

cs330 - Discrete Structures Spring 2001

Final Exam

closed books, closed notes

Starts: 8:30 am

Ends: 10:30 am

Name:_____(please print)

ID:_____

Problem	Max points	Your mark	Comments
1	9		
2	15		5+5+5
3	5		
4	10		
5	10		5+5
6	5		
7	5		
8	6		3+3
9	5		
10	40		8*5
	110		

1. Consider the set *S* of all functions of type $N \rightarrow \{0, 1\}$, where *N* is the set of natural numbers. Decide whether this set is countable or not. Prove your answer (a correct guess earns you 1/3 of the credit for this problem).

2. Assume the following compound statement: $(\neg p \land (q \leftrightarrow \neg p)) \lor \neg q$

a) Represent the statement using an ordered rooted tree

b) Show the postfix traversal of the tree

c) What is the meaning of the statement?

3. Find a regular expression for the language consisting of strings of odd length over the alphabet {a, b}.

V1

4. Determine whether the strings in the table belong to any of the languages described by the following regular expressions:

RE	0101 belongs to the language (T/F)	10001 belongs to the language (T/F)
1*0*1*		
(1+0)*(1)*		
(0+1+ɛ)*1+(01)*1		
(00)*1*(10)1		
(0+1)+(10+1)*		

5. Assume a FA described by the following state transition table:

	Input	
State	0	1
$\rightarrow * s_0$	s ₂	s ₂
s ₁	s ₃	s_4
* s ₂	s ₂	s ₄
s ₃	s ₃	s ₃
s ₄	s ₃	s ₂

a) Draw the state transition diagram for this FA

V1

b) Decide which of the following strings are accepted by this FA

String	Accepted (T/F)
00110	
011	
0000	
11000	
ε	

6. Construct a finite-state machine that takes an input string consisting of 0's and 1's and outputs *a* whenever the substring 101 is found in the input, otherwise the output is *b*. Use the Mealy model. Overlapping occurences of the substring will be treated as independent occurences.

7. A *palindrome* is a string that reads backward the same as it does forward. For example RADAR is a palindrome. Find a context-free grammar that generates the set of all palindromes over the alphabet {0, 1}

- **8.** Which of the following functions grows faster? Explain.
 - $f_1(n) = 1.01^n 1000000$
 - $f_2(n) = n^{100} + n^{50} + 1000000$

9. Decide whether the relation *isBrotherOf* is an equivalence relation on the set of all people that leave on Earth.

10. Give a definition for:

a) The converse of an implication

b) Relation

c) The time complexity of an algorithm

V1

d) Tree

e) Alphabet

f) Language

g) Regular Language (the inductive definition)

h) Unsolvable problem

V1

