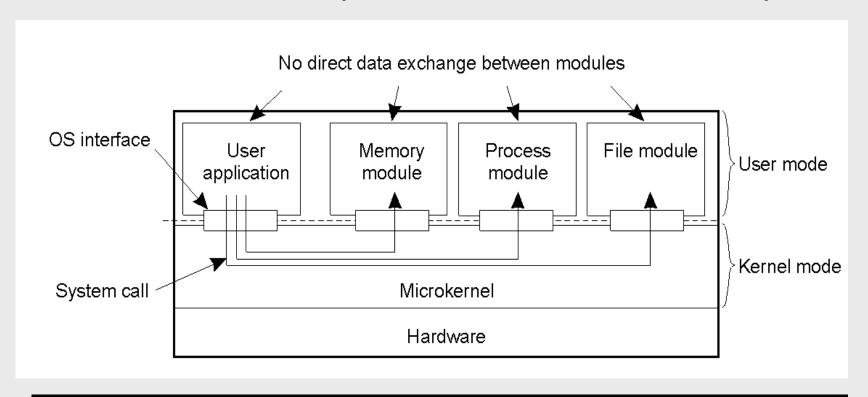

Software Concepts

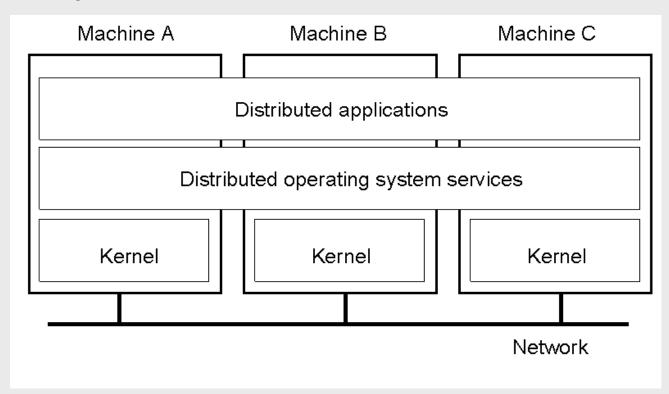


- Operating system:
 - Interface between users and hardware
 - Implements a virtual machine that is easier to program than raw hardware
- Primary functions:
 - Services: file system, virtual memory, networking, CPU scheduling,
 - Coordination: concurrency, memory protection, security, networking,...

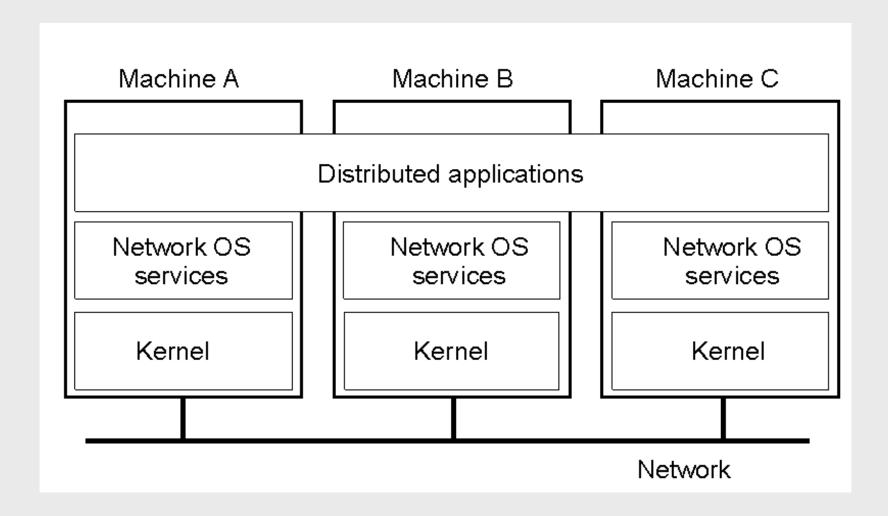
Uniprocessor Operating Systems

Microkernel architecture

- Small kernel
- user-level servers implement additional functionality

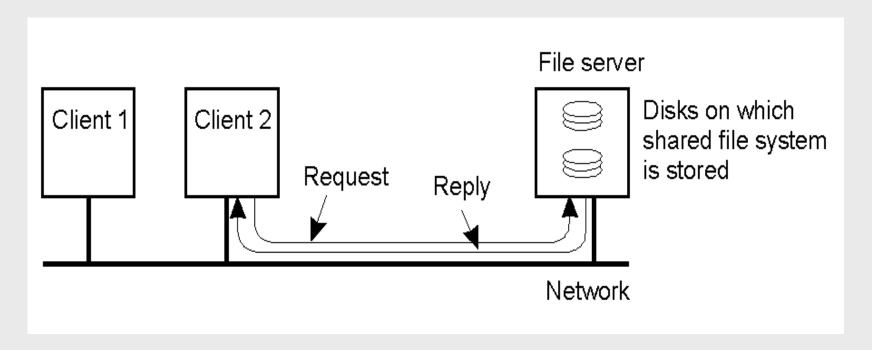


Multiprocessor Operating Systems


- Like a uniprocessor operating system
- Manage multiple CPUs transparently to the user
- Each processor has its own hardware cache
 - Maintain consistency of cached data
 - Scalability issues
- Shared variable versus message passing

Multicomputer Operating Systems

- More complex than multiprocessor OS
 - Because communication has to be through explicit message passing

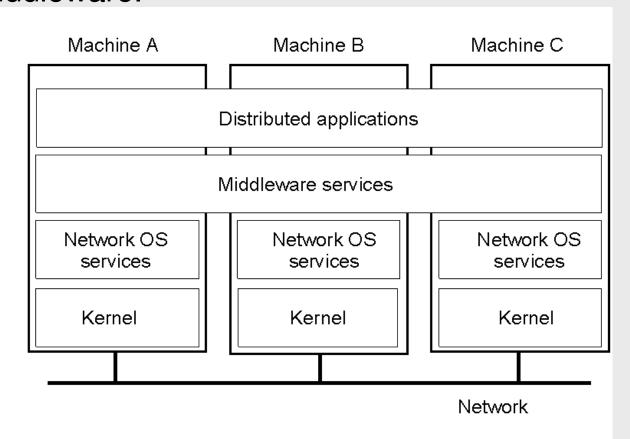


Network Operating System

Network Operating System

- Employs a client-server model
 - Minimal OS kernel
 - Additional functionality as user processes

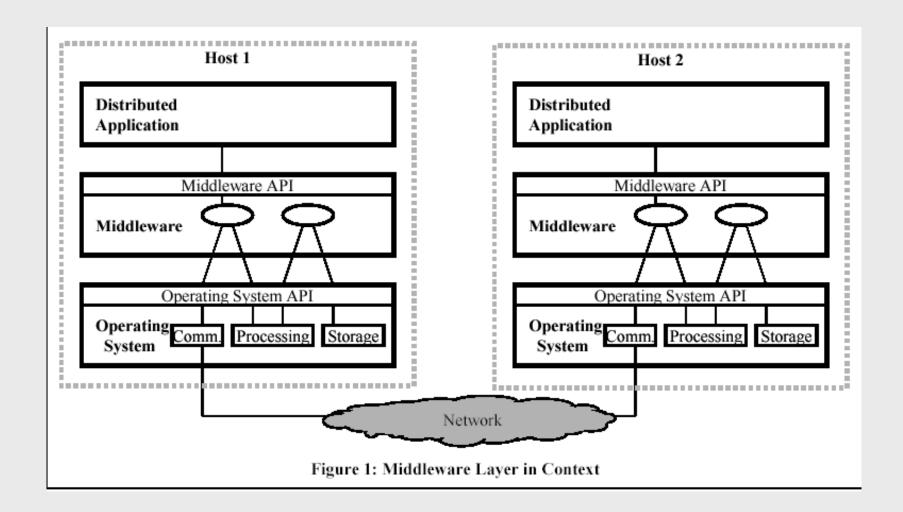
Network-Operating Systems


- Users are aware of multiplicity of machines.
 Access to resources of various machines is done explicitly by
 - Remote logging into the appropriate remote machine.
 - Transferring data from remote machines to local machines, via the File Transfer Protocol (FTP) mechanism.

Distributed Operating System

- Users not aware of multiplicity of machines.
- Manages resources in a distributed system
 - Seamlessly and transparently to the user
- Looks to the user like a centralized OS
 - But operates on multiple independent CPUs
- Provides transparency
 - Location, migration, concurrency, replication,...
- Presents users with a virtual uniprocessor

Middleware-based Systems


General structure of a distributed system as middleware.

What is Middleware

- Software above the operating system but below the application program
- Middleware refers to the software that is common to multiple applications and builds on the network transport services to enable ready development of new applications and network services
- CORBA, DCOM, Java RMI, Grid

Middleware Layer

Technical Challenges

The changing environment

 Computing world has changed and middleware has to adapt to this ever changing environment

Architecture

 New technological advances impose changes in established middleware architecture

Dynamic configuration

 Dynamic changes in system configuration will be inherent characteristics of future computing environments.

Client/Server Organization

- Server: a sw module manages a set of resources of a particular type using certain policies and methods.
 - Servers may be run in different machines
 - Mail server, http server
 - A machine can maintain more than one server
- Client: a sw module requests services from servers.
- Centralized server versus by distributed servers
 - centralized server: e.g. printer and mail
 - distributed servers: e.g. file servers
- Proxy server and caches: middleman between origin server and clients

Peer-to-Peer Organization

- All processes play similar roles, interacting cooperatively as peers to perform a distributed activity or computation without any distinction between clients and servers.
- Fully distributed and parallel
- For Example
 - Remote memory access
 - Process migration
 - P2P file exchange

Mobile Code Organization

Mobile codes

- Programs that function as they are transferred from one host to the other. Instead of sending requests associated with input data to a server for processing, the mobile code approach uploads codes to the server for execution
- E.g. Javascript code, Java Applets

Mobile agent

- has the ability to travel from host to host autononmously, carrying their code as well as running state.
- Itinerary mobility (proactive mobility)
- Security in mobile agents
 - Server protection
 - Agent protection

Any Questions?

Questions?

- •What is the difference between operating system and (software) system?
- •What is the difference between network OS and Distributed OS?
- •What is the difference between Distributed OS and Distributed (software) system?
- •What is middleware?
- •What is the difference between middleware and Distributed (software) system?

Distributed Systems

What is a distributed (computing) system?

"A collection of independent computers that appears to its users as a single coherent system"

-A. Tanenbaum

Examples

- Some examples of distributed systems
 - Department computing cluster
 - Corporate systems
- Application examples
 - Email
 - News
 - Multimedia information systems- video conferencing
 - Airline reservation system
 - Banking system
- What is the most used distributed system?
 - World Wide Web

Distributed vs. Single Systems

- Data sharing
 - Multiple users can access common database, data files,...
- Device/resource sharing
 - Printers, servers, CPUs,....
- Communication
 - Communication with other machines...
- Flexibility
 - Spread workload to different & most appropriate machines
- Extensibility
 - Add resources and software as needed

Distributed vs. Centralized Systems

- Economics
 - Microprocessors have better price/performance than mainframes
- Speed
 - Collective power of large number of systems
- Geographic and responsibility distribution
- Reliability
 - One machine's failure need not bring down the system
- Extensibility
 - Computers and software can be added incrementally

Disadvantages of Distributed Systems

Software

- Little software exists compared to central processing
- Complexity of the system: coordination of processes

Networking

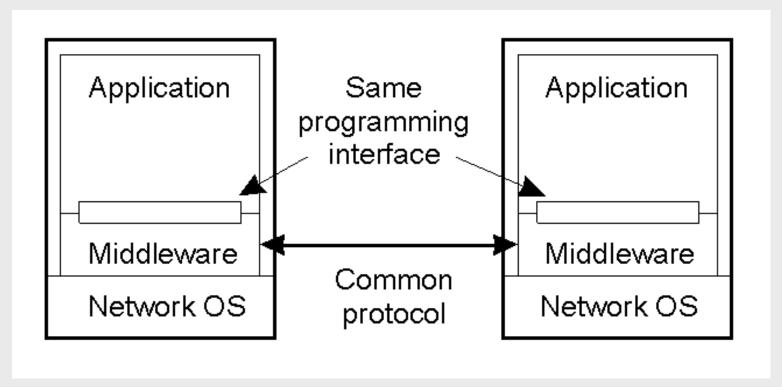
Still slow and can cause other problems (e.g. when disconnected)

Security

- Data may be accessed by unauthorized users
- Authentication, in addition to access and flow control

Key Characteristics

- Support for resource sharing
- Openness
- Concurrency
- Scalability
- Fault tolerance (reliability)
- Transparence


Resource Sharing

- Share hardware,software,data and information
- Hardware devices
 - Printers, disks, memory,
- Software sharing
 - Compilers, libraries, toolkits,...
- Data
 - Databases, files,...

Openness

- Determines whether the system can be extended in various ways without disrupting existing system and services
- Hardware extensions
 - Adding peripherals, memory, communication interfaces...
- Software extensions
 - Operating systems features
 - Communication protocols
- Standard rules and protocols

Middleware and Openness

 In an open middleware-based distributed system, the protocols used by each middleware layer should be the same, as well as the interfaces they offer to applications.

Concurrency

- In a single system several processes are interleaved
- In distributed systems: there are many systems with one or more processors
 - Many users simultaneously invoke commands or applications
 - Many servers processes run concurrently, each responding to different client request
 - What is the difference between parallel and concurrent processing?

Scalability

- Scale of system
 - Few PCs servers ->dept level systems->local area networks->internetworked systems->wide area network...
 - Ideally, system and application software should not change as systems scales
- Scalability depends on all aspects
 - Hardware
 - Software
 - Networks
 - Application

Fault Tolerance

- Ability to operate under failures: possibly at a degraded performance level
- Two approaches:
 - Hardware redundancy: use of redundant components
 - Software recovery: design of programs to recover, Checkpointing/migration
- In distributed systems:
 - Servers can be replicated
 - Databases may be replicated
 - Software recovery involves the design so that state of permanent data can be recovered
- Fault detection

Transparency in a Distributed System

Transparency	Description		
Access	Hide differences in data representation and how a resource is accessed		
Location	Hide where a resource is located		
Migration	Hide that a resource may move to another location		
Relocation	Hide that a resource may be moved to another location while in use		
Replication	Hide that a resource may be shared by several competitive users		
Concurrency	Hide that a resource may be shared by several competitive users		
Failure	Hide the failure and recovery of a resource		
Persistence	Hide whether a (software) resource is in memory or on disk		

Distributed Operating System

- Manages resources in a distributed system
 - Seamlessly and transparently to the user
- Looks to the user like a centralized OS
 - But operates on multiple independent CPUs
- Provides transparency
 - Location, migration, concurrency, replication,...
- Presents users with a virtual uniprocessor

Types of Existing Distributed OSs

System	Description	Main Goal
DOS	Tightly-coupled operating system for multi- processors and homogeneous multicomputers	Hide and manage hardware resources
NOS	Loosely-coupled operating system for heterogeneous multicomputers (LAN and WAN)	Offer local services to remote clients
Middleware	Additional layer atop of NOS implementing general-purpose services	Provide distribution transparency

An overview of

- DOS (Distributed Operating Systems)
- NOS (Network Operating Systems)
- Middleware

Comparison between Systems

Thomas	Distributed OS		Network	Middleware-	
Item	Multiproc.	Multicomp.	os	based OS	
Degree of transparency	Very High	High	Low	High	
Same OS on all nodes	Yes	Yes	No	No	
Number of copies of OS	1	N	N	N	
Basis for communication	Shared memory	Messages	Files	Model specific	
Resource management	Global, central	Global, distributed	Per node	Per node	
Scalability	No	Moderately	Yes	Varies	
Openness	Closed	Closed	Open	Open	

Summary

- Key issues of distributed systems
- Hardware concepts
 - Multiprocessors
 - Multicomputers
 - Distributed systems
- Software concepts
 - Uniprocessor OS
 - Distributed OS
 - Network OS
 - Middleware
- Readings
 - Review Central OS, Chapter 1 of the text