
cs402 - Spring 2003 1

Introduction to Java

Handout-1d

cs402 - Spring 2003 2

Methods (i)
• Method is the OOP name for function

– Must be declared always within a class

• You can several methods with the same name in
the class
– Same-name methods are said to overload the name
– Methods with same name should do the same thing

Method “signature”

optAccessQualifier returnType methodName (optArgumentList) optThrowsClause {

… // statements

}

cs402 - Spring 2003 3

Methods (ii)

• Primitive variables declared inside a method
have undefined initial values

Class Fruit {

int grams; // instance variable, will be initialized to 0 (zero)

void someMethod() {

int calories; // method variable, need to initialize before using

}

cs402 - Spring 2003 4

Methods (iii)

• Calling a method in the same class
class Fruit {

int grams;

int totalCalories() {

… // Statements

}

void someMethod() {

int i = totalCalories(); //same as i = this.totalCalories()

}

cs402 - Spring 2003 5

Methods (v)

• Calling a method in a different class
class Cooking {

int grams;

Fruit apple = …

void otherMethod() {

int i = apple.totalCalories(); // tell what object to use

}

cs402 - Spring 2003 6

Methods (vi)

• Passing parameters to methods
– Variables of primitive types are passed by value

• The argument’s value is copied and passed to the
method. The method can change this copy, however
this will not change the original argument

– Objects are passed by reference
• The method is directly accessing the object. After

returning from the method the object retains all
changes made in the method

cs402 - Spring 2003 7

Methods (vii)

• Dynamic data structures
Ex:

class BinaryTree {

private Object nodeData;

private Tree left; // left sub-tree

private Tree right; // right sub-tree

…

}

cs402 - Spring 2003 8

Methods (viii)

• Per-instance and per-class members
– static keyword makes something exist per-class, not

per instance of that class
• There are four varieties of static

– Data; the data belongs to the class, not individual
instances of the class

– Methods; these are methods that belong to the class
– Blocks; these are blocks that are executed only once
– Classes; these are classes that are nested in another

class

cs402 - Spring 2003 9

Methods (ix)

• Static data
Ex:

class Employee {

String name; //per object field

int salary; // per-object field

int employee_id; // per-object field

static int total_employees; // per-class field (one only)

…

}

cs402 - Spring 2003 10

Methods – static data

• Inside the class static data is accessed by its name.
• Outside the class, static data can be accessed by:

– Prefix it with the name of an object of that class OR
– Prefix it with the name of the class

Ex:

Employee newhire = new Employee();

newhire.total_employees=1; // reference through the instance

Employee.total_employees=1; // reference through the class

cs402 - Spring 2003 11

Methods – static methods

• Static methods, aka class methods do class
wide operations and do not apply to
individual objects

Ex:

class Employee {

String name;

int salary;

int employee_id;

static int total_employees;

static void clear() {

total_employees = 0;

}

}

cs402 - Spring 2003 12

Methods – static methods

• Access static method: better to call using
the name of the class to avoid confusion
with per-instance methods

Ex:

newhire.clear(); // reference through an instance

Employee.clear(); // better, reference through class

cs402 - Spring 2003 13

Methods – static method pitfalls

• Common error: reference per-object data
from a static method

Ex:

public static void main(String[] args) {

salary = 50000; // Compiler error

Employee e = new Employee();

e.salary = 50000; // This is ok

}

cs402 - Spring 2003 14

Methods – static blocks

• Block of code: statements within a pair of curly
braces

• Static block is prefixed by static
– Inside a class
– Outside all methods
– Most commonly used for initialization
– Each static block is executed once only, when class if

first loaded into the JVM
– Can only access static data

cs402 - Spring 2003 15

Methods – static blocks
Ex:

public class Employee {

String name;

int salary;

int employee_id;

static int total_employees;

static {

if (IncludingTempsAnd Contractors)

total_employees = 100;

else total_employees = 75;

}

}

cs402 - Spring 2003 16

Methods – static classes

• Nested static class: the declaration of an
entire class (methods, data fields,
constructors) as a static member of another
class
– Nested purely for convenience

cs402 - Spring 2003 17

Modifiers - final

• Makes something constant. Can be applied
to code and data
– When reference variable is declared final you

can’t make that variable point at some other
object

– The reference is final not the referenced object

cs402 - Spring 2003 18

Modifiers - final
Ex:

final static int myTotal = 100; // constant data

final Fruit banana = new Fruit(100, 30); // constant reference

Fruit lemon = new Fruit();

banana = lemon; // compilation error

// cannot assign a value to final variable banana

cs402 - Spring 2003 19

Modifiers – final

• Method arguments can be marked as final

Ex:

void someMethod(final MyClass c) {

c.field = 7; // Ok

c = new MyClass(); //compilation error

}

cs402 - Spring 2003 20

Modifiers - final

• Blank final variable: a final variable of any
kind that does not have an initializer
– Must be assigned a value; that value can be

assigned only once
– If you give a value to a blank final in a

constructor, then you must assign it a value in
each constructor

cs402 - Spring 2003 21

Modifiers - final
Ex:

Class Fruit {

final String consumer; // blank final variable

Fruit (String s) { // constructor

consumer = s; // the blank final is now initialized

}

… // more stuff

}

cs402 - Spring 2003 22

Access modifiers

• private: members are not accessible outside the
class

• None (aka “package access”): members are
accessible from classes in the same package

• protected: members are accessible from the
package AND in subclasses of this class
– This is less protected than the default of package access

• public: members are accessible anywhere the class
is accessible

cs402 - Spring 2003 23

Access modifiers - private

• Making a constructor private prevents the class
from being instantiated by other classes

• Making a method private means it can only be
called by another method in the same class

Ex:

class Fruit {

private int grams;

private int caloriesPerGram;

private Fruit() { // constructor

grams = 0;

caloriesPerGram = 0;

}

cs402 - Spring 2003 24

Access modifiers - package
Ex:

class Employee { // package access

String name;

int salary;

static int total_employees;

static void clear() {

total_employees = 0;

}

}

cs402 - Spring 2003 25

Access modifiers - protected
Ex:

class Employee { // package access

protected String name;

protected int salary;

static int total_employees;

protected void giveRaise(int amount) {

salary = salary + amount;

}

}

cs402 - Spring 2003 26

Access modifiers - public
Ex:

public class Employee { // public access

public static void main() {

…

}

…

}

