Introduction to Java

Handout-2a

cs402 - Spring 2003



Runtime internals — stack & heap

e Stack: a run-time data structure. Used to do
automatic memory management in block-

structured languages
— Lifetime of storage allocated on stack 1s tied to the
scope in which it was allocated

e Heap: all Java objects are allocated on the heap

— Lifetime of storage allocated on heap 1s independent of
the scope 1n which it was allocated

cs402 - Spring 2003



Arrays (1)

* In Java, arrays are objects

 Java arrays are allocated dynamically and
keep track of their length

Ex:
int dayl[]; // day is variable that points to an

// array of integers

* Since day 1s a reference, i1t’s good for any
size on Int array

cs402 - Spring 2003



Arrays (ii)

* Indexing starts from zero

» Array indexes are checked at run-time

— If subscript attempts to access element outside
the bounds of array, the program will raise
exception and cease execution

cs402 - Spring 2003



Arrays (iii)

* Arrays are like objects
— The language specification says so

— Array types are reference types, just like object

types
— Arrays are allocated with “new” operator
— Arrays are always allocated on heap not stack
— The parent class of all arrays is Object; you can
call any of the methods of Object on an array

cs402 - Spring 2003



Arrays (1v)

* In some ways arrays are not like objects

— Can’t make an array be the child of some class
other than Object

— Arrays have a different syntax from other
object classes

— Can’t define your own methods for arrays

cs402 - Spring 2003



Ex:

Arrays (V)

public static void main(String argsI[]) {

int

i=0, n, k;

args.length; // number of arguments (the
// total number of Strings in args/|]
args[i] .length(); // length of string at

// index i1 in args/|]

cs402 - Spring 2003



Arrays (V1)

* Declaring an array only creates a reference

int days[]; // days can hold a reference to

// to any size array of int

* You must make the reference point to an
array before you can use it

days = new int [7];

* Once the array object has been created 1t
cannot change 1n size

cs402 - Spring 2003



Arrays (v

 Initialization; same as objects

— Fields that are primitive types are created and initialized
to zero

— Fields that are reference type are initialized to null
(don’t point to anything yet)

Ex:

cherry = new int[256]; // creates 256 integers

cherry[7] = 123;

Fruit cherry = new Fruit[256]; // array of 256 references
cherry[7] .grams = 4; // Run-time error. cherry[7] is a null

// reference

cs402 - Spring 2003 9



Arrays (vii1

* You can initialize an array in its declaration using
an array initializer

byte b[] = { 0, 1, 2, 3, 4, 2 }; // array of 6 bytes
String weekendDays[] = {“Sat”, “Sun”, };

e Can’t use an array 1nitializer anywhere out side a
declaration

weekendDays = {“Sat”, “Sun”, }; // Error

weekendDays new String[] {“Sat”, “Sun”, }; // Ok

cs402 - Spring 2003 10



Arrays (1x)

* The language specification says there are no
multi-dimensional arrays 1n Java

» Java only has arrays of arrays and 1t calls
them arrays of arrays

Ex:

Fruit plums([] []1; // array of arrays whose elements
// are Fruit objects

plums = new Fruit[5] [6]; // array[5] of arrayl[6]

plums [i] = new Fruit[7]; // Ok

plums [i] [j] = new Fruit(); // individual Fruit

cs402 - Spring 2003 11



Arrays (Xx)

* Bottom-level arrays do not have to be all of
the same size

Ex:

int myTable[] [] = new int[][] {
new int[] {0},
new int[] {0,1},
new int[] {0,1,2},

} i

cs402 - Spring 2003 12



Arrays (X1)

 If you don’t instantiate all dimensions at
once, then you have to instantiate the most
significant dimensions first

Ex:

int applel[] [] = new int [5] [] // Ok

int applel] [] = new int[5] [6]; // Ok

int applel] [] = new int[] [3]; // Error

cs402 - Spring 2003 13



Operators (1)

* The order of operand evaluation 1s well
defined 1n Java
— Expressions are evaluated left-to-right

— The left operand 1s evaluated before the right
operand of a binary expression; true even for
the assignment operator

— In an array reference the expression before the
[] 1s fully evaluated before any part of the index
1s evaluated

cs402 - Spring 2003 14



Operators (11)

* A method call for an object has the general form
objectinstance.methodName(arguments)

— The objectInstance 1s fully evaluated before the
methodName and arguments

— Arguments are evaluated one by one, from left to the
right
 In an allocation expression for an array of several
dimensions, the dimension expressions are
evaluated one by one from left to right

cs402 - Spring 2003

15



Associativity

 There are three factors that influence the
ultimate value of an expression:

— Precedence indicates that some operations bind
more tightly than others

— Associativity 1s the tie breaker for deciding the
binding when we have several operators of
equal precedence strung together

— Order of evaluation tells the sequence, for each
operator, in which the operands are evaluated

cs402 - Spring 2003 16



