
Virgil Bistriceanu Illinois Institute of Technology

3

1. Fundamentals of Computer Design

1.1 Introduction

The concept of stored program computers appeared in 1945 when John von
Neumann drafted the first version of EDVAC (Electronic Discrete Variable
Computer). Those ideas have since been the milestones of computers:

• an input device through which data and instructions can be
entered

• storage in which data can be read/written; instructions are like
data, they reside in the same memory

• an arithmetic unit to process data

• a control unit which fetches instructions, decode and execute them

• output devices for the user to access the results.

The improvements in computer technology have been tremendous since
the first machines appeared. A personal computer that can be bought today
with a few thousand dollars, has more performance (in terms of, say,
floating point multiplications per second), more main memory and more
disk capacity than a machine that cost millions in the 50s-60s.

1 Fundamentals of Computer Design

Virgil Bistriceanu Illinois Institute of Technology

4

Four lines of evolution have emerged from the first computers (definitions
are very loose and in many case the borders between different classes are
blurring):

1. Mainframes: large computers that can support very many users
while delivering great computing power. It is mainly in
mainframes where most of the innovations (both in architecture
and in organization) have been made.

2. Minicomputers: have adopted many of the mainframe
techniques, yet being designed to sell for less, satisfying the
computing needs for smaller groups of users. It is the
minicomputer group that improved at the fastest pace (since 1965
when DEC introduced the first minicomputer, PDP-8), mainly due
to the evolution of integrated circuits technology (the first IC
appeared in 1958).

3. Supercomputers: designed for scientific applications, they are
the most expensive computers (over one million dollars),
processing is usually done in batch mode, for reasons of
performance.

4. Microcomputers: have appeared in the microprocessor era
(the first microprocessor, Intel 4004, was introduced in 1971).
The term micro refers only to physical dimensions, not to
computing performance. A typical microcomputer (either a PC or
a workstation) nicely fits on a desk. Microcomputers are a direct
product of technological advances: faster CPUs, semiconductor
memories, etc. Over the time many of the concepts previously
used in mainframes and minicomputers have become common
place in microcomputers.

For many years the evolution of computers was concerned with the
problem of object code compatibility. A new architecture had to be, at least
partly, compatible with older ones. Older programs (“the dusty deck”) had
to run without changes on the new machines. A dramatic example is the
IBM-PC architecture, launched in 1981, it proved so successful that further
developments had to conform with the first release, despite the flaws which
became apparent in a couple of years thereafter.

The assembly language is no longer the language in which new
applications are written, although the most sensitive parts continue to be
written in assembly language, and this is due to advances in languages and
compiler technology.

 1.2 Performance Definition

Virgil Bistriceanu Illinois Institute of Technology

5

The obsolescence of assembly language programming, as well as the
creation of portable operating systems (like UNIX), have reduced the risks
of introducing new architectures. New families of computers are emerging,
many of them hybrids of “classical” families: graphical supercomputers,
multiprocessors, MPP (Massively Parallel Processors), mini-
supercomputers, etc.

1.2 Performance Definition

What is the meaning of saying that a computer is faster than another one? It
depends upon the position you have: if you are a simple user (end user)
then you say a computer is faster when it runs your program in less time,
and you think at the time it takes from the moment you launch your
program until you get the results, this the so called wall-clock time. On the
other hand, if you are system's manager, then you say a computer is faster
when it completes more jobs per time unit.

As a user you are interested in reducing the response time (also called the
execution time or latency). The computer manager is more interested in
increasing the throughput (also called bandwidth), the number of jobs
done in a certain amount of time.

Response time, execution time and throughput are usually connected to
tasks and whole computational events. Latency and bandwidth are mostly
used when discussing about memory performance.

Example 1.1 EFFECT OF SYSTEM ENHANCEMENTS ON RESPONSE TIME, THROUGHPUT:

The following system enhancements are considered:
a) faster CPU
b) separate processors for different tasks (as in an airline reservation
system or in a credit card processing system)
Do these enhancements improve response-time, throughput or both?

Answer:
A faster CPU decreases the response time and, in the mean time, increases
the throughput
a) both the response-time and throughput are increased.

b) several tasks can be processed at the same time, but no one gets done
faster; hence only the throughput is improved.

In many cases it is not possible to describe the performance, either
response-time or throughput, in terms of constant values but in terms of
some statistical distribution. This is especially true for I/O operations. One

1 Fundamentals of Computer Design

Virgil Bistriceanu Illinois Institute of Technology

6

can compute the best-case access time for a hard disk as well as the worst-
case access time: what happens in real life is that you have a disk request
and the completion time (response-time) which depends not only upon the
hardware characteristics of the disk (best/worst case access time), but also
upon some other facts, like what is the disk doing at the moment you are
issuing the request for service, and how long the queue of waiting tasks is.

Comparing Performance

Suppose we have to compare two machines A and B. The phrase A is n%
faster than B means:

Because performance is reciprocal to execution time, the above formula
can be written as:

Example 1.2 COMPARISON OF EXECUTION TIMES:

If machine A runs a program in 5 seconds, and machine B runs the same
program in 6 seconds, how can the execution times be compared?

Answer:
Machine A is faster than machine B by n% can be written as:

%

Therefore machine A is by 16.7% faster than machine B. We can also say
that the performance of the machine A is by 16.7% better than the
performance of the machine B.

Execution time of B
Execution time of A
-- 1 n

100
---------+=

Performance A
Performance B
------------------------------------ 1 n

100
---------+=

Execution_time_B
Execution_time_A
--- 1 n

100
---------+=

n
Execution_time_B Execution_time_A–

Execution_time_A
--*100=

n
6 5–

6
------------ 100× 16.7= =

 1.2 Performance Definition

Virgil Bistriceanu Illinois Institute of Technology

7

CPU Performance

What is the time the CPU of your machine is spending in running a
program? Assuming that your CPU is driven by a constant rate clock
generator (and this is sure the case), we have:

CPUtime = Clock_cycles_for_the_program * Tck

where Tck is the clock cycle time.

The above formula computes the time CPU spends running a program, not
the elapsed time: it does not make sense to compute the elapsed time as a
function of Tck, mainly because the elapsed time also includes the I/O time,
and the response time of I/O devices is not a function of Tck.

If we know the number of instructions that are executed since the program
starts until the very end, lets call this the Instruction Count (IC), then we
can compute the average number of clock cycles per instruction (CPI) as
follows:

The CPUtime can then be expressed as:

The scope of a designer is to lower the CPUtime, and here are the
parameters that can be modified to achieve this:

• IC: the instruction count depends on the instruction set
architecture and the compiler technology

• CPI: depends upon machine organization and instruction set
architecture. RISC tries to reduce the CPI

• Tck: hardware technology and machine organization. RISC
machines have lower Tck due to simpler instructions.

Unfortunately the above parameters are not independent of each other so
that changing one of them usually affects the others.

Whenever a designer considers an improvement to the machine (i.e. you

CPI Clock _cycles_per_program
IC

---=

CPUtime IC * CPI * Tck=

1 Fundamentals of Computer Design

Virgil Bistriceanu Illinois Institute of Technology

8

want a lower CPUtime) you must thoroughly check how the change affects
other parts of the system. For example you may consider a change in
organization such that CPI will be lowered, however this may increase Tck
thus offsetting the improvement in CPI.

A final remark: CPI has to be measured and not simply calculated from
the system's specification. This is because CPI strongly depends of the
memory hierarchy organization: a program running on the system without
cache will certainly have a larger CPI than the same program running on
the same machine but with a cache.

1.3 What Drives the Work of a Computer Designer

Designing a computer is a challenging task. It involves software (at least at
the level of designing the instruction set), and hardware as well at all
levels: functional organization, logic design, implementation.
Implementation itself deals with designing/specifying ICs, packaging,
noise, power, cooling etc.

It would be a terrible mistake to disregard one aspect or other of computer
design, rather the computer designer has to design an optimal machine
across all mentioned levels. You can not find a minimum unless you are
familiar with a wide range of technologies, from compiler and operating
system design to logic design and packaging.

Architecture is the art and science of building. Vitruvius, in the 1st century
AD, said that architecture was a building that incorporated utilitas, firmitas
and venustas, in English terms commodity, firmness and delight. This
definition recognizes that architecture embraces functional, technological
and aesthetic aspects.

Thus a computer architect has to specify the performance requirements of
various parts of a computer system, to define the interconnections between
them, and to keep it harmoniously balanced. The computer architect's job is
more than designing the Instruction Set, as it has been understood for many
years. The more an architect is exposed to all aspects of computer design,
the more efficient she will be.

• the instruction set architecture refers to what the programmer
sees as the machine's instruction set. The instruction set is the
boundary between the hardware and the software, and most of the
decisions concerning the instruction set affect the hardware, and
the converse is also true, many hardware decisions may
beneficially/adversely affect the instruction set.

 1.3 What drives the work of a computer designer

Virgil Bistriceanu Illinois Institute of Technology

9

• the implementation of a machine refers to the logical and
physical design techniques used to implement an instance of the
architecture. It is possible to have different implementations for
some architecture, in the same way there are different possibilities
to build a house using the same plans, but other materials and
techniques. The implementation has two aspects:

• the organization refers to logical aspects of an
implementation. In other words it refers to the high level
aspects of the design: CPU design, memory system, bus
structure(s) etc.

• the hardware refers to the specifics of an implementation.
Detailed logic design and packaging are included here.

1 Fundamentals of Computer Design

Virgil Bistriceanu Illinois Institute of Technology

10

1.3.1 Qualitative Aspects of Design

Functional requirements

The table below presents some of the functional requirements a computer
designer must bear in mind when designing a new system.

Functional requirements Required features
Application area
General purpose Balanced performance
Scientific Efficient floating point arithmetic
Commercial Support for Cobol, data bases

and transaction processing
Special purpose High performance for specific

tasks: DSP, functional
programming, etc.

Software compatibility
Object code Frozen architecture; programs

move easily from one machine to
another without any investment.

High level language Designer has maximum freedom;
substantial effort in software
(compilers) is needed

Operating system requirements
Size of address space Too low an address space may

limit applications
Memory management Flat, paged, segmented etc.
Protection Page protection v. segment

protection
Context switch required to interrupt and restart

programs
Interrupts Hardware support, software

support

Standards
Buses VME, SCSI, IPI etc.
Floating point IEEE 754, IBM, DEC
Operating system UNIX, DOS, Windows NT, OS/

2, proprietary
Networks Ethernet, FDDI, etc.
Programming languages The choice will influence the

instruction set

 1.3 What drives the work of a computer designer

Virgil Bistriceanu Illinois Institute of Technology

11

Balancing software and hardware
This is really a difficult task. You have chosen some functional
requirements that must be met, and now have to optimize your design. To
discuss about an optimum you have to choose some criteria to quantize the
design, such that different versions can be compared. The most common
metrics (criteria) are cost and performance although there are places where
other requirements are important and must be taken into account: reliability
and fault tolerance is of paramount importance in military, transaction
processing, medical equipment, nuclear equipment, space and avionics,
etc.

Sometimes certain hardware support is a must, you probably won't try to
enter the scientific market without strong floating point hardware; ofcourse
the floating point arithmetic can be implemented in software, but you can
not compete with other vendors in this way. Other times it is not clear at all
if certain functional requirements must be implemented in hardware
(where it is presumed to run very fast), or in software, where the major
advantages are easy design and debugging, simple upgradability, and low
cost of errors.

Design today for the tomorrow's markets
Because the design of a new system may take from months to years, the
architect must be aware of the rapidly improving implementation
technologies. Here are some of the major hardware trends:

• Integrated circuit technology: transistor count on a chip
increases by about 25% per year, thus doubling every three years.
Device speed increases at almost the same pace.

• Semiconductor RAM: density increases by some 60% per year,
thus quadrupling every three years; the cycle time has decreased
very slow in the last decade, only by 33%.

• Disk technology: density increases by about 25% per year,
doubling every three years. The access time has decreased only by
one third in ten years.

A new design must support, not only the circuits that are available now, at
the design time, which will become obsolete eventually, but also the
circuits that will be available when the product gets into the market.

The designer must also be aware of the software trends:

• the amount of memory an average program requires has grown
by a factor of 1.5 to 2 per year. In this rhythm the 32 bit address

1 Fundamentals of Computer Design

Virgil Bistriceanu Illinois Institute of Technology

12

space of the processors dominating the market today, will soon be
exhausted. As a matter of fact, the most recently appeared designs,
as DEC's Alpha, have shifted to larger address spaces: the virtual
address of the Alpha architecture is 64 bit and various
implementations must provide at least 43 bits of address.

• increased dependency on compiler technology: the compiler is
now the major interface between the programmer and the
machine. While in the pioneering era of computers a compiler had
to deal with ill designed instruction sets, now the architectures
move toward supporting efficient compiling and ease of writing
compilers.

1.3.2 Quantitative aspects

Make the common case fast

This is a very simple to enounce principle: whenever you have to make a
tradeoff favor the frequent case over the infrequent one.A common
example is related to multiply/divide in a CPU: in most programs the
multiplications (integer of float), by far exceed the number of divisions; it
is therefore no wonder that many CPUs have hardware support for
multiplication (at least for integers) while division is emulated in software.
It is true that in such a situation the division is slow, but if it occurs rarely
then the overall performance is improved by optimizing the common case
(the multiplication).

This simple principle applies not only to hardware, but to software
decisions as well: if you find that some addressing mode, for instance, is
heavily used as compared with others than you may try to optimize your
design such that this particular addressing mode will run faster, hence
increasing the performance of the machine.

A common concern is, however to detect the common case and to compute
the performance gain when this case is optimized. This is easy when you
have to design a system for a dedicated application: its behavior can be
observed and the possible optimizations can be applied. On the other hand,
when you design a general purpose machine, you must very cautiously
consider possible improvements for what seems to be the common case, if
this slows down other parts of the machine; the system will run fine for
applications that fit the common case, but results will be poor in other
cases.

 1.3 What drives the work of a computer designer

Virgil Bistriceanu Illinois Institute of Technology

13

Amdahl's Law

Suppose you enhance somehow your machine, to make it run faster: the
speedup is defined as:

where Told represent the execution time without the enhancement, and
Tnew is the execution time with the enhancement. In terms of performance
the speedup can be defined as:

The Amdahl's law gives us a way to compute the speedup when an
enhancement is used only some fraction of the time:

where Soverall represents the overall speedup and Fenhanced is the fraction of
the time that the enhancement can be used (measured before the
enhancement is applied).

As it can easily be seen the running time after the enhancement is applied:

speedup
Told

Tnew
------------=

speedup performance for task using enhancement
performance for task without enhancement
---=

Soverall
1

1 Fenhanced–()
Fenhanced

Senhanced
----------------------+

--- 1()=

 can be enhanced
Fenhanced * Told

(1 - Fenhanced) * Told

TnewTold

Fenhanced * Told

Senhanced

Tnew 1 Fenhanced–() * Told

Fenhanced * Told

Senhanced
---------------------------------------+=

1 Fundamentals of Computer Design

Virgil Bistriceanu Illinois Institute of Technology

14

from which the relation (1) can be easily derived.

Example 1.3 EFFECT OF SYSTEM ENHANCEMENTS ON OVERALL SPEEDUP:

Suppose you speed up all floating point multiplications by a factor of 10.
At present floating point multiplications represent 20% of the running time
of your program. Which is the overall speedup when you use the
enhancement?

Answer:
Fenhanced = 20% = 0.2
Senhanced = 10

The result is a 22% increase in performance.

It is important to stress that, in using the Amdahl's law you have to use the
fraction of time that can use the enhancement; it is a mistake to use relation
(1) with a value of Fenhanced that was measured after the enhancement has
been in use.

The following example gives a relation for the overall speedup that uses
the fraction of time the enhancement represents from the total, measured
when the enhancement is in use.

Example 1.4 EFFECT OF SYSTEM ENHANCEMENTS ON OVERALL SPEEDUP:

Suppose you speed up all floating point operations by a factor of 10; the
enhanced floating point operations represent f = 20% of the running time,
with the enhancement in use. Which is the overall speedup?

Answer:

f * Tnew

f * Tnew * Senhanced

(1 - f) * Tnew

Tnew Told

 1.3 What drives the work of a computer designer

Virgil Bistriceanu Illinois Institute of Technology

15

As expected, using the same values but in different conditions yield
different results (compare with the result in example 1.3).

Example 1.5 COST AND PERFORMANCE:

Suppose you have a machine used in an I/O intensive environment; the
CPU is working 75% of the time and the rest is waiting for I/O operations
to complete. You may consider an improvement of the CPU by a factor of 2
(it will run twice as fast as it runs now) for a fivefold increase in cost. The
present cost of the CPU is 20% of the machine's cost. Is the suggested
improvement cost effective?

Answer:

The overall speedup is

The cost of the new machine would be Cnew:

Cnew = (1 - 0.2) * Cold + 0.2 * 5 * Cold = 1.8 * Cold

Since the price increases by a factor of 1.8 while the performance increases
only by a factor of 1.6 the improvement is not worth.

Locality of reference

A largely used property of programs is the locality of reference. This
describes the fact that the addresses generated by a normal program, tend to
be clustered to small regions of the total address space, as Figure 1.1
suggests.

Told 1 f–() * Tnew f * Tnew * Senhanced+=

Soverall

Told
Tnew
-------------- 1 f–() f * Senhanced+= =

Soverall 1 0.2–() 0.2 * 10+ 2.8= =

Senhanced 2=

Fenhanced 75% 0.75= =

Soverall
1

1 0.75–() 0.75
2

----------+
--- 1

0.623
------------- 1.6= = =

1 Fundamentals of Computer Design

Virgil Bistriceanu Illinois Institute of Technology

16

The 90/10 rule of thumb says that a program spends 90% of its execution
time in only 10% of the code. There are two aspects of reference locality:

• temporal locality: refers to the fact that recently accessed items
from memory are likely to be accessed again in the near future;
loops in a program are a good illustration for temporal locality;

• spatial locality: items that are near to each other in memory tend
to be referenced near one to another in time; data structures and
arrays are good illustrations for spatial locality.

It is the locality of reference that allows us to build memory hierarchies.

Addresses

Number of

FIGURE 1.1 In a normal program, the number of references is not uniformly distributed
over the whole address space.

references

 Exercises

Virgil Bistriceanu Illinois Institute of Technology

17

Exercises

1.1 The 4 Mbit DRAM chip was introduced in 1990. When do you think
the 64 Mbit DRAM chip will be available?

1.2 Suppose you have enhanced your machine with a floating point
coprocessor; all floating point operations are faster by a factor of 10 when
the coprocessor is in use:

a) what percent of the time should be spent in floating point operations
such that the overall speedup is 2?

b) you know that 40% of the run-time is spent in floating point operations
in the enhanced mode; you could buy new floating point hardware for a
high price (10 times the price of your actual hardware for doubling the
performance), or you may consider an improvement in software
(compiler). How much should increase the percentage of floating point
utilization, compared with the present usage, such that the increase in
performance is the same as with the new hardware you could buy. Which
investment is better; don't forget to state all your assumptions.

1.3 Compute the average CPI for a program running for 10 seconds
(without I/O), on a machine that has a 50 MHz clock rate, if the number of
instructions executed in this time is 150 millions?

1.4 Write a program which generates a uniform range of addresses; what
are the problems you face in trying to write this program?

1 Fundamentals of Computer Design

Virgil Bistriceanu Illinois Institute of Technology

18

