
cs402 - Spring 2003 1

Introduction to Java

Handout-2a

cs402 - Spring 2003 2

Runtime internals – stack & heap

• Stack: a run-time data structure. Used to do
automatic memory management in block-
structured languages
– Lifetime of storage allocated on stack is tied to the

scope in which it was allocated

• Heap: all Java objects are allocated on the heap
– Lifetime of storage allocated on heap is independent of

the scope in which it was allocated

cs402 - Spring 2003 3

Arrays (i)

• In Java, arrays are objects
• Java arrays are allocated dynamically and

keep track of their length
Ex:

int day[]; // day is variable that points to an

// array of integers

• Since day is a reference, it’s good for any
size on int array

cs402 - Spring 2003 4

Arrays (ii)

• Indexing starts from zero
• Array indexes are checked at run-time

– If subscript attempts to access element outside
the bounds of array, the program will raise
exception and cease execution

cs402 - Spring 2003 5

Arrays (iii)

• Arrays are like objects
– The language specification says so
– Array types are reference types, just like object

types
– Arrays are allocated with “new” operator
– Arrays are always allocated on heap not stack
– The parent class of all arrays is Object; you can

call any of the methods of Object on an array

cs402 - Spring 2003 6

Arrays (iv)

• In some ways arrays are not like objects
– Can’t make an array be the child of some class

other than Object
– Arrays have a different syntax from other

object classes
– Can’t define your own methods for arrays

cs402 - Spring 2003 7

Arrays (v)
Ex:

public static void main(String args[]) {

int i=0, n, k;

n = args.length; // number of arguments (the

// total number of Strings in args[]

k = args[i].length(); // length of string at

// index i in args[]

}

cs402 - Spring 2003 8

Arrays (vi)

• Declaring an array only creates a reference
int days[]; // days can hold a reference to

// to any size array of int

• You must make the reference point to an
array before you can use it

days = new int[7];

• Once the array object has been created it
cannot change in size

cs402 - Spring 2003 9

Arrays (vii)

• Initialization; same as objects
– Fields that are primitive types are created and initialized

to zero
– Fields that are reference type are initialized to null

(don’t point to anything yet)
Ex:
cherry = new int[256]; // creates 256 integers

cherry[7] = 123;

Fruit cherry = new Fruit[256]; // array of 256 references

cherry[7].grams = 4; // Run-time error. cherry[7] is a null

// reference

cs402 - Spring 2003 10

Arrays (viii)

• You can initialize an array in its declaration using
an array initializer

byte b[] = { 0, 1, 2, 3, 4, 2 }; // array of 6 bytes

String weekendDays[] = {“Sat”, “Sun”, };

• Can’t use an array initializer anywhere out side a
declaration

weekendDays = {“Sat”, “Sun”, }; // Error

weekendDays = new String[] {“Sat”, “Sun”, }; // Ok

cs402 - Spring 2003 11

Arrays (ix)

• The language specification says there are no
multi-dimensional arrays in Java

• Java only has arrays of arrays and it calls
them arrays of arrays

Ex:

Fruit plums[][]; // array of arrays whose elements

// are Fruit objects

plums = new Fruit[5][6]; // array[5] of array[6]

plums [i] = new Fruit[7]; // Ok

plums [i][j] = new Fruit(); // individual Fruit

cs402 - Spring 2003 12

Arrays (x)

• Bottom-level arrays do not have to be all of
the same size

Ex:

int myTable[][] = new int[][] {

new int[] {0},

new int[] {0,1},

new int[] {0,1,2},

};

cs402 - Spring 2003 13

Arrays (xi)

• If you don’t instantiate all dimensions at
once, then you have to instantiate the most
significant dimensions first

Ex:

int apple[][] = new int[5][]; // Ok

int apple[][] = new int[5][6]; // Ok

int apple[][] = new int[][3]; // Error

cs402 - Spring 2003 14

Operators (i)

• The order of operand evaluation is well
defined in Java
– Expressions are evaluated left-to-right
– The left operand is evaluated before the right

operand of a binary expression; true even for
the assignment operator

– In an array reference the expression before the
[] is fully evaluated before any part of the index
is evaluated

cs402 - Spring 2003 15

Operators (ii)

• A method call for an object has the general form
objectInstance.methodName(arguments)
– The objectInstance is fully evaluated before the

methodName and arguments
– Arguments are evaluated one by one, from left to the

right

• In an allocation expression for an array of several
dimensions, the dimension expressions are
evaluated one by one from left to right

cs402 - Spring 2003 16

Associativity

• There are three factors that influence the
ultimate value of an expression:
– Precedence indicates that some operations bind

more tightly than others
– Associativity is the tie breaker for deciding the

binding when we have several operators of
equal precedence strung together

– Order of evaluation tells the sequence, for each
operator, in which the operands are evaluated

