
cs402 - Spring 2003 1

Introduction to Java

Handout-3a

cs402 - Spring 2003 2

Exceptions

• The purpose of exceptions
• How to cause an exception (implicitely or

explicitly)
• How to handle (“catch”) an exception

within the method where it occurs
• Handling groups of related exceptions
• How to handle exceptions if not handled in

the method where it was thrown

cs402 - Spring 2003 3

Exceptions (ii)

• How and why methods declare the
exceptions that can propagate out of them

• Other

cs402 - Spring 2003 4

Exceptions (iii)

• Exceptions change the flow of control when
some important or unexpected event,
usually an error, occurs
– Cope with error or die gracefully

cs402 - Spring 2003 5

Exceptions (iv)

Call chainStack trace
The sequence of method calls that brought
control to the point where the exception
happened

HandlerCatch clauseThe block that does this

HandlingCatching
Capturing an exception that has just
occurred and executing statement to resolve
it

RaisingThrowingCausing an exception to occur

ExceptionExceptionAn error condition that happens at run-time

Other
languagesJavaNote

cs402 - Spring 2003 6

Exceptions (v)

• Explicitly: use the keyword throw
• Implicitly: carry out some invalid or illegal

operation
• If provided, control is transferred to section

of code that handles exception
– Can be in same method or caller method
– If no catch clause found anywhere in the call

chain, then program exits

cs402 - Spring 2003 7

Exceptions (vi)

• The general form of throw statement

throw ExceptionObject

• The ExceptionObject is an object of a class
that extends the class java.lang.Exception

cs402 - Spring 2003 8

Exceptions (vii)
Ex:

class Melon {

public static void main(String[] a) {

int i=1, j=0, k;

k = i/j; // Division-by-zero

// exception

}

cs402 - Spring 2003 9

Exceptions (viii)

• All exceptions are run-time events
– Run-time library code

• Irrecoverable (e.g. NullPointerException,
SecurityException,
ArrayIndexOutOfBoundsException)

• You don’t have to make provisions to catch
– User defined

• Less severe, can recover sometimes (e.g. file not
found, can prompt user for new file name)

• You must provide code to handle

cs402 - Spring 2003 10

Exceptions (ix)

• User defined
Ex:

class OutOfGas extends Exception {}

class Car {

…

if (fuel < 0.1) throw new OutOfGas();

}

cs402 - Spring 2003 11

Exceptions (x)

• Any method that throws a user_defined
exception must either catch or declare it as
part of the method interface

• Exceptions don’t reduce the amount of
work needed to handle errors. They just
provide a well-localized place to collect and
process errors

cs402 - Spring 2003 12

Exceptions (xi)

• Handling exceptions within the method
where it’s thrown

try block // There must at least one (or both)

// of the choices below

[catch (arg) block] // Zero or many of these

[finally block] // Zero or one of these

// If present it will be always

// executed

cs402 - Spring 2003 13

Exceptions (xii)

• A handler can can catch several related
exceptions if the exception objects have the
same superclass

cs402 - Spring 2003 14

Exceptions (xiii)
class Grumpy extends Exception {}

class TooHot extends Grumpy {}

class TooTired extends Grumpy {}

class TooCold extends Grumpy {}

try {

if (temp > 75) throw (new TooHot());

if (sleep < 8) throw (new TooTired());

}

catch (Grumpy g) {

if (g instanceOf TooHot)

{ System.out.println(“caught too hot”); return }

if (g instanceOF TooTired)

{System.out.println(“caught too tired”); return }

}

cs402 - Spring 2003 15

Exceptions (xiv)

• Exception propagation
– If none of the catch clauses match the exception, then

the finally clause is executed (if one exists)
– The flow of control abruptly leaves the the method and

a premature return is done to the method that called. If
that call was in the scope of a try statement, then it
looks for a matching exception

– This continues until a matching exception block is
found or until the top of the call chain is found (when
execution ceases with a message)

cs402 - Spring 2003 16

Exceptions (xv)

• Methods must either catch the exceptions that it
throws or declare it

• This is to let know anyone who writes a call to
that method, that an exception may come back
instead of the normal return

modifiersAndReturnType methodName (params) throws e1, e2 {}

Ex:

byte readByte() throws IOException;

cs402 - Spring 2003 17

Exceptions (xvi)
class OutOfGas extends Exception {

OutOfGas(String s) { super(s); }

}

…

try {

if (j,1) throw new OutOfGas(“try the gas tank”);

}

Catch (outOfGas o) {

System.out.println(o.getMessage());

}

…

// At run-time will print “try the gas tank”

