
© 1996, Virgil Bistriceanu

Arithmetic in MIPS

Objectives
After completing this lab you will:

• know how to do integer arithmetic in MIPS

• know how to do floating point arithmetic in MIPS

• know about conversion from integer to floating point and from floating point to integer.

Introduction
The definition of the R2000 architecture includes all integer arithmetic within the actual CPU. Floating point
arithmetic is done by one of the four possible coprocessors, namely coprocessor number 1.

Integer arithmetic
Addition and subtraction are performed on 32 bit numbers held in the general purpose registers (32 bit each).
The result is a 32 bit number itself. Two kinds of instructions are included in the instruction set to do integer
addition and subtraction:

• instructions for signed arithmetic: the 32 bit numbers are considered to be represented in 2’s comple-
ment. The execution of the instruction (addition or subtraction) may generate an overflow.

• instructions for unsigned arithmetic: the 32 bit numbers are considered to be in standard binary repre-
sentation. Executing the instruction will never generate an overflow error even if there is an actual
overflow (the result cannot be represented with 32 bits).

Multiplication and division may generate results that are larger than 32 bits. The architecture provides two
special 32 bit registers that are the destination for multiplication and division instructions. These registers are
called hi and lo as to indicate that they hold the higher 32 bits of the result and the lower 32 bits respectively.
Special instructions are also provided to move data from these registers into the general purpose ones ($0 to
$31).

Instruction Effect

mfhi Rdest Rdest ← hi

mflo Rdest Rdest ← lo

6

© 1996, Virgil Bistriceanu

Two kinds of instructions are included in the instruction set to do integer multiplication and division:

• instructions for signed arithmetic: the 32 bit numbers are considered to be represented in 2’s comple-
ment. An integer multiplication will never generate an overflow. Division may overflow. Note
however that the instruction will not signal the overflow: this must be done in software.

• instructions for unsigned arithmetic: the 32 bit numbers are considered to be in standard binary repre-
sentation. Executing the instruction will never generate an overflow error even if there is an actual
overflow (this is the case for division).

Floating point arithmetic
Floating point arithmetic is performed by the MIPS’ coprocessor 1. The coprocessor has 32 registers, num-
bered from 0 to 31 (their names are $f0 to $f31). Each register is 32 bit wide. To accommodate doubles,
registers are grouped together (0 with 1, 2 with 3,..., 30 with 31). To simplify things, floating-point operations
use only even numbered registers. Arithmetic is performed on single-precision floating-point numbers (32 bit
representation), and on double-precision floating-point numbers (64 bit representation). The odd numbered
registers are used to hold the least significant 32 bits of a double precision number.

Floating point arithmetic resembles the IEEE-754 floating-point standard. A very brief description of number
formats in this standard is given in Appendix A.

Floating-point addition, subtraction, multiplication and division may overflow. An overflow means that the
exponent is too large to be represented in the exponent field.

The MIPS instruction set provides instructions that, beside floating-point operations, do floating-point com-
parisons, branching, load and store from/to memory and conversions between floating point formats and
between integer and floating-point numbers. Unlike the integer unit where comparisons explicitly set some
destination register, in the floating point unit, a comparison will implicitly set a condition flag. The condition
flag can then be tested by branch instructions.

A summary of native instructions is presented in the table below. The x suffix for some instructions should
be replaced by a s (e.g. add.s) to indicate the instruction should operate on single precision floating-point
numbers, or by a (e.g. add.d) to indicate double precision operation.

mthi Rsrc hi ← Rsrc

mtlo Rsrc lo ← Rsrc

Instruction Comment

mfc1 Rdest, FPsrc Move the content of floating-point register FPsrc to Rdest

mtc1 Rsrc, FPdest Integer register Rsrc is moved to floating-point register FPdest

mov.x FPdest, FPsrc Move floating-point register FPsrc to FPdest

lwc1 FPdest, address Load word from address in register FPdesta

swc1 FPsrc, address Store the content of register FPsrc at addressb

add.x FPdest, FPsrc1, FPsrc2 Add single precision

Instruction Effect

© 1996, Virgil Bistriceanu

a. A single-precision floating-point number has the same size as a word (32 bits). Inside coprocessor 1 a word
will be treated as a single-precision number. A synthetic instruction is available to load a double from memory.
b. Stores in memory a single precision number. A synthetic instruction is available to store a double.

sub.x FPdest, FPsrc1, FPsrc2 Subtract FPsrc2 from FPsrc1

mul.x FPdest, FPsrc1, FPsrc2 Multiply

div.x FPdest, FPsrc1, FPsrc2 Divide FPsrc1 by FPsrc2

abs.s FPdest, FPsrc Store the absolute value of FPsrc in FPdest

neg.x FPdest, FPsrc Negate number in FPsrc and store result in FPdest

c.eq.x FPsrc1, FPscr2 Set the floating-point condition flag to true if the two registers
are equal

c.le.x FPsrc1, FPsrc2 Set the floating-point condition flag to true if FPsrc1 is less than
or equal to FPsrc2

c.lt.x FPsrc1, FPsrc2 Set the floating-point condition flag to true if FPsrc1 is less than
FPsrc2

bc1t label Branch if the floating-point condition flag is true

bc1f label Branch if the floating-point condition flag is false

cvt.x.w FPdest, FPsrc Convert the integer in FPsrc to floating-point

cvt.w.x FPdest, FPsrc Convert the floating-point number in FPsrc to integer

cvt.d.s FPdest, FPsrc Convert the single precision number in FPsrc to double preci-
sion and put the result in FPdest

cvt.s.d FPdest, FPsrc Convert the double precision number in FPsrc to single preci-
sion and put the result in FPdest

Instruction Comment

Laboratory 6: Prelab #1 Arithmetic in MIPS

© 1996, Virgil Bistriceanu

Laboratory 6: Prelab Exercise #1

Date Section

Name

Integer Arithmetic in MIPS
During the prelab you will become familiar with integer arithmetic in MIPS. Since you have already used
addition and subtraction in the previous labs, we will focus on issues related to the difference between signed
and unsigned operations, and overflows. An overflow is a situation in which the result of an operation can not
be represented using the assigned number of bits for that result.

Integer addition and subtraction
Unsigned integers are positive integers. With n bits for representation, the smallest unsigned is zero and the
largest is . In a C/C++ program, integer variables which can not possibly be negative, should be
declared as unsigned int (though you will see many programs where all integers are declared as plain
int, i.e. signed integers)

Signed integers can be both positive and negative. With n bits, in 2’s complement representation, the smallest
integer is and the largest is

At the C/C++ programming level the difference between unsigned and signed integers is sometimes ignored.
Note, however that declaring an integer variable that is always positive as int (when it should in fact be
declared as unsigned int), reduces the range of that variable in half.

Ex 1:
// Assume that integers are 32 bit wide
{
unsigned int ex1; // values for ex1 between 0 and 4,294,967,295
int ex2; // values for ex2 between -2,147,483,648 and 2,147,483,647
}

If the variable ex2 is always positive, then its possible values will be in the range 0 to 2,147,483,647, half of
the range an unsigned integer has. ■

Q 1:
A negative number is represented as a bit pattern whose most significant bit is 1 (in 2’s complement repre-
sentation). The same bit pattern, when looked at as an unsigned integer, will be a large number. Fill out the

2
n

1–

2–
n 1–

2
n 1–

1–

Laboratory 6: Prelab #1 Arithmetic in MIPS

© 1996, Virgil Bistriceanu

following table (assume 8 bit number representation for simplicity)

At the assembly language level the difference between signed and unsigned is more subtle. Most instructions
that do arithmetic on signed numbers may overflow and the overflow will be signaled. Thus the trap handler1

can take appropriate action to deal with the situation: ignoring an overflow may result in the computation of
results that are completely wrong.

Instructions that do arithmetic on unsigned integers on the other hand, will not signal an overflow even if the
operation itself yields a result which is not representable with the given number of bits for the result.

Q 2:
In what cases can the operation overflow? In the ‘Addition’ and ‘Subtraction’ columns of the following table
use a ‘Y’ to indicate that the operation can overflow, and ‘N’ to indicate that the operation can not overflow.

1. More about trap handlers in Lab #7

a. Operand_2 is subtracted from Operand_1
b. Strictly greater than 0
c. Strictly smaller than 0

Bit pattern
Value if bit pattern represents a

signed integer
Value if bit pattern represents an

unsigned integer

00000000

01111111

10000000

11111111

Possible cases of overflow for integer addition and subtraction

Operand_1 Operand_2 Addition Subtractiona

positiveb positive

positive negativec

negative positive

negative negative

0 positive

0 negative

positive 0

negative 0

Laboratory 6: Prelab #1 Arithmetic in MIPS

© 1996, Virgil Bistriceanu

Step 1
Write a program, called lab6.1.c which:

• declares two integer variables, a and b. The initial value for a and b is the maximum possible value
for an integer (INT_MAX if you include the limits.h file)

• adds a and b and prints the result

Q 3:
Do you think the addition in lab6.1.c overflows? Explain.

Step 2
Compile and run the executable created from lab6.1.c.

Q 4:
Is the result your program prints correct? Explain.

Most compilers generate code that does not signal integer overflows. An unsuspecting programmer may eas-
ily generate incorrect output without any error message to indicate it.

Step 3
Create the program lab6.1.asm based on the following description:

• in ‘main’ prompts the user to enter two integers; store them in $t0 and $t1

• adds the two numbers using the native signed instruction; store the result in $t2

• prints the result

Run the program and fill out the following test plan. Wherever possible use numbers that would make the
addition overflow. In the ‘Overflows’ column use a ‘Y’ to indicate the operation overflows and a ‘N’ to indi-
cate it does not. In the ‘Comment’ column mark with a star those cases when an overflow error is actually
reported.

Note: carefully choose the numbers you enter for test. The system function that reads an integer from the user
(read_int) will truncate a very big number as to fit an integer register (32 bits). What you have in the register

a b Printed result

Laboratory 6: Prelab #1 Arithmetic in MIPS

© 1996, Virgil Bistriceanu

may be something you did not expect (try for example to enter a number like 8,589,934,593 and then look in
the register where you store the number to see what has actually been stored there).

Step 4
Create the program lab6.2.asm based on the following description:

• in ‘main’ prompts the user to enter two integers; store them in $t0 and $t1

• subtracts the second number from the first using the native signed instruction; store the result in $t2

• prints the result

Run the program and fill out the following test plan. Wherever possible use numbers that would make the
subtraction overflow. In the ‘Overflows’ column use a ‘Y’ to indicate the operation overflows and a ‘N’ to
indicate it does not. In the ‘Comment’ column mark with a star those cases when an overflow error is actually
reported.

Step 5
Testing unsigned addition and subtraction requires some attention. The SPIM simulator always prints the
content of a general purpose register as a signed integer. The fact that a large valid unsigned integer is printed
as a negative number may confuse you. Unsigned numbers larger or equal to (but smaller than) have
the most significant bit 1. Therefore they will be interpreted as negative numbers by the printing function.

Create the program lab6.3.asm based on the following description:

• in ‘main’ prompts the user to enter two integers; store them in $t0 and $t1

• adds the two numbers using the native unsigned instruction; store the result in $t2

• prints the result

Test plan for lab6.1.asm (signed addition)

Operand_1 Operand_2 Printed result Overflows Comment

+2000000000 +2000000000 Y

+ -

- +

- -

Test plan for lab6.2.asm (signed subtraction)

Operand_1 Operand_2 Printed result Overflows Comment

+ +

+ -

- +

- -

2
n 1–

2
n

Laboratory 6: Prelab #1 Arithmetic in MIPS

© 1996, Virgil Bistriceanu

Run the program and fill out the following test plan. Wherever possible use numbers that would make the
addition overflow. In the ‘Overflows’ column use a ‘Y’ to indicate the operation overflows and a ‘N’ to indi-
cate it does not. In the ‘Comment’ column mark with a star those cases when an overflow error is actually
reported.

Step 6
Create the program lab6.4.asm based on the following description:

• in ‘main’ prompts the user to enter two integers; store them in $t0 and $t1

• subtracts the second number from the first using the native unsigned instruction; store the result in $t2

• prints the result

Run the program and fill out the following test plan. Wherever possible use numbers that would make the
subtraction overflow. In the ‘Overflows’ column use a ‘Y’ to indicate the operation overflows and a ‘N’ to
indicate it does not. In the ‘Comment’ column mark with a star those cases when an overflow error is actually
reported.

Test plan for lab6.3.asm (unsigned addition)

Operand_1 Operand_2 Printed result Overflows Comment

+ +

Test plan for lab6.4.asm (unsigned subtraction)

Operand_1 Operand_2 Printed result Overflows Comment

+ +

0 +

Laboratory 6: Prelab #2 Arithmetic in MIPS

© 1996, Virgil Bistriceanu

Laboratory 6: Prelab Exercise #2

Date Section

Name

Integer Arithmetic in MIPS (cont’ d)
During this prelab exercise you will become familiar with integer multiplication and division in MIPS.

Integer multiplication
Integer multiplication can be done using both signed and unsigned numbers. The architecture specifies two
special registers, hi and lo (32 bit each), which are the destination for integer multiplication and division.

Multiplying two n-bit unsigned integers may yield a result that requires bits to be represented.

Ex 1:
Assume 2 bit unsigned integers. Then the largest integer that can be represented using 2 bits is 3 (its binary
representation is 11).

■

For signed multiplication the two numbers to be multiplied are in 2’s complement representation. The result
is also in 2’s complement representation. The result of a signed multiplication may require bits for
representation: there are bits for the magnitude and one bit for the sign.

Since both signed and unsigned integer multiplication never require more than 64 bits for the result, an over-
flow will never occur during integer multiplication using the native multiply instructions.

Multiplication Comment

Decimal

Binary Result requires 4 bits for representation

Native instructions for multiplication

Instruction Comment

mult Rsrc1, Rsrc2 Multiply the signed numbers in Rsrc1 and Rsrc2. The higher 32 bits of the
result go in register hi. The lower 32 bits of the result go in register lo

multu Rsrc1, Rsrc2 Multiply the unsigned numbers in Rsrc1 and Rsrc2. The higher 32 bits of the
result go in register hi. The lower 32 bits of the result go in register lo

2 n⋅

3 3⋅ 9=

11 11⋅ 1101=

2 n⋅ 1–
2 n 1–()⋅

Laboratory 6: Prelab #2 Arithmetic in MIPS

© 1996, Virgil Bistriceanu

The virtual machine provides multiply instructions whose result is the size of a word (the destination register
is some general purpose integer register). Since the destination register is only 32 bit wide, these synthetic
instructions may overflow.

Integer division
The result of an integer division is a quotient (stored in register lo) and a remainder (stored in register hi),
both integer numbers.

• There is one complication related to integer division: the sign of the remainder. There are two
approaches to this problem:

• follow the division theorem from mathematics

• use the computer science view

By dividing an integer DD called dividend, by a positive integer DR called divisor, the following conditions
are true (the division theorem):

(1)
(2)

where Q (the quotient) and RM (the remainder) are unique integers. Note that the remainder is always
positive.

Ex 2:
What is the result of dividing -22 by 3?

DD = -22, DR = 3, Q = -8, RM = +2

Note that relation (1) could be satisfied by Q’ = -7, RM’ = -1. However this solution is not valid since it does
not satisfy the condition that the remainder must be positive (2).

What is the result of dividing +22 by 3?

DD = +22, DR = 3, Q = +7, RM = +1

In this approach . If this was implemented on computers, then programming would definitely
be more fun than it is now. ■

The way division is usually implemented (the ‘computer science way’), the following relations are true:

Synthetic instructions for multiplication

Instruction Comment

mul Rdest, Rsrc1, Rsrc2 Multiply the signed numbers in Rsrc1 and Rsrc2. The lower 32 bits
of the result go in register Rdest.

mulo Rdest, Rsrc1, Rsrc2 Multiply the signed numbers in Rsrc1 and Rsrc2. The lower 32 bits
of the result go in register Rdest. Signal overflow

mulou Rdest, Rsrc1, Rsrc2 Multiply the unsigned numbers in Rsrc1 and Rsrc2. The lower 32
bits of the result go in register Rdest. Signal overflow

DD DR Q⋅ RM+=
0 RM DR<≤

22
7

 –
22–
7

 ≠

Laboratory 6: Prelab #2 Arithmetic in MIPS

© 1996, Virgil Bistriceanu

(3)
(4)
(5)

If the dividend and the divisor have the same sign then the quotient is positive; otherwise it is negative. A
nonzero remainder has always the same sign as the dividend.

Q 1:
What are the results of the following integer divisions?

In MIPS, if one of the operands in a division is negative, then the remainder is unspecified. The SPIM sim-
ulator will return a result based on the conventions on the machine it is run on.

To obtain the correct result for division, extra steps need to be performed:

• convert both operand to positive integers

• perform the division

• set the result to its actual representation based on the initial signs of the dividend and divisor.

A signed division may overflow since the 2’s complement representation of integers is asymmetric: there is
one negative number more than positive numbers. Note however that the overflowing division does not signal
the overflow. It is the compiler’s or programmer’s task to generate proper code that detects the overflow.

Dividing an integer by zero is an illegal operation. However, even if the divisor is zero, the division will report
no error. It is again the compiler’s or programmer’s task to generate proper code that detects the illegal
operation.

Dividend Divisor Quotient Remainder

22 7

-22 7

22 -7

-22 -7

Native instructions for division

Instruction Comment

div Rsrc1, Rsrc2 Divide the signed integer in Rsrc1 by the signed integer in Rsrc2. The quo-
tient (32 bits) goes in register lo. The remainder goes in register hi. Can
overflow.

DD DR Q⋅ RM+=
RM DR<
sign RM() sign DD()=

Laboratory 6: Prelab #2 Arithmetic in MIPS

© 1996, Virgil Bistriceanu

The virtual machine provides divide instructions whose result is stored in a general purpose register.

Step 1
Write a program, called lab6.2.c which:

• declares two integer variables, a and b. The initial value for a and b is the maximum possible value
for an integer (INT_MAX if you include the limits.h file)

• multiplies a and b and prints the result

Q 2:
Do you think the multiplication in lab6.2.c overflows? Explain.

Step 2
Compile and run the executable created from lab6.2.c.

a. If one of the operands is negative then the remainder is undefined.

divu Rsrc1, Rsrc2 Divide the unsigned integer in Rsrc1 by the unsigned integer in Rsrc2. The
quotient (32 bits) goes in register lo. The remainder goes in register hi. Does
not overflow.

Synthetic instructions for division

Instruction Comment

div Rdest, Rsrc1, Rsrc2 Divide the signed integer in Rsrc1 by the signed integer in Rsrc2.
Store the quotient (32 bits) in register Rdest. Can overflow.

divu Rdest, Rsrc1, Rsrc2 Divide the unsigned integer in Rsrc1 by the unsigned integer in
Rsrc2. Store the quotient in Rdest. Does not overflow.

rem Rdest, Rsrc1, Rsrc2 Divide the signed integer in Rsrc1 by the signed integer in Rsrc2.
Store the remaindera (32 bits) in register Rdest. Can overflow.

remu Rdest, Rsrc1, Rsrc2 Divide the signed integer in Rsrc1 by the signed integer in Rsrc2.
Store the remaindera (32 bits) in register Rdest. Does not overflow.

a b Printed result

Native instructions for division

Instruction Comment

Laboratory 6: Prelab #2 Arithmetic in MIPS

© 1996, Virgil Bistriceanu

Q 3:
Is the result your program prints correct? Explain.

Most compilers generate code that does not signal integer overflows. An unsuspecting programmer may eas-
ily generate incorrect output without any error message to indicate it.

Step 3
Create the program lab6.5.asm based on the following description:

• in ‘main’ prompts the user to enter two integers; store them in $t0 and $t1

• multiplies the two numbers using the native signed instruction

• prints the result

Run the program and fill out the following test plan. Use the print command in the simulator to see the
content of registers hi and lo. In the last two rows of the table enter the numbers that represent the largest
possible signed integer and the smallest possible one respectively.

Q 4:
In the second row of this test plan the register hi is all 1s. Why is that?

Step 4
Run the program again and fill out the next test plan. Use the same numbers you have used in the previous

Test plan for lab6.5.asm (signed multiplication): register’s content

Operand_1 Operand_2 Register hi (hexadecimal) Register lo (hexadecimal)

2 1

2 -1

262,144 (=218) 16,384 (=214)

Laboratory 6: Prelab #2 Arithmetic in MIPS

© 1996, Virgil Bistriceanu

step.

Q 5:
Some of the results your program prints are not correct. Why?

Step 5
Create the program lab6.6.asm based on the following description:

• in ‘main’ prompts the user to enter two integers; store them in $t0 and $t1

• multiplies the two numbers using the native unsigned instruction

Run the program and fill out the following test plan.

Q 6:
What numbers are in reality multiplied when the input numbers are 2 and -1? Remember that a negative inte-
ger will mean a large positive unsigned integer.

Test plan for lab6.5.asm (signed multiplication): printed results

Operand_1 Operand_2 Expected result Printed result

Test plan for lab6.6.asm (unsigned multiplication): register’s content

Operand_1 Operand_2 Register hi (hexadecimal) Register lo (hexadecimal)

2 1

2 -1

262,144 (=218) 16,384 (=214)

Number Bit pattern
Value if bit pattern represents an

unsigned integer

2

Laboratory 6: Prelab #2 Arithmetic in MIPS

© 1996, Virgil Bistriceanu

Step 6
Create the program lab6.7.asm based on the following description:

• in ‘main’ prompts the user to enter two integers; store them in $t0 and $t1

• divides the first number by the second one, using the native signed instruction

• prints the quotient and the remainder

Run the program and fill out the following test plan. Use small numbers that would generate a nonzero
remainder. For the last row use a pair of numbers that would make the division overflow. Note that division
by zero (which is an illegal operation) and overflow are different things. In the ‘Comment’ column mark with
a star those cases where an error is reported.

Highlight those cells that contain incorrect results.

Step 7
Create the program lab6.8.asm based on the following description:

• in ‘main’ prompts the user to enter two integers; store them in $t0 and $t1

• divides the first number by the second one, using the native unsigned instruction

• prints the quotient and the remainder

Run the program and fill out the following test plan. Use small numbers that would generate a nonzero
remainder. For the last row use a pair of numbers that would make the division overflow. In the ‘Comment’

-1

Test plan for lab6.7.asm (signed division)

Operand_1 Operand_2 Printed Quotient Printed remainder Comment

+ +

+ -

- +

- -

0

Number Bit pattern
Value if bit pattern represents an

unsigned integer

Laboratory 6: Prelab #2 Arithmetic in MIPS

© 1996, Virgil Bistriceanu

column mark with a star those cases where an error is reported.

Highlight divisions where incorrect results are printed.

Q 7:
What numbers are in reality divided when the input numbers are -1 and +2?

Test plan for lab6.7.asm (unsigned division)

Operand_1 Operand_2 Printed Quotient Printed remainder Comment

+ +

+ -

- +

-1 +2

- -

0

Number Bit pattern
Value if bit pattern represents an

unsigned integer

-1

+2

Laboratory 6: Prelab #3 Arithmetic in MIPS

© 1996, Virgil Bistriceanu

Laboratory 6: Prelab Exercise #3

Date Section

Name

Floating Point Arithmetic in MIPS
During this exercise you will use floating-point instructions. Since the SPIM simulator does implement only
partially the IEEE-754 standard, this exercise will ignore most issues related to the standard, like ways to han-
dle overflows, underflows, denormalized representation, rounding, etc. The focus will be on floating point
number representation.

Floating point numbers
The IEEE-754 standard reserves several bit patterns to have special meaning. In other words not all bit pat-
terns represent some number.

Infinity does not mean mathematically infinite, rather something too big to be represented. An overflow can
return an +inf or a -inf (though the standard also provides a mechanism to determine the correct result in case
of overflows). Some operations on infinity return yet another infinity as a result.

Special bit patterns in IEEE-754

Sign bit Exponent Significand Comment

x 0..0 0..0 Zero

x 0..0 not all zeros Denormalized number

0 1..1 0..0 Plus infinity (+inf)

1 1..1 0..0 Minus infinity (-inf)

x 1..1 not all zeros Not a Number (NaN)

Table 1: Some operations with infinity

Operation Result Comment

x + (inf) inf x finite

x - (+inf) -inf x finite

(+inf) + (+inf) +inf

(-inf) + (-inf) -inf

x * (+inf) +inf if x>0, -inf otherwise x nonzero

Laboratory 6: Prelab #3 Arithmetic in MIPS

© 1996, Virgil Bistriceanu

There can be a positive zero if the sign bit is 0 and a negative zero (the sign bit is 1). Denormalized numbers
are included in IEEE-754 to handle cases of exponent underflow (very small numbers).

A NaN (sometimes denoted by nan) is used to represent an indeterminate result. There are two kinds of NaNs,
signaling and quiet: the actual bit pattern in the significand field is used to differentiate between them, and it
is implementation-dependent. A signaling NaN can be used for instance for uninitialized variables: attempt-
ing to operate on a signaling NaN can cause a trap. Note that any operation on a signaling NaN will have as
a result a quiet NaN. Operating on a quiet NaN simply returns another NaN without generating any exception.

Step 1
Create a program named lab6.9.asm which:

• declares the variables Zero.s, PlusInf.s, MinusInf.s, PlusNaN.s, MinusNaN, of size word, initialized
with the bit patterns corresponding to zero, plus infinity, minus infinity, positive Not a Number, and
negative Not a Number respectively, in single precision representation

• declares the variables Zero.d, PlusInf.d, MinusInf.d, NaN.d, initialized with the bit patterns corre-
sponding to zero, plus infinity, minus infinity, and Not a Number respectively, in double precision

• loads these variables in floating-point registers, starting with $f0

• prints, starting with $f0, the contents of those registers where variables have been loaded; print a new-
line (\n) character after each value.

Run the program. Fill out the following table

Table 2: Some operations which produce a quiet NaN

Operation Comment

x + (NaN) Any operation on a quiet NaN (addition in this example)

(+inf) + (-inf)

0 * (inf)

0/0

inf/inf

x%0 The remainder of division by 0

, x < 0

Printed output when running lab6.9.asm

Variable name Printed output

x

Laboratory 6: Prelab #3 Arithmetic in MIPS

© 1996, Virgil Bistriceanu

Step 2
Create the program lab6.10.asm which:

• declares the same single precision variables as lab6.9.asm

• declares a float called MyNum, initialized to the first two digits of your Social Security Number

• performs an operation which uses MyNum and which generates infinity; print the result. Choose some
operation from Table 1

• performs an operation that generates NaN and print the result; choose some operation from Table 2

Run the program. Fill out the following table

Q 1:
What is the bit pattern for the largest possible single precision floating point number? Write it down in hexa-
decimal.

Printed output when running lab6.10.asm

MyNum Operation implemented Printed result

Printed output when running lab6.9.asm

Variable name Printed output

Laboratory 6: Inlab Arithmetic in MIPS

© 1996, Virgil Bistriceanu

Laboratory 6: Inlab

Date Section

Name

Floating Point Arithmetic in MIPS (cont’ d)
This inlab session will focus on doing floating-point arithmetic and on various conversions.

Step 1
During Lab #4 you created a program named lab4.5.asm which computes the factorial of an integer number.
All operations were performed on integer numbers. You are to create a new program named lab6.11.asm
which computes the factorial of an integer using floating point numbers:

• in ‘main’ prompt the user to enter an integer

• check if the number entered is negative: if it is negative, then print a message saying so and prompt the
user again for a number

• call the procedure named ‘FactorialSingle’ whose parameter will be the number read from the user,
converted to single precision floating-point; the procedure returns the factorial (a single precision
floating-point) of that number

• use the MIPS convention for procedure call

• prints a message and the value returned by ‘FactorialSingle’

Run lab4.5.asm and the new program to complete the following test plan. Use scientific notation for the out-
put printed by lab6.11.asm (i.e. 3.141592e0).

Test plan for lab6.11.asm

Input number lab4.5.asm output lab6.11.asm output

0

5

10

15

20

40

Laboratory 6: Inlab Arithmetic in MIPS

© 1996, Virgil Bistriceanu

Q 1:
Why some of the results printed by lab4.5.asm are negative?’

Q 2:
What are the maximum values of the input for which correct output is still printed?’

Step 2
Using some other method, calculate the exact value of 20! On a UNIX platform you can use bc (the “arbitrary-
precision arithmetic language”). If no software is available to you to do the job, then you will have to use the
old-good pencil and paper method.

Run again lab6.11.asm and write down the value printed for 20!

Q 3:
Why do the two values differ? ’

Q 4:
How many digits are exact in the result printed by lab6.11.asm?

Integer n =

Single precision floating-point n =

The exact value for 20!

20!=

Value printed by lab6.11.asm for 20!

20!=

exact_digits =

Laboratory 6: Inlab Arithmetic in MIPS

© 1996, Virgil Bistriceanu

Q 5:
Based on the answer to the previous question, can you make a rough estimation of the number of digits that
should be printed for a floating-point single precision number?

Step 3
In step 1 you have used the integer to floating point conversion (cvt.s.w). Let’s now try a conversion from
float to integer. Modify lab6.11.asm (save the new program as lab6.12.asm):

• after printing the value returned by ‘FactorialSingle’, convert that value to an integer and print it too.

Run the program and complete the next test plan. Write down the value printed for the factorial as is, don’t
use scientific notation this time.

Highlight those cases where the integer output is a number different than the floating-point output.

Q 6:
Do you think the conversion operation yields a signed integer or an unsigned one? Explain.

Q 7:
As you can see the conversion instruction does not signal any error even if the conversion itself results in a

 digits_to_print =

Test plan for lab6.12.asm

Input number Floating-point output Integer Output

0

5

10

11

12

13

14

15

Laboratory 6: Inlab Arithmetic in MIPS

© 1996, Virgil Bistriceanu

wrong value for the result. What is, in your opinion, the reason the architecture does not specify the conver-
sion instructions should report errors? ’

Q 8:
What would be the sequence of instructions that would emulate a signaling conversion? Do this only for the

float to integer conversion.

Laboratory 6: Postlab Arithmetic in MIPS

© 1996, Virgil Bistriceanu

Laboratory 6: Postlab

Date Section

Name

Step 1
During the prelab exercises you have been, at the very least, annoyed by the fact that you could not correctly
print unsigned integers. By using print_int, a large unsigned integer (larger or equal to) would print
as a negative number. You now want to correct this by providing future users with a procedure that prints
unsigned integers. You will write a procedure, named ‘PrintUnsigned’ which:

• receives the unsigned number to print in $a0

• converts the number to a null terminated ASCII string (the null character is 0x00)

• prints the string

• returns in $v0 the number of non-null characters in the printed ASCII string

Here is the C code for the integer to ASCII conversion function, itoa(). You will have to slightly modify
it and use it in your implementation of ‘PrintUnsigned’.

P.1:
/* code for itoa() from “The C Programming Language” by Kernigan and Richie
*/

void reverse(char *s)
{

int c, i, j;

for(i=0, j=strlen(s)-1; i<j; i++, j--) {
c=s[i];
s[i]=s[j];
s[j]=c;

}
}

void itoa(int n, char *s)
{

int i, sign;

if ((sign=n) < 0)
n = -n;

i=0;
do {

s[i++] = n%10 + '0';
} while((n/=10) > 0);

2
31

Laboratory 6: Postlab Arithmetic in MIPS

© 1996, Virgil Bistriceanu

if (sign < 0)
s[i++] = '-';

s[i] = '\0';
reverse(s);

}

Hints:

• you will need to reserve space in ‘PrintUnsigned’ for the string you generate;

• make sure you use the appropriate (signed/unsigned) arithmetic functions

Step 2
Create a program called lab6.13.asm which you use to test ‘PrintUnsigned’, as follows:

• the program prints six times (in a loop) the value of a counter initialized to ;

• at each iteration the program prints the counter using print_int and then the same counter using
‘PrintUnsigned’

• at each iteration the counter is incremented by one using an unsigned operation

Run the program and complete the following test plan.

Step 3
Return to your lab instructor a copy of lab6.13.asm together with this postlab description. Ask your lab
instructor whether copies of programs must be on paper (hardcopy), e-mail or both.

Test plan for lab6.13.asm

Counter Printed by print_int Printed by ‘PrintUnsigned’

2
31

3–

