
cs402 - Spring 2003 1

Introduction to Java

Handout-1c

cs402 - Spring 2003 2

Java Applications

• Type the following program into a file
named HelloWorldCommandLine.java and save
the file in the directory where you do your
work (C:\cs402\)

public class HelloWorldCommandLine {

public static void main(String[] args) {

System.out.println("Hello, World!");

}

}

cs402 - Spring 2003 3

Program execution

• Compile:
– C:\cs402> javac HelloWorldCommandLine.java
– The output is the Java bytecodes file named
HelloWorldCommandLine.class

• To execute call the Java interpreter:
– C:\cs402> java HelloWorldCommandLine

cs402 - Spring 2003 4

Syntax rules

• Comments
// This is a comment

/* this is the first line of a multi-line comment

More comments here.

*/

• White-space: Empty lines, space, tabs do
not affect the program

cs402 - Spring 2003 5

Syntax rules (ii)

• The program starts with import statements
followed by a class definition
– These are user defined classes

• The work class is a keyword
– Always lower case
– Keywords are reserved words by java

• Another keyword is public
• Ex: public MyClass { }

– it indicates that the class can be accessed from other
classes

cs402 - Spring 2003 6

Syntax rules (iii)

• The name of a class is an identifier
– An identifier may not begin with a digit and may not

have any spaces in it
– Ex: public MyClass { }
– The name of the file must be MyClass.java

• Keywords may not be used as identifiers
• Java is case sensitive
• By convention, the name of a class must begin

with a capital letter

cs402 - Spring 2003 7

Syntax rules (iv)
• Import statements

– All import statements are at the beginning of the file,
before any class declaration

• Ex: import java.awt.*;
– This will import all (this is the meaning of *) classes in

the package awt
– You can import only a specific class:
– Ex: import java.awt.event;

• The package java.lang is automatically imported
in every program (you don’t have to use an import
statement)

cs402 - Spring 2003 8

Syntax rules (v)

• Inside the class brackets we define class members:
– Data fields
– Methods (functions)

• Ex:
public class MyClass {

int someIntegerData;

int someMethod() {

…

}

}

• The example defines a class with two members

cs402 - Spring 2003 9

What is OOP?

• Object-oriented programming is 30+ years
old
– Was introduced with Simula-67

• Four key principles
– Abstraction
– Encapsulation
– Inheritance
– Polymorphism

cs402 - Spring 2003 10

Abstraction (i)

• Needed if we are to represent real-world objects in
a computer
– We need to extract the essential characteristics of an

entity. The data representing these characteristics is
what will be used for processing in a computer

• Ex: car
– Registration authority
– Home records
– Garage records

cs402 - Spring 2003 11

Abstraction (ii)

• Data abstraction is the process of refining
away the unimportant details of an object,
such that only the appropriate
characteristics that describe it remain

• Essential object characteristics together
with the operations on the data form an
abstract data type

cs402 - Spring 2003 12

Encapsulation

• Encapsulation associates data and the operations
that can be performed on data in a single unit of
organization (class)

• Non-OOP languages (C, Perl, etc.) support
encapsulation for built-in types, but not for user-
defined types

• OOP languages support encapsulation on built-in
data types AND user defined types
– Operations on user-defined types tend to be expressed

as functions, aka methods

cs402 - Spring 2003 13

Java built-in (primitive) data types

• There are eight built-in types in Java
byte – one byte, 2’s complement representation
short – two bytes, 2’s complement representation
int – four bytes, 2’s complement representation
long – eight bytes, 2’s complement representation
float – four bytes, IEEE-754 standard
double – eight bytes, IEEE-754 standard
char – two bytes, unsigned integer, Unicode
boolean – true or false values

cs402 - Spring 2003 14

Classes (i)

• Class is another word for ‘user-defined type’
• Defining a class

class ClassName { classMembers }

• Defining a class doesn’t bring any of its objects
into existence. Remember, a class is just the
definition of type

• Class members:
– Data
– Functions (methods)

• Objects of a class are known as instances

cs402 - Spring 2003 15

Classes (ii)

• Example of a class:
class Fruit {

int grams;

int totalCalories() {

return grams*10;

}

}

• The class has two members
– A data field named grams of type integer
– A method called totalCalories that takes no arguments and

returns an integer

cs402 - Spring 2003 16

Classes (iii)

• Variables of a class are called objects
• Ex:

Fruit apple, orange, a;

• This declares three objects, apple, orange, and a to
be of type Fruit

• The objects are NOT created when they are
declared:
– apple is a variable that is a reference to an object of

type Fruit.
– When declared, the reference is a null pointer

cs402 - Spring 2003 17

Classes (iv)

Fruit apple;

means

apple

a Fruit object

int grams;

int totalCalories() {
return grams*10;

}

reference to an object

The declaration of an object variables creates a place
in memory that can hold a reference to an object

cs402 - Spring 2003 18

Classes (v)

• Semantic difference between primitive data
types and variables of a class type:
– When declaring a variable of primitive type, the

compiler allocates memory and you can start
using it right away

– When declaring a variable of class type, the
compiler reserves space in memory for a
reference to an object of that class and
initializes the reference to null

cs402 - Spring 2003 19

Classes (vi)

• Operations on Objects: use the “dot”
notation to access the members of a class:
– Ex: apple.grams
– Ex: apple.totalCalories()

• Multi-level references are possible
– Ex: a.b.c.d()

cs402 - Spring 2003 20

Classes (vii)

• Creating new objects: constructors
• A constructor is a special kind of method that you

write as part of a class
– Creates object
– Initializes object

• Has the same name as the class
– Ex: Fruit myBasket = new Fruit();

• The variable myBasket, of type Fruit, now holds a
reference to the object created by calling the
constructor Fruit()

cs402 - Spring 2003 21

Classes (viii)

• Here is the Fruit class with some constructors
Class Fruit {
int grams, caloriesPerGram;
int totalCalories() {
return grams*10;

}

Fruit() { // constructor
grams = 10;
caloriesPerGram = 0;

}

Fruit(int g, int c) { // another constructor

grams = g;
caloriesPerGram = c

}
}

cs402 - Spring 2003 22

Classes (ix)

• If you don’t provide an explicit constructor,
then the default no-arg constructor will be
used:
– Takes no arguments
– Does nothing
– Ensures that each class has at least a constructor

cs402 - Spring 2003 23

Classes (x)

• When the constructor is called:
– Memory for the object is allocated
– Memory allocated for object is initialized with

default values (zero, null, 0.0, etc.). All objects
start with a known state

cs402 - Spring 2003 24

OOP key principles

• Abstraction √
• Encapsulation √
• Inheritance
• Polymorphism

cs402 - Spring 2003 25

Inheritance (introduction)

• A class can be related to another class in a parent-
child relationship

• The child extends the parent class with additional
members or changes

• Ex:
class Fruit {}

class Citrus extends Fruit {}

…

Fruit lime = new Citrus();

• Citrus is a child class of Fruit, aka subclass or
subtype

cs402 - Spring 2003 26

Inheritance (ii)

• Inheritance in OOP is “what you get from the
parent class”

• All classes have a parent class
– All objects in the system are subtypes of

java.lang.Object and have all the members of that
class

class A { … }

really means

class A extends java.lang.Object { … }

cs402 - Spring 2003 27

Inheritance (iii)
• Class: a data type
• Extend: to make a new class that inherits the

contents of an existing class
• Superclass: a parent or “base” class. The word

wrongly suggests that the parent class has more
than the subclass. It means “super” in the sense of
“above”

• Subclass: a child class that inherits, or extends a
superclass. It is called subclass because it only
represents a subset of the universe of things
represented by the superclass

cs402 - Spring 2003 28

Inheritance (iv)

• A constructor in the object’s parent class is
always called
– This is done recursively (all the way back to the

Object class)
– Constructing new object can be expensive

