
cs402 - Spring 2003 1

Introduction to Java

Handout-2b



cs402 - Spring 2003 2

OOP key principles

• Abstraction √
• Encapsulation √
• Inheritance √
• Polymorphism



cs402 - Spring 2003 3

Polymorphism

• It’s Greek for “many shapes”. “Name re-
use” would be a better name

• Two types of polymorphism
– Overloading
– Overriding



cs402 - Spring 2003 4

Overloading (i)

• Same name can be used for several different 
methods
– Methods with the same name should have 

different signatures
– The return type and the exceptions the method 

may raise are not looked at when resolving 
same name functions

• Resolved by the compiler at compile time



cs402 - Spring 2003 5

Overloading (ii)
Ex:

public static int parseInt(String s) throws 
NumberFormatException

public static int parseInt(String s, int radix) throws 
NumberFormatException



cs402 - Spring 2003 6

Overriding

• It occurs when a class extends another and 
the subclass has a method with the exact 
same signature as a method in the 
superclass. Which one is invoked?
– If it’s an object of the subclass, the subclass one
– If it’s an object of the superclass, then 

superclass
• Resolved at run-time



cs402 - Spring 2003 7

Forcing Overriding off: final

• Assume the java.lang.Math class where all 
trig operations are done in radians not 
degrees. Can we extend the class and 
override just the trig methods such that they 
work in degrees instead of radians?



cs402 - Spring 2003 8

Forcing Overriding off: final

• The code might look like this (the code 
below won’t work!)

public class DegreeMath extends java.lang.Math {

public double sin(double d) {

double radians = super.toRadians(d);

double result = super.sin(radians);

return super.toDegrees(result);

}

}



cs402 - Spring 2003 9

Forcing Overriding off: final
public final class Math {

public static native double sin(double a);

…

}

• A class labeled as final cannot be extended
• The sin() method is static. Static methods 

do not participate in overriding. Why?



cs402 - Spring 2003 10

Forcing Overriding off: final

• final class: the class may not be further 
extended by anyone

• final someMethod: the method may not be 
overridden when its class is inherited

• Usually we prevent further inheritance for 
reasons of performance and security



cs402 - Spring 2003 11

Forcing Overriding: abstract

• abstract: a keyword that forces overriding
• The keyword tells the compiler “this thing is 

incomplete and must be extended to be used”
• abstract can be applied to individual methods or 

the whole class
– abstract someMethod: the method has no body; its 

purpose is to force some subclass to override it and 
provide a concrete implementation

– abstract class: zero or more of its methods are 
abstract



cs402 - Spring 2003 12

Forcing Overriding: abstract

• You make a method abstract when three 
conditions are fulfilled
– There will be several subclasses
– You want to handle all the different subclasses 

as an instance of the superclass
– The superclass alone does not make sens as an 

object


