next for reads we need to see if the position is less than 0 or if it’s greater than the end of the
file. On a write we need to check if it is less than 0. This is because we can’t read where there is
no data and we can’t write to a negative offset. If this is the case, we set iorb->dev_id = -1;

and return with fail as the argument.
Now I’ll explain the rest of read and write separately with read first.
Next you check to see if the physical block of the file is empty or not (via something like
find_block_read(position,file->inode)) and if it is, we need to complain also because we
are trying to read a file that doesn’t exist.
If we’ve made it this far, we can now copy the stuff over from iorb and set it up to forward to the
interrupt driver. Here is a snippet that may help here:

iorb->dev_id = file->inode->dev_id;

iorb->block_id = phys_block;

iorb->pcb = PTBR->pcb;

iorb->action = read;

iorb->page_id = page_id;

iorb->file = file;

iorb->hook = NULL;

/* set event happened to false */

iorb->event->happened = false;

/* increment the pending I/O */

file->iorb_count += 1;

/* set the interrupt vector to indicate a read interrupt */

Int_Vector.event = iorb->event;

Int_Vector.iorb = iorb;

Int_Vector.cause = iosvc;

gen_int_handler();

Now for the writef() function. After you make sure it’s not a negative offset, you need to figure
out if we need a new block for the data. I do this in a little bit of a round about way. You can
see some of the code here:

fb = file->inode->filesize == 0 ? -1 :

(file->inode->filesize-1)/PAGE_SIZE;

rb = (position)/PAGE_SIZE;

if (rb > fb) {

new_block_num = rb - fb;

if (allocate_block(new_block_num,file->inode)==EMPTY) {

iorb->dev_id = -1;

return(fail);

}

If we’ve made it this far, you need to see if the position is beyond the end of the file, if it is,
increment the file size. Then you need to assemble the iorb. Here is the code that might help you
do that:

iorb->dev_id = file->inode->dev_id;

Fall 2002 Illinois Institute of Technology



CS450-001/051/091/092/251 Assignment 7 7

iorb->block_id = file->inode->allocated_blocks(rb);

iorb->pcb = PTBR->pcb;

iorb->action = write;

iorb->page_id = page_id;

iorb->file = file;

iorb->hook - NULL;

/* set event happened to false */

iorb->event->happened = false;

/* increment number of pending I/O */

file->iorb_count += 1;

/* set interrupt vector to indicate a write */

Int_Vector.event = iorb->event;

Int_Vector.iorb = iorb;

Int_Vector.cause = iosvc;

gen_int_handler();

notify files

This is probably one of the shortest functions you’ll write here. It’s pretty straight forward.
An IORB is passed in. You set get the OFILE from that and locate the full record of it using the
locate_ofile routine previously mentioned. If there is a record, then decrease file->iorb_count
by one. Otherwise if there isn’t a record, we’ve got something wrong in our system and need to
abort immediately.

Fall 2002 Illinois Institute of Technology


