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We cover two groups of reduced instruction set computer (RISC) architectures in
this appendix. The first group is the desktop and server RISCs: 

 

�

 

Digital Alpha 

 

�

 

Hewlett-Packard PA-RISC 

 

�

 

IBM and Motorola PowerPC 

 

�

 

MIPS INC MIPS-64

 

�

 

Sun Microsystems SPARC 

The second group is the embedded RISCs: 

 

�

 

Advanced RISC Machines ARM 

 

�

 

Advanced RISC Machines Thumb 

 

�

 

Hitachi SuperH 

 

�

 

Mitsubishi M32R 

 

�

 

MIPS INC MIPS-16   
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There has never been another class of computers so similar. This similarity
allows the presentation of 10 architectures in about 50 pages. Characteristics of
the desktop and server RISCs are found in Figure D.1.1 and the embedded RISCs
in Figure D.1.2. 

Notice that the embedded RISCs tend to have 8 to 16 general-purpose registers
while the desktop/server RISCs have 32, and that the length of instructions is 16 to
32 bits in embedded RISCs but always 32 bits in desktop/server RISCs. 

Although shown as separate embedded instruction set architectures, Thumb
and MIPS-16 are really optional modes of ARM and MIPS invoked by call instruc-
tions. When in this mode they execute a subset of the native architecture using 16-

 

Alpha MIPS I PA-RISC 1.1 PowerPC SPARC v.8 

 

Date announced 1992 1986 1986 1993 1987 

Instruction size (bits) 32 32 32 32 32 

Address space (size, model) 64 bits, flat 32 bits, flat 48 bits, 
segmented

32 bits, flat 32 bits, flat 

Data alignment Aligned Aligned Aligned Unaligned Aligned 

Data addressing modes 1 1 5 4 2 

Protection Page Page Page Page Page 

Minimum page size 8 KB 4 KB 4 KB 4 KB 8 KB 

I/O Memory mapped Memory mapped Memory mapped Memory mapped Memory mapped 

Integer registers (number, model, size) 31 GPR 

 

× 

 

64 bits 31 GPR 

 

× 

 

32 bits 31 GPR 

 

× 

 

32 bits 32 GPR 

 

× 

 

32 bits  31 GPR 

 

× 

 

32 bits

Separate floating-point registers 31 

 

×

 

 32 or 
31 

 

×

 

 64 bits 
16 

 

×

 

 32 or 
16 

 

×

 

 64 bits 
56 

 

×

 

 32 or 
28 

 

×

 

 64 bits 
32 

 

×

 

 32 or 
32 

 

×

 

 64 bits 
32 

 

×

 

 32 or 
32 

 

×

 

 64 bits 

Floating-point format IEEE 754 single, 
double

IEEE 754 single, 
double

IEEE 754 single, 
double

IEEE 754 single, 
double

IEEE 754 single, 
double

 

FIGURE D.1.1 Summary of the first version of five architectures for desktops and servers. 

 

Except for the number of data address
modes and some instruction set details, the integer instruction sets of these architectures are very similar. Contrast this with Figure D.17.1. Later ver-
sions of these architectures all support a flat, 64-bit address space.

 

ARM Thumb SuperH M32R MIPS-16 

 

Date announced 1985 1995 1992 1997 1996 

Instruction size (bits) 32 16 16 16/32 16/32 

Address space (size, model) 32 bits, flat 32 bits, flat 32 bits, flat 32 bits, flat 32/64 bits, flat 

Data alignment Aligned Aligned Aligned Aligned Aligned 

Data addressing modes 6 6 4 3 2 

Integer registers (number, model, size) 15 GPR x 32 bits 8 GPR + SP, 
LR x 32 bits

16 GPR x 32 bits 16 GPR x 32 bits 8 GPR + SP, 
RA x 32/64 bits 

I/O Memory mapped Memory mapped Memory mapped Memory mapped Memory mapped 

 

FIGURE D.1.2 Summary of five architectures for embedded applications. 

 

Except for number of data address modes and some instruc-
tion set details, the integer instruction sets of these architectures are similar. Contrast this with Figure D.17.1.
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bit-long instructions. These 16-bit instruction sets are not intended to be full
architectures, but they are enough to encode most procedures. Both machines
expect procedures to be homogeneous, with all instructions in either 16-bit mode
or 32-bit mode. Programs will consist of procedures in 16-bit mode for density or
in 32-bit mode for performance. 

One complication of this description is that some of the older RISCs have been
extended over the years. We decided to describe the latest version of the archi-
tectures: MIPS-64, Alpha version 3, PA-RISC 2.0, and SPARC version 9 for the
desktop/server; ARM version 4, Thumb version 1, Hitachi SuperH SH-3, M32R
version 1, and MIPS-16 version 1 for the embedded ones. 

The remaining sections proceed as follows. After discussing the addressing
modes and instruction formats of our RISC architectures, we present the survey of
the instructions in five steps: 

 

�

 

Instructions found in the MIPS core, which is defined in Chapters 2 and 3 of
the main text 

 

�

 

Multimedia extensions of the desktop/server RISCs 

 

�

 

Digital signal-processing extensions of the embedded RISCs 

 

�

 

Instructions not found in the MIPS core but found in two or more architectures 

 

�

 

The unique instructions and characteristics of each of the 10 architectures 

We give the evolution of the instruction sets in the final section and conclude with
a speculation about future directions for RISCs.  

Figure D.2.1 shows the data addressing modes supported by the desktop architec-
tures. Since all have one register that always has the value 0 when used in address
modes, the absolute address mode with limited range can be synthesized using zero
as the base in displacement addressing. (This register can be changed by ALU opera-
tions in PowerPC; it is always 0 in the other machines.) Similarly, register indirect
addressing is synthesized by using displacement addressing with an offset of 0. Sim-
plified addressing modes is one distinguishing feature of RISC architectures. 

Figure D.2.2 shows the data addressing modes supported by the embedded
architectures. Unlike the desktop RISCs, these embedded machines do not reserve
a register to contain 0. Although most have two to three simple addressing modes,
ARM and SuperH have several, including fairly complex calculations. ARM has an
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addressing mode that can shift one register by any amount, add it to the other reg-
isters to form the address, and then update one register with this new address. 

References to code are normally PC-relative, although jump register indirect is
supported for returning from procedures, for 

 

case

 

 statements, and for pointer
function calls. One variation is that PC-relative branch addresses are shifted left 2
bits before being added to the PC for the desktop RISCs, thereby increasing the
branch distance. This works because the length of all instructions for the desktop
RISCs is 32 bits and instructions must be aligned on 32-bit words in memory.
Embedded architectures with 16-bit-long instructions usually shift the PC-relative
address by 1 for similar reasons. 

Figure D.2.3 shows the format of the desktop RISC instructions, which
includes the size of the address in the instructions. Each instruction set architec-
ture uses these four primary instruction formats. Figure D.2.4 shows the six for-
mats for the embedded RISC machines. The desire to have smaller code size via
16-bit instructions leads to more instruction formats. 

 

Addressing mode Alpha MIPS-64 PA-RISC 2.0 PowerPC SPARC v.9 

 

Register + offset (displacement or based) X X X X X 

Register + register (indexed)  X (FP) X (Loads) X X 

Register + scaled register (scaled)   X  

Register + offset and update register   X X  

Register + register and update register   X X  

 

FIGURE D.2.1 Summary of data addressing modes supported by the desktop architectures. 

 

PA-RISC also has short address ver-
sions of the offset addressing modes. MIPS-64 has indexed addressing for floating-point loads and stores. (These addressing modes are described in
Figure 2.24 on page 101.) 

 

Addressing mode ARM v.4 Thumb SuperH M32R MIPS-16 

 

Register + offset (displacement or based) X X X X X

Register + register (indexed) X X X   

Register + scaled register (scaled) X   

Register + offset and update register X     

Register + register and update register X     

Register indirect   X X  

Autoincrement, autodecrement X X X X 

PC-relative data X X (loads) X  X (loads)

 

FIGURE D.2.2 Summary of data addressing modes supported by the embedded architectures. 

 

SuperH and M32R have separate reg-
ister indirect and register + offset addressing modes rather than just putting 0 in the offset of the latter mode. This increases the use of 16-bit instructions
in the M32R, and it gives a wider set of address modes to different data transfer instructions in SuperH. To get greater addressing range, ARM and Thumb
shift the offset left 1 or 2 bits if the data size is halfword or word. (These addressing modes are described in Figure 2.24 on page 101.) 
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FIGURE D.2.3 Instruction formats for desktop/server RISC architectures. 

 

These four formats are found in all five architectures. (The
superscript notation in this figure means the width of a field in bits.) Although the register fields are located in similar pieces of the instruction, be
aware that the destination and two source fields are scrambled. Op = the main opcode, Opx = an opcode extension, Rd = the destination register, Rs1
= source register 1, Rs2 = source register 2, and Const = a constant (used as an immediate or as an address). Unlike the other RISCs, Alpha has a for-
mat for immediates in arithmetic and logical operations that is different from the data transfer format shown here. It provides an 8-bit immediate in
bits 20 to 13 of the RR format, with bits 12 to 5 remaining as an opcode extension.

 

 

Register-register

Register-immediate

Branch

Jump/call

Opcode Register Constant

Alpha

MIPS

PowerPC

PA-RISC

SPARC

31 29 24 18 13 12 4 0

31 25 20 15 10 4 0

Op6 Opx11

Opx6

Opx11

Opx8

Opx11

Op6

Op6

Op6

Rs15

Rs15

Rs15

Rd5

Rd5

Rd5

Rd5

Const5

Op2 Opx6

Rs25

Rs15 0

Rs25

Rs25

Rs25

Rs25

Rs15

Rd5

Alpha

MIPS

PowerPC

PA-RISC

SPARC

31 29 24 18 13 12 0

31 25 20 15 0

Op6 Const16

Const16

Const16

Const16

Const13

Op6

Op6

Op6

Rd5

Rs15

Rs25

Rd5

Op2 Opx6

Rs15

Rs15 1

Rd5

Rd5

Rs15

Rd5

Alpha

MIPS

PowerPC

PA-RISC

SPARC

31 29 18 12 01

31 25 20 15 0

Op6 Const21

Const16

Const14 Opx2

Const11 O C

Const19

Op6

Op6

Op6

Rs15

Rs15

Rs25

Opx6

Op2 Opx11

Opx3

Opx5/Rs25

Rs15

Rs15

Alpha

MIPS

PowerPC

PA-RISC

SPARC

31 29 20 15 12 01

31 25 20 0

Op6 Const21

Const26

Const24 Opx2

Const21 O1 C1

Const30

Op6

Op6

Op6

Rs15

Op2
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FIGURE D.2.4 Instruction formats for embedded RISC architectures. 

 

These six formats are
found in all five architectures. The notation is the same as in Figure D.2.3. Note the similarities in branch,
jump, and call formats, and the diversity in register-register, register-immediate, and data transfer formats.
The differences result from whether the architecture has 8 or 16 registers, whether it is a 2- or 3-operand
format, and whether the instruction length is 16 or 32 bits.

Opcode Register Constant

Register-register

ARM

Thumb

SuperH

M32R

MIPS-16

15 10 7 4 1 0

31 27 19 15 11 3 0

Opx4

Opx4

Opx4

Opx4

Opx4

Opx8

Op6

Op4

Op4 Rd4

Rd4

Rs24

Op5 Rs13 Rs23

Rs14 Rd4

Opx2

Rd3Rs3

Rs4

Rd3

Rs14

Register-immediate

ARM

Thumb

SuperH

M32R

MIPS-16

15 10 7 4 0

31 27 19 15 11 0

Opx4

Opx4

Op3 Const12

Op5

Op4

Op4 Rd4

Rd4

Op5 Rs3 Const5

Rs14 Rd4

Rd3 Const8

Const8

Rs4

Rd3

Const16

Data transfer

ARM

Thumb

SuperH

M32R

MIPS-16

15 10 7 4 0

31 27 19 15 11 0

Opx4

Opx4

Op3 Const12

Op5

Op4

Op4 Rd4

Rd4 Rs4

Op5 Rs3 Const5

Rs14 Rd4

Const5 Rs3 Rd3

Const4

Rs4

Rd3

Const16

Branch

ARM

Thumb

SuperH

M32R

MIPS-16

15 10 7 0

31 27 23 0

Opx4

Opx4

Opx4

Op4 Const24

Op4

Op8

Op4 Rd4

Op5 Const8

Const8

Const8

Rs4

Rd3

Const16

Jump

ARM

Thumb

SuperH

M32R

MIPS-16

15 10 0

31 27 23 0

Opx4

Opx4

Op4 Const24

Op5

Op4

Op4

Op5 Const11

Const11

Const12

Const8

Call

ARM

Thumb

SuperH

M32R

MIPS-16

15 25 0

31 27 23 0

Opx4

Op8

Op4 Const24

Op5

Op4

Op6 Const26

Const11 Opx5 Const11

Const12

Const24
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Figures D.2.5 and D.2.6 show the variations in extending constant fields to the full
width of the registers. In this subtle point, the RISCs are similar but not identical. 

The similarities of each architecture allow simultaneous descriptions, starting
with the operations equivalent to the MIPS core. 

 

MIPS Core Instructions 

 

Almost every instruction found in the MIPS core is found in the other architec-
tures, as Figures D.3.1 through D.3.5 show. (For reference, definitions of the MIPS
instructions are found in the MIPS Reference Data Card at the beginning of the
book.) Instructions are listed under four categories: data transfer (Figure D.3.1);
arithmetic/logical (Figure D.3.2); control (Figure D.3.3); and floating point (Fig-
ure D.3.4). A fifth category (Figure D.3.5) shows conventions for register usage and

 

Format: instruction category Alpha MIPS-64 PA-RISC 2.0 PowerPC SPARC v.9 

 

Branch: all Sign Sign Sign Sign Sign 

Jump/call: all Sign — Sign Sign Sign 

Register-immediate: data transfer Sign Sign Sign Sign Sign 

Register-immediate: arithmetic Zero Sign Sign Sign Sign 

Register-immediate: logical Zero Zero — Zero Sign 

 

FIGURE D.2.5 Summary of constant extension for desktop RISCs. 

 

The constants in the jump and call instructions of MIPS are not sign-
extended since they only replace the lower 28 bits of the PC, leaving the upper 4 bits unchanged. PA-RISC has no logical immediate instructions. 

 

Format: instruction category ARM v.4 Thumb SuperH M32R MIPS-16 

 

Branch: all Sign Sign Sign Sign Sign 

Jump/call: all Sign Sign/zero Sign Sign — 

Register-immediate: data transfer Zero Zero Zero Sign Zero 

Register-immediate: arithmetic Zero Zero Sign Sign Zero/sign 

Register-immediate: logical Zero — Zero Zero — 

 

FIGURE D.2.6 Summary of constant extension for embedded RISCs. 

 

The 16-bit-length instructions have much shorter immediates
than those of the desktop RISCs, typically only 5 to 8 bits. Most embedded RISCs, however, have a way to get a long address for procedure calls from
two sequential halfwords. The constants in the jump and call instructions of MIPS are not sign-extended since they only replace the lower 28 bits of
the PC, leaving the upper 4 bits unchanged. The 8-bit immediates in ARM can be rotated right an even number of bits between 2 and 30, yielding a
large range of immediate values. For example, all powers of 2 are immediates in ARM. 
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pseudoinstructions on each architecture. If a MIPS core instruction requires a
short sequence of instructions in other architectures, these instructions are sepa-
rated by semicolons in Figures D.3.1 through D.3.5. (To avoid confusion, the desti-
nation register will always be the leftmost operand in this appendix, independent
of the notation normally used with each architecture.) Figures D.3.6 through D.3.9
show the equivalent listing for embedded RISCs. Note that floating point is gen-
erally not defined for the embedded RISCs.

Every architecture must have a scheme for compare and conditional branch,
but despite all the similarities, each of these architectures has found a different
way to perform the operation.  

 

Compare and Conditional Branch 

 

 

SPARC uses the traditional four condition code bits stored in the program status
word: 

 

negative, zero, carry,

 

 and 

 

overflow

 

. They can be set on any arithmetic or logical
instruction; unlike earlier architectures, this setting is optional on each instruction.
An explicit option leads to fewer problems in pipelined implementation. Although
condition codes can be set as a side effect of an operation, explicit compares are

 

Data transfer 
(instruction formats) R-I R-I R-I, R-R R-I, R-R R-I, R-R 

Instruction name Alpha MIPS-64 PA-RISC 2.0 PowerPC SPARC v.9 

 

Load byte signed 

 

LDBU;

 

 

 

SEXTB

 

 

 

LB

 

 

 

LDB;

 

 

 

EXTRW,S

 

 

 

31,8

 

 

 

LBZ;

 

 

 

EXTSB

 

 

 

LDSB

 

 

Load byte unsigned 

 

LDBU

 

 

 

LBU

 

 

 

LDB,

 

 

 

LDBX,

 

 

 

LDBS

 

 

 

LBZ

 

 

 

LDUB

 

 

Load halfword signed 

 

LDWU;

 

 

 

SEXTW

 

 

 

LH LDH; EXTRW,S 31,16 LHA LDSH 

Load halfword unsigned LDWU LHU LDH, LDHX, LDHS LHZ LDUH 

Load word LDLS LW LDW, LDWX, LDWS LW LD 

Load SP float LDS* LWC1 FLDWX, FLDWS LFS LDF 

Load DP float LDT LDC1 FLDDX, FLDDS LFD LDDF 

Store byte STB SB STB, STBX, STBS STB STB 

Store halfword STW SH STH, STHX, STHS STH STH 

Store word STL SW STW, STWX, STWS STW ST 

Store SP float STS SWC1 FSTWX, FSTWS STFS STF 

Store DP float STT SDC1 FSTDX, FSTDS STFD STDF 

Read, write special registers MF_, MT_ MF, MT_ MFCTL, MTCTL MFSPR, MF_, 
MTSPR, MT_ 

RD, WR, RDPR, WRPR, 
LDXFSR, STXFSR 

Move integer to FP register ITOFS MFC1/DMFC1 STW; FLDWX STW; LDFS ST; LDF 

Move FP to integer register FTTOIS MTC1/DMTC1 FSTWX; LDW STFS; LW STF; LD 

FIGURE D.3.1 Desktop RISC data transfer instructions equivalent to MIPS core. A sequence of instructions to synthesize a
MIPS instruction is shown separated by semicolons. If there are several choices of instructions equivalent to MIPS core, they are separated by commas.
For this figure, halfword is 16 bits and word is 32 bits. Note that in Alpha, LDS converts single precision floating point to double precision and loads
the entire 64-bit register. 
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Arithmetic/ logical  
(instruction formats) R-R, R-I R-R, R-I R-R, R-I R-R, R-I R-R, R-I 

Instruction name Alpha MIPS-64 PA-RISC 2.0 PowerPC SPARC v.9 

Add ADDL ADDU, ADDU ADDL, LD0, ADDI, 
UADDCM

ADD, ADDI ADD

Add (trap if overflow) ADDLV ADD, ADDI ADDO, ADDIO ADDO; MCRXR; BC ADDcc; TVS

Sub SUBL SUBU SUB, SUBI SUBF SUB

Sub (trap if overflow) SUBLV SUB SUBTO, SUBIO SUBF/oe SUBcc; TVS

Multiply MULL MULT, MULTU SHiADD;...; (i=1,2,3) MULLW, MULLI MULX

Multiply (trap if overflow) MULLV — SHiADDO;...; — —

Divide — DIV, DIVU DS;...; DS DIVW DIVX

Divide (trap if overflow) — — — — —

And AND AND, ANDI AND AND, ANDI AND

Or BIS OR, ORI OR OR, ORI OR

Xor XOR XOR, XORI XOR XOR, XORI XOR

Load high part register LDAH LUI LDIL ADDIS SETHI (B fmt.)

Shift left logical SLL SLLV, SLL DEPW, Z 31-i,32-i RLWINM SLL

Shift right logical SRL SRLV, SRL EXTRW, U 31, 32-i RLWINM 32-i SRL 

Shift right arithmetic SRA SRAV, SRA EXTRW, S 31, 32-i SRAW SRA

Compare CMPEQ, CMPLT, CMPLE SLT/U, SLTI/U COMB CMP(I)CLR SUBcc r0,... 

FIGURE D.3.2 Desktop RISC arithmetic/logical instructions equivalent to MIPS core. Dashes mean the operation is not available in
that architecture, or not synthesized in a few instructions. Such a sequence of instructions is shown separated by semicolons. If there are several
choices of instructions equivalent to MIPS core, they are separated by commas. Note that in the “Arithmetic/logical” category all machines but SPARC
use separate instruction mnemonics to indicate an immediate operand; SPARC offers immediate versions of these instructions but uses a single mne-
monic. (Of course these are separate opcodes!) 

Control (instruction formats) B, J/C B, J/C B, J/C B, J/C B, J/C

Instruction name Alpha MIPS-64 PA-RISC 2.0 PowerPC SPARC v.9 

Branch on integer compare B_ (<, >, <=, 
>=, =, not=)

BEQ, BNE, B_Z 
(<, >, <=, >=) 

COMB, COMIB BC BR_Z, BPcc (<, >, <=, 
>=, =, not=) 

Branch on floating-point compare FB_(<, >, <=, 
>=, =, not=)

BC1T, BC1F FSTWX f0; LDW 
t; BB t 

BC FBPfcc (<, >, <=, >=, 
=,...) 

Jump, jump register BR, JMP J, JR BL r0, BLR r0 B, BCLR, BCCTR BA, JMPL r0,...

Call, call register BSR JAL, JALR BL, BLE BL, BLA, BCLRL, 
BCCTRL

CALL, JMPL 

Trap CALL_PAL 
GENTRAP 

BREAK BREAK TW, TWI Ticc, SIR 

Return from interrupt CALL_PAL REI JR; ERET RFI, RFIR RFI DONE, RETRY, RETURN

FIGURE D.3.3 Desktop RISC control instructions equivalent to MIPS core. If there are several choices of instructions equiva-
lent to MIPS core, they are separated by commas. 
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synthesized with a subtract using r0 as the destination. SPARC conditional branches
test condition codes to determine all possible unsigned and signed relations. Float-
ing point uses separate condition codes to encode the IEEE 754 conditions, requir-
ing a floating-point compare instruction. Version 9 expanded SPARC branches in
four ways: a separate set of condition codes for 64-bit operations; a branch that tests
the contents of a register and branches if the value is =, not=, <, <=, >=, or <= 0
(see MIPS below); three more sets of floating-point condition codes; and branch
instructions that encode static branch prediction. 

PowerPC also uses four condition codes—less than, greater than, equal, and
summary overflow—but it has eight copies of them. This redundancy allows the
PowerPC instructions to use different condition codes without conflict, essentially
giving PowerPC eight extra 4-bit registers. Any of these eight condition codes can
be the target of a compare instruction, and any can be the source of a conditional

Floating point  
(instruction formats) R-R R-R R-R R-R R-R 

Instruction name Alpha MIPS-64 PA-RISC 2.0 PowerPC SPARC v.9 

Add single, double ADDS, ADDT ADD.S, ADD.D FADD FADD/dbl FADDS, FADD FADDS, FADDD 

Subtract single, double SUBS, SUBT SUB.S, SUB.D FSUB FSUB/dbl FSUBS, FSUB FSUBS, FSUBD 

Multiply single, double MULS, MULT MUL.S, MUL.D FMPY FMPY/dbl FMULS, FMUL FMULS, FMULD 

Divide single, double DIVS, DIVT DIV.S, DIV.D FDIV, FDIV/dbl FDIVS, FDIV FDIVS, FDIVD 

Compare CMPT_ (=, <, <=, UN) C_.S, C_.D (<, >, 
<=, >=, =,...) 

FCMP, FCMP/dbl 
(<, =, >) 

FCMP FCMPS, FCMPD 

Move R-R ADDT Fd, F31, Fs MOV.S, MOV.D FCPY FMV FMOVS/D/Q 

Convert (single, double, integer) 
to (single, double, integer)

CVTST, CVTTS, 
CVTTQ, CVTQS, CVTQT 

CVT.S.D, CVT.D.S, 
CVT.S.W, CVT.D.W, 
CVT.W.S, CVT.W.D

FCNVFF,s,d 
FCNVFF,d,s 
FCNVXF,s,s 
FCNVXF,d,d 
FCNVFX,s,s 
FCNVFX,d,s

—, FRSP, —, 
FCTIW,—, — 

FSTOD, FDTOS, 
FSTOI, FDTOI, 
FITOS, FITOD 

FIGURE D.3.4 Desktop RISC floating-point instructions equivalent to MIPS core. Dashes mean the operation is not avail-
able in that architecture, or not synthesized in a few instructions. If there are several choices of instructions equivalent to MIPS core, they are separated
by commas. 

Conventions Alpha MIPS-64 PA-RISC 2.0 PowerPC SPARC v.9 

Register with value 0 r31 (source) r0 r0 r0 (addressing) r0 

Return address register (any) r31 r2, r31 link (special) r31 

No-op LDQ_U r31,... SLL r0, r0, r0 OR r0, r0, r0 ORI r0, r0, #0 SETHI r0, 0 

Move R-R integer BIS..., r31,... ADD..., r0,... OR..., r0,... OR rx, ry, ry OR..., r0,... 

Operand order OP Rs1, Rs2, Rd OP Rd, Rs1, Rs2 OP Rs1, Rs2, Rd OP Rd, Rs1, Rs2 OP Rs1, Rs2, Rd 

FIGURE D.3.5 Conventions of desktop RISC architectures equivalent to MIPS core. 
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branch. The integer instructions have an option bit that behaves as if the integer
op is followed by a compare to zero that sets the first condition “register.” Pow-
erPC also lets the second “register” be optionally set by floating-point instruc-
tions. PowerPC provides logical operations among these eight 4-bit condition
code registers (CRAND, CROR, CRXOR, CRNAND, CRNOR, CREQV), allowing more
complex conditions to be tested by a single branch. 

MIPS uses the contents of registers to evaluate conditional branches. Any two
registers can be compared for equality (BEQ) or inequality (BNE), and then the
branch is taken if the condition holds. The set on less than instructions (SLT,
SLTI, SLTU, SLTIU) compare two operands and then set the destination register
to 1 if less and to 0 otherwise. These instructions are enough to synthesize the full
set of relations. Because of the popularity of comparisons to 0, MIPS includes spe-
cial compare and branch instructions for all such comparisons: greater than or
equal to zero (BGEZ), greater than zero (BGTZ), less than or equal to zero (BLEZ),
and less than zero (BLTZ). Of course, equal and not equal to zero can be synthe-
sized using r0 with BEQ and BNE. Like SPARC, MIPS I uses a condition code for
floating point with separate floating-point compare and branch instructions;
MIPS IV expanded this to eight floating-point condition codes, with the floating-
point comparisons and branch instructions specifying the condition to set or test.  

Alpha compares (CMPEQ, CMPLT, CMPLE, CMPULT, CMPULE) test two registers
and set a third to 1 if the condition is true and to 0 otherwise. Floating-point com-
pares (CMTEQ, CMTLT, CMTLE, CMTUN) set the result to 2.0 if the condition holds
and to 0 otherwise. The branch instructions compare one register to 0 (BEQ, BGE,
BGT, BLE, BLT, BNE) or its least significant bit to 0 (BLBC, BLBS) and then branch
if the condition holds. 

Instruction name ARM v.4 Thumb SuperH M32R MIPS-16 

Data transfer  (instruction formats) DT DT DT DT DT 

Load byte signed LDRSB LDRSB MOV.B LDB LB 

Load byte unsigned LDRB LDRB MOV.B; EXTU.B LDUB LBU 

Load halfword signed LDRSH LDRSH MOV.W LDH LH 

Load halfword unsigned LDRH LDRH MOV.W; EXTU.W LDUH LHU 

Load word LDR LDR MOV.L LD LW 

Store byte STRB STRB MOV.B STB SB 

Store halfword STRH STRH MOV.W STH SH 

Store word STR STR MOV.L ST SW 

Read, write special registers MRS, MSR —1 LDC, STC MVFC, MVTC MOVE 

FIGURE D.3.6 Embedded RISC data transfer instructions equivalent to MIPS core. A sequence of instructions to synthesize a MIPS
instruction is shown separated by semicolons. Note that floating point is generally not defined for the embedded RISCs. Thumb and MIPS-16 are just
16-bit instruction subsets of the ARM and MIPS architectures, so machines can switch modes and execute the full instruction set. We use —

1
 to show

sequences that are available in 32-bit mode but not 16-bit mode in Thumb or MIPS-16. 
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PA-RISC has many branch options, which we’ll see in Section D.8. The most
straightforward is a compare and branch instruction (COMB), which compares two
registers, branches depending on the standard relations, and then tests the least
significant bit of the result of the comparison. 

ARM is similar to SPARC, in that it provides four traditional condition codes
that are optionally set. CMP subtracts one operand from the other and the differ-
ence sets the condition codes. Compare negative (CMN) adds one operand to the
other, and the sum sets the condition codes. TST performs logical AND on the
two operands to set all condition codes but overflow, while TEQ uses exclusive OR
to set the first three condition codes. Like SPARC, the conditional version of the
ARM branch instruction tests condition codes to determine all possible unsigned

Arithmetic/ logical 
(instruction formats) R-R, R-I R-R, R-I R-R, R-I R-R, R-I R-R, R-I 

Instruction name ARM v.4 Thumb SuperH M32R MIPS-16 

Add ADD ADD ADD ADD, ADDI, ADD3 ADDU, ADDIU 

Add (trap if overflow) ADDS; SWIVS ADD; BVC .+4; SWI ADDV ADDV, ADDV3 —1 

Subtract SUB SUB SUB SUB SUBU 

Subtract (trap if overflow) SUBS; SWIVS SUB; BVC .+1; SWI SUBV SUBV —1 

Multiply MUL MUL MUL MUL MULT, MULTU 

Multiply (trap if overflow) —

Divide — — DIV1, DIVoS, DIVoU DIV, DIVU DIV, DIVU 

Divide (trap if overflow) — — —

And AND AND AND AND, AND3 AND 

Or ORR ORR OR OR, OR3 OR 

Xor EOR EOR XOR XOR, XOR3 XOR 

Load high part register — — SETH —1 

Shift left logical LSL3 LSL2 SHLL, SHLLn SLL, SLLI, SLL3 SLLV, SLL 

Shift right logical LSR3 LSR2 SHRL, SHRLn SRL, SRLI, SRL3 SRLV, SRL 

Shift right arithmetic ASR3 ASR2 SHRA, SHAD SRA, SRAI, SRA3 SRAV, SRA 

Compare CMP,CMN, 
TST,TEQ 

CMP, CMN, TST CMP/cond, TST CMP/I, CMPU/I CMP/I2, SLT/I, 
SLT/IU 

FIGURE D.3.7 Embedded RISC arithmetic/logical instructions equivalent to MIPS core. Dashes mean the operation is not available in
that architecture, or not synthesized in a few instructions. Such a sequence of instructions is shown separated by semicolons. If there are several choices of
instructions equivalent to MIPS core, they are separated by commas. Thumb and MIPS-16 are just 16-bit instruction subsets of the ARM and MIPS archi-
tectures, so machines can switch modes and execute the full instruction set. We use —

1
 to show sequences that are available in 32-bit mode but not 16-bit

mode in Thumb or MIPS-16. The superscript 2 shows new instructions found only in 16-bit mode of Thumb or MIPS-16, such as CMP/I
2
. ARM includes

shifts as part of every data operation instruction, so the shifts with superscript 3 are just a variation of a move instruction, such as LSR
3 

. 
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and signed relations. As we shall see in Section D.9, one unusual feature of ARM is
that every instruction has the option of executing conditionally depending on the
condition codes. (This bears similarities to the annulling option of PA-RISC, seen
in Section D.8.) 

Not surprisingly, Thumb follows ARM. Differences are that setting condition
codes are not optional, the TEQ instruction is dropped, and there is no conditional
execution of instructions. 

The Hitachi SuperH uses a single T-bit condition that is set by compare instruc-
tions. Two branch instructions decide to branch if either the T bit is 1 (BT) or the T
bit is 0 (BF). The two flavors of branches allow fewer comparison instructions. 

Mitsubishi M32R also offers a single condition code bit (C) used for signed and
unsigned comparisons (CMP, CMPI, CMPU, CMPUI) to see if one register is less than
the other or not, similar to the MIPS set on less than instructions. Two branch
instructions test to see if the C bit is 1 or 0: BC and BNC. The M32R also includes
instructions to branch on equality or inequality of registers (BEQ and BNE) and all
relations of a register to 0 (BGEZ, BGTZ, BLEZ, BLTZ, BEQZ, BNEZ). Unlike BC and
BNC, these last instructions are all 32 bits wide.   

MIPS-16 keeps set on less than instructions (SLT, SLTI, SLTU, SLTIU), but
instead of putting the result in one of the eight registers, it is placed in a special
register named T. MIPS-16 is always implemented in machines that also have the

Control  (instruction formats) B, J, C B, J, C B, J, C B, J, C B, J, C 

Instruction name ARM v.4 Thumb SuperH M32R MIPS-16 

Branch on integer compare B/cond B/cond BF, BT BEQ, BNE, BC,BNC, B__Z BEQZ2, BNEZ2, BTEQZ2, BTNEZ2

Jump, jump register MOV pc,ri MOV pc,ri BRA, JMP BRA, JMP B2, JR 

Call, call register BL BL BSR, JSR BL, JL JAL, JALR, JALX2

Trap SWI SWI TRAPA TRAP BREAK 

Return from interrupt MOVS pc, r14 —1 RTS RTE —1

FIGURE D.3.8 Embedded RISC control instructions equivalent to MIPS core. Thumb and MIPS-16 are just 16-bit instruction
subsets of the ARM and MIPS architectures, so machines can switch modes and execute the full instruction set. We use —

1
 to show sequences that are

available in 32-bit mode but not 16-bit mode in Thumb or MIPS-16. The superscript 2 shows new instructions found only in 16-bit mode of Thumb
or MIPS-16, such as BTEQZ2 

.

Conventions ARM v.4 Thumb SuperH M32R MIPS-16 

Return address reg. R14 R14 PR (special) R14 RA (special) 

No-op MOV r0,r0 MOV r0,r0 NOP NOP SLL r0, r0 

Operands, order OP Rd, Rs1, Rs2 OP Rd, Rs1 OP Rs1, Rd OP Rd, Rs1 OP Rd, Rs1, Rs2 

FIGURE D.3.9 Conventions of embedded RISC instructions equivalent to MIPS core. 
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full 32-bit MIPS instructions and registers; hence, register T is really register 24 in
the full MIPS architecture. The MIPS-16 branch instructions test to see if a reg-
ister is or is not equal to zero (BEQZ and BNEZ). There are also instructions that
branch if register T is or is not equal to zero (BTEQZ and BTNEZ). To test if two
registers are equal, MIPS added compare instructions (CMP, CMPI) that compute
the exclusive OR of two registers and place the result in register T. Compare was
added since MIPS-16 left out instructions to compare and branch if registers are
equal or not (BEQ and BNE). 

Figures D.3.10 and D.3.11 summarize the schemes used for conditional branches.

Since every desktop microprocessor by definition has its own graphical displays,
as transistor budgets increased it was inevitable that support would be added for

Alpha MIPS-64 PA-RISC 2.0 PowerPC SPARC v.9 

Number of condition code bits 
(integer and FP)

0 8 FP 8 FP 8 × 4 both 2 × 4 integer, 4 × 2 FP 

Basic compare instructions 
(integer and FP) 

1 integer, 1 FP 1 integer, 1 FP 4 integer, 2 FP 4 integer, 2 FP 1 FP 

Basic branch instructions 
(integer and FP) 

1 2 integer, 1 FP 7 integer 1 both 3 integer, 1 FP 

Compare register with 
register/const and branch 

— =, not= =, not=, <, <=, >, >=, 
even, odd

— — 

Compare register to zero and 
branch

=, not=, <, <=, >, 
>=, even, odd 

=, not=, <, <=, >, >= =, not=, <, <=, >, >=, 
even, odd 

— =, not=, <, <=, >, >= 

FIGURE D.3.10 Summary of five desktop RISC approaches to conditional branches. Floating-point branch on PA-RISC is
accomplished by copying the FP status register into an integer register and then using the branch on bit instruction to test the FP comparison bit. Inte-
ger compare on SPARC is synthesized with an arithmetic instruction that sets the condition codes using r0 as the destination.

ARM v.4 Thumb SuperH M32R MIPS-16 

Number of condition code bits 4 4 1 1 1 

Basic compare instructions 4 3 2 2 2 

Basic branch instructions 1 1 2 3 2 

Compare register with register/const 
and branch

— — =, >, >= =, not= — 

Compare register to zero and branch — —  =, >, >= =, not=, <, <=, >, >= =, not= 

FIGURE D.3.11 Summary of five embedded RISC approaches to conditional branches. 

D.4 Instructions: Multimedia Extensions of 
the Desktop/Server RISCs D.4
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graphics operations. Many graphics systems use 8 bits to represent each of the
three primary colors plus 8 bits for a location of a pixel. 

The addition of speakers and microphones for teleconferencing and video
games suggested support of sound as well. Audio samples need more than 8 bits of
precision, but 16 bits are sufficient. 

Every microprocessor has special support so that bytes and halfwords take up
less space when stored in memory, but due to the infrequency of arithmetic
operations on these data sizes in typical integer programs, there is little support
beyond data transfers. The architects of the Intel i860, which was justified as a
graphical accelerator within the company, recognized that many graphics and
audio applications would perform the same operation on vectors of this data.
Although a vector unit was beyond the transistor budget of the i860 in 1989, by
partitioning the carry chains within a 64-bit ALU, it could perform simulta-
neous operations on short vectors of eight 8-bit operands, four 16-bit operands,
or two 32-bit operands. The cost of such partitioned ALUs was small. Applica-
tions that lend themselves to such support include MPEG (video), games like
DOOM (3-D graphics), Adobe Photoshop (digital photography), and telecon-
ferencing (audio and image processing). 

Like a virus, over time such multimedia support has spread to nearly every
desktop microprocessor. HP was the first successful desktop RISC to include such
support. As we shall see, this virus spread unevenly. The PowerPC is the only
holdout, and rumors are that it is “running a fever.” 

These extensions have been called subword parallelism, vector, or SIMD (single
instruction, multiple data) (see  Chapter 9). Since Intel marketing uses SIMD
to describe the MMX extension of the 8086, that has become the popular name.
Figure D.4.1 summarizes the support by architecture. 

From Figure D.4.1 you can see that in general MIPS MDMX works on 8 bytes
or 4 halfwords per instruction, HP PA-RISC MAX2 works on 4 halfwords, SPARC
VIS works on 4 halfwords or 2 words, and Alpha doesn’t do much. The Alpha
MAX operations are just byte versions of compare, min, max, and absolute differ-
ence, leaving it up to software to isolate fields and perform parallel adds, sub-
tracts, and multiplies on bytes and halfwords. MIPS also added operations to
work on two 32-bit floating-point operands per cycle, but they are considered part
of MIPS V and not simply multimedia extensions (see Section D.7). 

One feature not generally found in general-purpose microprocessors is satu-
rating operations. Saturation means that when a calculation overflows, the result
is set to the largest positive number or most negative number, rather than a mod-
ulo calculation as in two’s complement arithmetic. Commonly found in digital
signal processors (see the next section), these saturating operations are helpful in
routines for filtering. 

These machines largely used existing register sets to hold operands: integer reg-
isters for Alpha and HP PA-RISC and floating-point registers for MIPS and Sun.
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Hence data transfers are accomplished with standard load and store instructions.
MIPS also added a 192-bit (3*64) wide register to act as an accumulator for some
operations. By having 3 times the native data width, it can be partitioned to accu-
mulate either 8 bytes with 24 bits per field or 4 halfwords with 48 bits per field.
This wide accumulator can be used for add, subtract, and multiply/add instruc-
tions. MIPS claims performance advantages of 2 to 4 times for the accumulator. 

Perhaps the surprising conclusion of this table is the lack of consistency. The
only operations found on all four are the logical operations (AND, OR, XOR),
which do not need a partitioned ALU. If we leave out the frugal Alpha, then the
only other common operations are parallel adds and subtracts on 4 halfwords. 

Each manufacturer states that these are instructions intended to be used in
hand-optimized subroutine libraries, an intention likely to be followed, as a com-

Instruction category Alpha MAX MIPS MDMX PA-RISC MAX2 PowerPC SPARC VIS 

Add/subtract 8B, 4H 4H 4H, 2W 

Saturating add/sub 8B, 4H 4H 

Multiply 8B, 4H 4B/H 

Compare 8B (>=) 8B, 4H (=,<,<=) 4H, 2W (=, not=, >, <=) 

Shift right/left 8B, 4H 4H 

Shift right arithmetic 4H 4H 

Multiply and add 8B, 4H 

Shift and add 
(saturating) 

4H 

And/or/xor 8B, 4H, 2W 8B, 4H, 2W 8B, 4H, 2W 8B, 4H, 2W 

Absolute difference 8B 8B 

Max/min 8B, 4W 8B, 4H 

Pack (2n bits --> n bits) 2W->2B, 4H->4B 2*2W->4H, 2*4H->8B 2*4H->8B  2W->2H, 2W->2B, 
4H->4B 

Unpack/merge 2B->2W, 4B->4H 2*4B->8B, 2*2H->4H 4B->4H, 2*4B->8B

Permute/shuffle 8B, 4H 4H 

Register sets Integer Fl. Pt. + 192b Acc. Integer Fl. Pt. 

FIGURE D.4.1 Summary of multimedia support for desktop RISCs. B stands for byte (8 bits), H for halfword (16 bits), and W for word
(32 bits). Thus 8B means an operation on 8 bytes in a single instruction. Pack and unpack use the notation 2*2W to mean 2 operands each with 2
words. Note that MDMX has vector/scalar operations, where the scalar is specified as an element of one of the vector registers. This table is a sim-
plification of the full multimedia architectures, leaving out many details. For example, MIPS MDMX includes instructions to multiplex between two
operands, HP MAX2 includes an instruction to calculate averages, and SPARC VIS includes instructions to set registers to constants. Also, this table
does not include the memory alignment operation of MDMX, MAX, and VIS. 
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piler that works well with multimedia extensions of all desktop RISCs would be
challenging. 

One feature found in every digital signal processor (DSP) architecture is support
for integer multiply-accumulate. The multiplies tend to be on shorter words than
regular integers, such as 16 bits, and the accumulator tends to be on longer words,
such as 64 bits. The reason for multiply-accumulate is to efficiently implement
digital filters, common in DSP applications. Since Thumb and MIPS-16 are subset
architectures, they do not provide such support. Instead, programmers should use
the DSP or multimedia extensions found in the 32-bit mode instructions of ARM
and MIPS-64.

Figure D.5.1 shows the size of the multiply, the size of the accumulator, and the
operations and instruction names for the embedded RISCs. Machines with accu-
mulator sizes greater than 32 and less than 64 bits will force the upper bits to
remain as the sign bits, thereby “saturating” the add to set to maximum and mini-
mum fixed-point values if the operations overflow.  

D.5 Instructions: Digital Signal-Processing 
Extensions of the Embedded RISCs D.5

ARM v.4 Thumb SuperH M32R MIPS-16 

Size of multiply 32B × 32B — 32B × 32B, 16B × 16B 32B × 16B, 16B × 
16B 

— 

Size of accumulator 32B/64B — 32B/42B, 48B/64B 56B — 

Accumulator name Any GPR or pairs of GPRs — MACH, MACL ACC — 

Operations 32B/64B product + 64B 
accumulate 
signed/unsigned

— 32B product + 42B/32B 
accumulate (operands in 
memory); 64B product + 
64B/48B accumulate (operands 
in memory); clear MAC 

32B/48B product + 
64B accumulate, 
round, move

— 

Corresponding 
instruction names

MLA, SMLAL, UMLAL — MAC, MACS, MAC.L, MAC.LS, 
CLRMAC

MACHI/MACLO, 
MACWHI/ MACWLO, 
RAC, RACH, 
MVFACHI/MVFACLO, 
MVTACHI/MVTACLO 

— 

FIGURE D.5.1 Summary of five embedded RISC approaches to multiply-accumulate. 
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Figures D.6.1 through D.6.7 list instructions not found in Figures D.3.5 through
D.3.11 in the same four categories. Instructions are put in these lists if they appear
in more than one of the standard architectures. The instructions are defined using
the hardware description language defined in Figure D.6.8. 

Although most of the categories are self-explanatory, a few bear comment: 

� The “atomic swap” row means a primitive that can exchange a register with
memory without interruption. This is useful for operating system sema-
phores in a uniprocessor as well as for multiprocessor synchronization (see
Section 9.3 in  Chapter 9). 

� The 64-bit data transfer and operation rows show how MIPS, PowerPC, and
SPARC define 64-bit addressing and integer operations. SPARC simply
defines all register and addressing operations to be 64 bits, adding  only spe-

D.6 Instructions: Common Extensions to 
MIPS Core D.6

Name Definition Alpha MIPS-64 PA-RISC 2.0 PowerPC SPARC v.9 

Atomic swap R/M 
(for locks and 
semaphores) 

Temp<---Rd;  
Rd<---Mem[x]; 
Mem[x]<---Temp 

LDL/Q_L; 
STL/Q_C 

LL; SC — (see D.8) LWARX; 
STWCX 

CASA, CASX 

Load 64-bit integer Rd<---64 Mem[x] LDQ LD LDD LD LDX 

Store 64-bit integer Mem[x]<---64 Rd STQ SD STD STD STX 

Load 32-bit integer 
unsigned 

Rd32..63<---32 Mem[x]; 
Rd0..31<---32 0 

LDL; EXTLL LWU LDW LWZ LDUW 

Load 32-bit integer 
signed 

Rd32..63<---32 Mem[x]; 32 
Rd0..31<---32 Mem[x]0 

LDL LW LDW; EXTRD,S 
63, 8 

LWA LDSW 

Prefetch Cache[x]<---hint FETCH, 
FETCH_M* 

PREF, 
PREFX 

LDD, r0 
LDW, r0 

DCBT, 
DCBTST 

PRE-FETCH 

Load coprocessor Coprocessor<--- Mem[x] — LWCi CLDWX, CLDWS — — 

Store coprocessor Mem[x]<--- Coprocessor — SWCi CSTWX, CSTWS — — 

Endian (Big/little endian?) Either Either Either Either Either 

Cache flush (Flush cache block at this address) ECB CP0op FDC, FIC DCBF FLUSH 

Shared-memory 
synchronization 

(All prior data transfers 
complete before next data 
transfer may start) 

WMB SYNC SYNC SYNC MEMBAR 

FIGURE D.6.1 Data transfer instructions not found in MIPS core but found in two or more of the five desktop architectures.
The load linked/store conditional pair of instructions gives Alpha and MIPS atomic operations for semaphores, allowing data to be read from mem-
ory, modified, and stored without fear of interrupts or other machines accessing the data in a multiprocessor (see  Chapter 9). Prefetching in the
Alpha to external caches is accomplished with FETCH and FETCH_M; on-chip cache prefetches use LD_Q A, R31, and LD_Y A. F31 is used in the
Alpha 21164 (see Bhandarkar [1995], p. 190). 



D.6 Instructions: Common Extensions to MIPS Core D-21

cial instructions for 64-bit shifts, data transfers, and branches. MIPS
includes the same extensions, plus it adds separate 64-bit signed arithmetic
instructions. PowerPC adds 64-bit right shift, load, store, divide, and com-
pare and has a separate mode determining whether instructions are inter-
preted as 32- or 64-bit operations; 64-bit operations will not work in a
machine that only supports 32-bit mode. PA-RISC is expanded to 64-bit
addressing and operations in version 2.0.  

� The “prefetch” instruction supplies an address and hint to the implementation
about the data. Hints include whether the data is likely to be read or written
soon, likely to be read or written only once, or likely to be read or written many

Name Definition Alpha MIPS-64 PA-RISC 2.0 PowerPC SPARC v.9 

64-bit integer arithmetic 
ops

Rd<---64Rs1 op64 Rs2 ADD, SUB, MUL DADD, DSUB 
DMULT, DDIV

ADD, SUB, 
SHLADD, DS

ADD, SUBF, 
MULLD, DIVD

ADD, SUB, 
MULX, 
S/UDIVX 

64-bit integer logical ops Rd<---64Rs1 op64 Rs2 AND, OR, XOR AND, OR, XOR AND, OR, XOR AND, OR, XOR AND, OR, XOR

64-bit shifts Rd<---64Rs1 op64 Rs2 SLL, SRA, SRL DSLL/V, 
DSRA/V, 
DSRL/V

DEPD,Z 
EXTRD,S 
EXTRD,U

SLD, SRAD, 
SRLD

SLLX, SRAX, 
SRLX 

Conditional move if (cond) Rd<---Rs CMOV_ MOVN/Z SUBc, n; ADD — MOVcc, MOVr 

Support for multiword 
integer add

CarryOut, Rd <--- Rs1 + 
Rs2 + OldCarryOut

— ADU; SLTU; 
ADDU, DADU; 
SLTU; DADDU

ADDC ADDC, ADDE ADDcc 

Support for multiword 
integer sub 

CarryOut, Rd <--- Rs1 
Rs2 + OldCarryOut

— SUBU; SLTU; 
SUBU, DSUBU; 
SLTU; DSUBU 

SUBB SUBFC, SUBFE SUBcc 

And not Rd <--- Rs1 & ~(Rs2) BIC — ANDCM ANDC ANDN 

Or not Rd <--- Rs1 | ~(Rs2) ORNOT — — ORC ORN 

Add high immediate Rd0..15<---Rs10..15 + 
(Const<<16);

— — ADDIL (R-I) ADDIS (R-I) — 

Coprocessor operations (Defined by coprocessor) — COPi COPR,i — IMPDEPi 

FIGURE D.6.2 Arithmetic/logical instructions not found in MIPS core but found in two or more of the five desktop architectures. 

Name Definition Alpha MIPS-64 PA-RISC 2.0 PowerPC SPARC v.9 

Optimized delayed 
branches

(Branch not always 
delayed) 

— BEQL, BNEL, B_ZL 
(<, >, <=, >=)

COMBT, n, 
COMBF, n

— BPcc, A, 
FPBcc, A 

Conditional trap if (COND) {R31<---PC; PC 
<---0..0#i} 

— T_,,T_I (=, not=, 
<, >, <=, >=)

SUBc, n; BREAK TW, TD, TWI, 
TDI 

Tcc 

No. control 
registers 

Misc. regs (virtual 
memory, interrupts, . . .)

6 equiv. 12 32 33 29 

FIGURE D.6.3 Control instructions not found in MIPS core but found in two or more of the five desktop architectures. 
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times. Prefetch does not cause exceptions. MIPS has a version that adds two
registers to get the address for floating-point programs, unlike nonfloating-
point MIPS programs. 

� In the “Endian” row, “Big/little” means there is a bit in the program status
register that allows the processor to act either as big endian or little endian
(see Appendix A). This can be accomplished by simply complementing
some of the least significant bits of the address in data transfer instructions. 

� The “shared-memory synchronization” helps with cache-coherent multi-
processors: all loads and stores executed before the instruction must com-
plete before loads and stores after it can start. (See  Chapter 9.) 

� The “coprocessor operations” row lists several categories that allow for the
processor to be extended with special-purpose hardware. 

Name Definition Alpha MIPS-64 PA-RISC 2.0 PowerPC SPARC v.9 

Multiply and add Fd <--- ( Fs1 × Fs2) 
+ Fs3 

— MADD.S/D FMPYFADD sgl/ 
dbl

FMADD/S 

Multiply and sub Fd <--- ( Fs1 × Fs2) 
– Fs3 

— MSUB.S/D FMSUB/S 

Neg mult and add Fd <--- -(( Fs1 × Fs2) 
+ Fs3) 

— NMADD.S/D FMPYFNEG 
sgl/dbl

FNMADD/S 

Neg mult and sub Fd <--- -(( Fs1 × Fs2) 
– Fs3) 

— NMSUB.S/D FNMSUB/S 

Square root Fd <--- SQRT(Fs) SQRT_ SQRT.S/D FSQRT sgl/dbl FSQRT/S FSQRTS/D

Conditional move if (cond) Fd<---Fs FCMOV_ MOVF/T, 
MOVF/T.S/D 

FTESTFCPY — FMOVcc 

Negate Fd <--- Fs ^ 
x80000000 

CPYSN NEG.S/D FNEG sgl/dbl FNEG FNEGS/D/Q 

Absolute value Fd <--- Fs & 
x7FFFFFFF 

— ABS.S/D FABS/dbl FABS FABSS/D/Q 

FIGURE D.6.4 Floating-point instructions not found in MIPS core but found in two or more of the five desktop
architectures. 

Name Definition ARM v.4 Thumb SuperH M32R MIPS-16 

Atomic swap R/M (for 
semaphores)

Temp<---Rd; Rd<---Mem[x]; 
Mem[x]<---Temp

SWP, SWPB —1 (see TAS) LOCK; UNLOCK —1 

Memory management unit Paged address translation Via coprocessor 
instructions

—1 LDTLB —1

Endian (Big/little endian?) Either Either Either Big Either 

FIGURE D.6.5 Data transfer instructions not found in MIPS core but found in two or more of the five embedded
architectures. We use —

1
 to show sequences that are available in 32-bit mode but not 16-bit mode in Thumb or MIPS-16. 
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One difference that needs a longer explanation is the optimized branches. Fig-
ure D.6.9 shows the options. The Alpha and PowerPC offer branches that take
effect immediately, like branches on earlier architectures. To accelerate branches,
these machines use branch prediction (see Chapter 6). All the rest of the desktop
RISCs offer delayed branches (see Appendix A). The embedded RISCs generally
do not support delayed branch, with the exception of SuperH, which has it as an
option.  

The other three desktop RISCs provide a version of delayed branch that makes it
easier to fill the delay slot. The SPARC “annulling” branch executes the instruction
in the delay slot only if the branch is taken; otherwise the instruction is annulled.
This means the instruction at the target of the branch can safely be copied into the
delay slot since it will only be executed if the branch is taken. The restrictions are
that the target is not another branch and that the target is known at compile time.
(SPARC also offers a nondelayed jump because an unconditional branch with the
annul bit set does not execute the following instruction.) Later versions of the MIPS
architecture have added a branch likely instruction that also annuls the following
instruction if the branch is not taken. PA-RISC allows almost any instruction to
annul the next instruction, including branches. Its “nullifying” branch option will
execute the next instruction depending on the direction of the branch and whether
it is taken (i.e., if a forward branch is not taken or a backward branch is taken).

Name Definition ARM v.4 Thumb SuperH M32R MIPS-16 

Load immediate Rd<---Imm MOV MOV MOV, MOVA LDI, LD24 LI 

Support for multiword integer add CarryOut, Rd <--- Rd + Rs1 + 
OldCarryOut

ADCS ADC ADDC ADDX  —1 

Support for multiword integer sub CarryOut, Rd <--- Rd – Rs1 + 
OldCarryOut

SBCS SBC SUBC SUBX —1 

Negate Rd <--- 0 – Rs1  NEG2 NEG NEG NEG 

Not Rd <--- ~(Rs1) MVN MVN NOT NOT NOT 

Move Rd <--- Rs1 MOV MOV MOV MV MOVE 

Rotate right Rd <--- Rs i, >> Rd0. . . i–1 <--- 
Rs31–i. . . 31

ROR ROR ROTC

And not Rd <--- Rs1 & ~(Rs2) BIC BIC 

FIGURE D.6.6 Arithmetic/logical instructions not found in MIPS core but found in two or more of the five embedded archi-
tectures. We use —

1
 to show sequences that are available in 32-bit mode but not in 16-bit mode in Thumb or MIPS-16. The superscript 2 shows

new instructions found only in 16-bit mode of Thumb or MIPS-16, such as NEG
2 

. 

Name Definition ARM v.4 Thumb SuperH M32R MIPS-16 

No. control registers Misc. registers 21 29  9 5 36 

FIGURE D.6.7 Control information in the five embedded architectures. 
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Presumably this choice was made to optimize loops, allowing the instructions fol-
lowing the exit branch and the looping branch to execute in the common case. 

Now that we have covered the similarities, we will focus on the unique features
of each architecture. We first cover the desktop/server RISCs, ordering them by
length of description of the unique features from shortest to longest, and then the
embedded RISCs. 

Notation Meaning Example Meaning 

<- - Data transfer. Length of transfer is given by 
the destination’s length; the length is 
specified when not clear. 

Regs[R1]<--Regs[R2]; Transfer contents of R2 to R1. Registers have a 
fixed length, so transfers shorter than the register 
size must indicate which bits are used. 

M Array of memory accessed in bytes. The 
starting address for a transfer is indicated as 
the index to the memory array. 

Regs[R1]<--M[x]; Place contents of memory location x into R1. If a 
transfer starts at M[i] and requires 4 bytes, the 
transferred bytes are M[i], M[i+1], M[i+2], 
and M[i+3]. 

<- -n Transfer an n-bit field, used whenever length 
of transfer is not clear.

M[y]<--16M[x]; Transfer 16 bits starting at memory location x to 
memory location y. The length of the two sides 
should match. 

Xn Subscript selects a bit. Regs[R1]0<--0; Change sign bit of R1 to 0. (Bits are numbered 
from MSB starting at 0.) 

Xm..n Subscript selects a field. Regs[R3]24..31<--M[x]; Moves contents of memory location x into low-
order byte of R3. 

Xn Superscript replicates a bit field. Regs[R3]0..23<--024; Sets high-order three bytes of R3 to 0. 

## Concatenates two fields. Regs[R3]<--240## M[x]; 
F2##F3<--64M[x]; 

Moves contents of location x into low byte of R3; 
clears upper three bytes. Moves 64 bits from 
memory starting at location x; 1st 32 bits go into 
F2, 2nd 32 into F3. 

*, & Dereference a pointer; get the address of a 
variable.

p*<--&x; Assign to object pointed to by p the address of the 
variable x. 

<<, >> C logical shifts (left, right). Regs[R1] << 5 Shift R1 left 5 bits. 

==, !=, >, <, 
>=, <= 

C relational operators; equal, not equal, 
greater, less, greater or equal, less or equal. 

(Regs[R1]== Regs[R2]) & 
(Regs[R3]!=Regs[R4])

True if contents of R1 equal the contents of R2 and 
contents of R3 do not equal the contents of R4. 

&, |, ^, ! C bitwise logical operations: AND, OR, 
exclusive OR, and complement. 

(Regs[R1] & (Regs[R2]| 
Regs[R3])) 

Bitwise AND of R1 and bitwise OR of R2 and R3. 

FIGURE D.6.8 Hardware description notation (and some standard C operators). 

(Plain) branch Delayed branch Annulling delayed branch 

Found in architectures Alpha, PowerPC, ARM, Thumb, 
SuperH, M32R, MIPS-16 

MIPS-64, PA-RISC, 
SPARC, SuperH 

MIPS-64, SPARC PA-RISC 

Execute following instruction Only if branch not taken Always Only if branch 
taken

If forward branch not taken 
or backward branch taken 

FIGURE D.6.9 When the instruction following the branch is executed for three types of branches. 
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MIPS has gone through five generations of instruction sets, and this evolution has
generally added features found in other architectures. Here are the salient unique fea-
tures of MIPS, the first several of which were found in the original instruction set. 

Nonaligned Data Transfers 

MIPS has special instructions to handle misaligned words in memory. A rare event
in most programs, it is included for supporting 16-bit minicomputer applications
and for doing memcpy and strcpy faster. Although most RISCs trap if you try to
load a word or store a word to a misaligned address, on all architectures misaligned
words can be accessed without traps by using four load byte instructions and then
assembling the result using shifts and logical ORs. The MIPS load and store word
left and right instructions (LWL, LWR, SWL, SWR) allow this to be done in just two
instructions: LWL loads the left portion of the register and LWR loads the right por-
tion of the register. SWL and SWR do the corresponding stores. Figure D.7.1 shows
how they work. There are also 64-bit versions of these instructions. 

Remaining Instructions 

Below is a list of the remaining unique details of the MIPS-64 architecture: 

� NOR—This logical instruction calculates ~(Rs1 | Rs2). 

� Constant shift amount—Nonvariable shifts use the 5-bit constant field
shown in the register-register format in Figure D.2.3. 

� SYSCALL—This special trap instruction is used to invoke the operating system. 

� Move to/from control registers—CTCi and CFCi move between the integer
registers and control registers. 

� Jump/call not PC-relative—The 26-bit address of jumps and calls is not added
to the PC. It is shifted left 2 bits and replaces the lower 28 bits of the PC. This
would only make a difference if the program were located near a 256-MB
boundary. 

� TLB instructions—Translation-lookaside buffer (TLB) misses were handled
in software in MIPS I, so the instruction set also had instructions for
manipulating the registers of the TLB (see Chapter 7 for more on TLBs).
These registers are considered part of the “system coprocessor.” Since MIPS I

D.7 Instructions Unique to MIPS-64 D.7
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the instructions differ among versions of the architecture; they are more
part of the implementations than part of the instruction set architecture. 

� Reciprocal and reciprocal square root—These instructions, which do not follow
IEEE 754 guidelines of proper rounding, are included apparently for applica-
tions that value speed of divide and square root more than they value accuracy. 

� Conditional procedure call instructions—BGEZAL saves the return address and
branches if the content of Rs1 is greater than or equal to zero, and BLTZAL
does the same for less than zero. The purpose of these instructions is to get a
PC-relative call. (There are “likely” versions of these instructions as well.) 

FIGURE D.7.1 MIPS instructions for unaligned word reads. This figure assumes operation in
big-endian mode. Case 1 first loads the 3 bytes 101, 102, and 103 into the left of R2, leaving the least
significant byte undisturbed. The following LWR simply loads byte 104 into the least significant byte of R2,
leaving the other bytes of the register unchanged using LWL. Case 2 first loads byte 203 into the most
significant byte of R4, and the following LWR loads the other 3 bytes of R4 from memory bytes 204, 205,
and 206. LWL reads the word with the first byte from memory, shifts to the left to discard the unneeded
byte(s), and changes only those bytes in Rd. The byte(s) transferred are from the first byte to the lowest-
order byte of the word. The following LWR addresses the last byte, right-shifts to discard the unneeded
byte(s), and finally changes only those bytes of Rd. The byte(s) transferred are from the last byte up to the
highest-order byte of the word. Store word left (SWL) is simply the inverse of LWL, and store word right
(SWR) is the inverse of LWR. Changing to little-endian mode flips which bytes are selected and discarded.
(If big-little, left-right, load-store seem confusing, don’t worry; they work!) 
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        Before
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100 101 102 103
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M[104]
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R2

After

After

104 105 106 107
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E
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� Parallel single precision floating-point operations—As well as extending the
architecture with parallel integer operations in MDMX, MIPS-64 also supports
two parallel 32-bit floating-point operations on 64-bit registers in a single
instruction. “Paired single” operations include add (ADD.PS), subtract
(SUB.PS), compare (C.__.PS), convert (CVT.PS.S, CVT.S.PL,
CVT.S.PU), negate (NEG.PS), absolute value (ABS.PS), move (MOV.PS,
MOVF.PS, MOVT.PS), multiply (MUL.PS), multiply-add (MADD.PS), and
multiply-subtract (MSUB.PS). 

There is no specific provision in the MIPS architecture for floating-point exe-
cution to proceed in parallel with integer execution, but the MIPS implementations
of floating point allow this to happen by checking to see if arithmetic interrupts are
possible early in the cycle. Normally, exception detection would force serialization of
execution of integer and floating-point operations.  

The Alpha was intended to be an architecture that was easy to build high-
performance implementations. Toward that goal, the architects originally made
two controversial decisions: imprecise floating-point exceptions and no byte or
halfword data transfers. 

To simplify pipelined execution, Alpha does not require that an exception act as
if no instructions past a certain point are executed and that all before that point
have been executed. It supplies the TRAPB instruction, which stalls until all prior
arithmetic instructions are guaranteed to complete without incurring arithmetic
exceptions. In the most conservative mode, placing one TRAPB per exception-
causing instruction slows execution by roughly five times but provides precise
exceptions (see Darcy and Gay [1996]). 

Code that does not include TRAPB does not obey the IEEE 754 floating-point
standard. The reason is that parts of the standard (NaNs, infinities, and denormal)
are implemented in software on Alpha, as it is on many other microprocessors. To
implement these operations in software, however, programs must find the offending
instruction and operand values, which cannot be done with imprecise interrupts! 

When the architecture was developed, it was believed by the architects that byte
loads and stores would slow down data transfers. Byte loads require an extra
shifter in the data transfer path, and byte stores require that the memory system
perform a read-modify-write for memory systems with error correction codes
since the new ECC value must be recalculated. This omission meant that byte
stores require the sequence load word, replace desired byte, and then store word.

D.8 Instructions Unique to Alpha D.8
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(Inconsistently, floating-point loads go through considerable byte swapping to
convert the obtuse VAX floating-point formats into a canonical form.) 

To reduce the number of instructions to get the desired data, Alpha includes an
elaborate set of byte manipulation instructions: extract field and zero rest of a reg-
ister (EXTxx), insert field (INSxx), mask rest of a register (MSKxx), zero fields of a
register (ZAP), and compare multiple bytes (CMPGE). 

Apparently, the implementors were not as bothered by load and store byte as
were the original architects. Beginning with the shrink of the second version of the
Alpha chip (21164A), the architecture does include loads and stores for bytes and
halfwords. 

Remaining Instructions 

Below is a list of the remaining unique instructions of the Alpha architecture: 

� PAL code—To provide the operations that the VAX performed in microcode,
Alpha provides a mode that runs with all privileges enabled, interrupts dis-
abled, and virtual memory mapping turned off for instructions. PAL (privi-
leged architecture library) code is used for TLB management, atomic
memory operations, and some operating system primitives. PAL code is
called via the CALL_PAL instruction. 

� No divide—Integer divide is not supported in hardware. 

� “Unaligned” load-store—LDQ_U and STQ_U load and store 64-bit data using
addresses that ignore the least significant three bits. Extract instructions
then select the desired unaligned word using the lower address bits. These
instructions are similar to LWL/R,SWL/R in MIPS. 

� Floating-point single precision represented as double precision—Single preci-
sion data is kept as conventional 32-bit formats in memory but is converted
to 64-bit double precision format in registers. 

� Floating-point register F31 is fixed at zero—To simplify comparisons to zero. 

� VAX floating-point formats—To maintain compatibility with the VAX archi-
tecture, in addition to the IEEE 754 single and double precision formats
called S and T, Alpha supports the VAX single and double precision formats
called F and G, but not VAX format D. (D had too narrow an exponent field
to be useful for double precision and was replaced by G in VAX code.) 

� Bit count instructions—Version 3 of the architecture added instructions to
count the number of leading zeros (CTLZ), count the number of trailing
zeros (CTTZ), and count the number of ones in a word (CTPOP). Originally
found on Cray computers, these instructions help with decryption. 
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Several features are unique to SPARC. 

Register Windows 

The primary unique feature of SPARC is register windows, an optimization for
reducing register traffic on procedure calls. Several banks of registers are used,
with a new one allocated on each procedure call. Although this could limit the
depth of procedure calls, the limitation is avoided by operating the banks as a cir-
cular buffer, providing unlimited depth. The knee of the cost/performance curve
seems to be six to eight banks. 

SPARC can have between 2 and 32 windows, typically using 8 registers each for
the globals, locals, incoming parameters, and outgoing parameters. (Given that
each window has 16 unique registers, an implementation of SPARC can have as
few as 40 physical registers and as many as 520, although most have 128 to 136, so
far.) Rather than tie window changes with call and return instructions, SPARC has
the separate instructions SAVE and RESTORE. SAVE is used to “save” the caller’s
window by pointing to the next window of registers in addition to performing an
add instruction. The trick is that the source registers are from the caller’s window
of the addition operation, while the destination register is in the callee’s window.
SPARC compilers typically use this instruction for changing the stack pointer to
allocate local variables in a new stack frame. RESTORE is the inverse of SAVE,
bringing back the caller’s window while acting as an add instruction, with the
source registers from the callee’s window and the destination register in the caller’s
window. This automatically deallocates the stack frame. Compilers can also make
use of it for generating the callee’s final return value. 

The danger of register windows is that the larger number of registers could slow
down the clock rate. This was not the case for early implementations. The SPARC
architecture (with register windows) and the MIPS R2000 architecture (without)
have been built in several technologies since 1987. For several generations the
SPARC clock rate has not been slower than the MIPS clock rate for implementa-
tions in similar technologies, probably because cache access times dominate regis-
ter access times in these implementations. The current-generation machines took
different implementation strategies—in order versus out of order—and it’s
unlikely that the number of registers by themselves determined the clock rate in
either machine. Recently, other architectures have included register windows: Ten-
silica and IA-64. 

D.9 Instructions Unique to SPARC v.9 D.9



D-30 Appendix D A Survey of RISC Architectures for Desktop, Server, and Embedded Computers

Another data transfer feature is alternate space option for loads and stores. This
simply allows the memory system to identify memory accesses to input/output
devices, or to control registers for devices such as the cache and memory manage-
ment unit. 

Fast Traps 

Version 9 SPARC includes support to make traps fast. It expands the single level of
traps to at least four levels, allowing the window overflow and underflow trap
handlers to be interrupted. The extra levels mean the handler does not need to
check for page faults or misaligned stack pointers explicitly in the code, thereby
making the handler faster. Two new instructions were added to return from this
multilevel handler: RETRY (which retries the interrupted instruction) and DONE
(which does not). To support user-level traps, the instruction RETURN will return
from the trap in nonprivileged mode. 

Support for LISP and Smalltalk 

The primary remaining arithmetic feature is tagged addition and subtraction. The
designers of SPARC spent some time thinking about languages like LISP and
Smalltalk, and this influenced some of the features of SPARC already discussed:
register windows, conditional trap instructions, calls with 32-bit instruction
addresses, and multiword arithmetic (see Taylor et al. [1986] and Ungar et al.
[1984]). A small amount of support is offered for tagged data types with opera-
tions for addition, subtraction, and, hence, comparison. The two least significant
bits indicate whether the operand is an integer (coded as 00), so TADDcc and
TSUBcc set the overflow bit if either operand is not tagged as an integer or if the
result is too large. A subsequent conditional branch or trap instruction can decide
what to do. (If the operands are not integers, software recovers the operands,
checks the types of the operands, and invokes the correct operation based on
those types.) It turns out that the misaligned memory access trap can also be put
to use for tagged data, since loading from a pointer with the wrong tag can be an
invalid access. Figure D.9.1 shows both types of tag support. 

Overlapped Integer and Floating-Point Operations 

SPARC allows floating-point instructions to overlap execution with integer
instructions. To recover from an interrupt during such a situation, SPARC has a
queue of pending floating-point instructions and their addresses. RDPR allows
the processor to empty the queue. The second floating-point feature is the
inclusion of floating-point square root instructions FSQRTS, FSQRTD, and
FSQRTQ. 



D.9 Instructions Unique to SPARC v.9 D-31

Remaining Instructions 

The remaining unique features of SPARC are as follows: 

� JMPL uses Rd to specify the return address register, so specifying r31 makes
it similar to JALR in MIPS and specifying r0 makes it like JR. 

� LDSTUB loads the value of the byte into Rd and then stores FF16 into the
addressed byte. This version 8 instruction can be used to implement a sema-
phore (see  Chapter 9). 

� CASA (CASXA) atomically compares a value in a processor register to a 32-bit
(64-bit) value in memory; if and only if they are equal, it swaps the value in
memory with the value in a second processor register. This version 9 instruc-
tion can be used to construct wait-free synchronization algorithms that do not
require the use of locks. 

� XNOR calculates the exclusive OR with the complement of the second operand. 

FIGURE D.9.1 SPARC uses the two least significant bits to encode different data types
for the tagged arithmetic instructions. a. Integer arithmetic, which takes a single cycle as long as the
operands and the result are integers. b. The misaligned trap can be used to catch invalid memory accesses,
such as trying to use an integer as a pointer. For languages with paired data like LISP, an offset of –3 can be
used to access the even word of a pair (CAR) and +1 can be used for the odd word of a pair (CDR). 
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±

00

00

00

(R5)

(R7)

(R6)

b.  Loading via
valid pointer
(coded as 11)

LD rD, r4, –3
–

11

00

3

(R4)

(Word
address)



D-32 Appendix D A Survey of RISC Architectures for Desktop, Server, and Embedded Computers

� BPcc, BPr, and FBPcc include a branch prediction bit so that the com-
piler can give hints to the machine about whether a branch is likely to be
taken or not. 

� ILLTRAP causes an illegal instruction trap. Muchnick [1988] explains how
this is used for proper execution of aggregate returning procedures in C. 

� POPC counts the number of bits set to one in an operand, also found in the
third version of the Alpha architecture. 

� Nonfaulting loads allow compilers to move load instructions ahead of condi-
tional control structures that control their use. Hence, nonfaulting loads will
be executed speculatively. 

� Quadruple precision floating-point arithmetic and data transfer allow the
floating-point registers to act as eight 128-bit registers for floating-point
operations and data transfers. 

� Multiple precision floating-point results for multiply mean that two single-
precision operands can result in a double precision product and two double
precision operands can result in a quadruple precision product. These
instructions can be useful in complex arithmetic and some models of
floating-point calculations.  

PowerPC is the result of several generations of IBM commercial RISC machines—
IBM RT/PC, IBM Power1, and IBM Power2—plus the Motorola 8800. 

Branch Registers: Link and Counter 

Rather than dedicate one of the 32 general-purpose registers to save the return
address on procedure call, PowerPC puts the address into a special register called
the link register. Since many procedures will return without calling another pro-
cedure, link doesn’t always have to be saved away. Making the return address a
special register makes the return jump faster since the hardware need not go
through the register read pipeline stage for return jumps. 

In a similar vein, PowerPC has a count register to be used in for loops where the
program iterates for a fixed number of times. By using a special register the branch
hardware can determine quickly whether a branch based on the count register is
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likely to branch, since the value of the register is known early in the execution
cycle. Tests of the value of the count register in a branch instruction will automat-
ically decrement the count register. 

Given that the count register and link register are already located with the hard-
ware that controls branches, and that one of the problems in branch prediction is
getting the target address early in the pipeline (see Appendix A), the PowerPC
architects decided to make a second use of these registers. Either register can hold
a target address of a conditional branch. Thus, PowerPC supplements its basic
conditional branch with two instructions that get the target address from these
registers (BCLR, BCCTR). 

Remaining Instructions 

Unlike most other RISC machines, register 0 is not hardwired to the value 0. It
cannot be used as a base register—that is, it generates a 0 in this case—but in base
+ index addressing it can be used as the index. The other unique features of the
PowerPC are as follows: 

� Load multiple and store multiple save or restore up to 32 registers in a single
instruction. 

� LSW and STSW permit fetching and storing of fixed- and variable-length
strings that have arbitrary alignment. 

� Rotate with mask instructions support bit field extraction and insertion. One
version rotates the data and then performs logical AND with a mask of ones,
thereby extracting a field. The other version rotates the data but only places
the bits into the destination register where there is a corresponding 1 bit in
the mask, thereby inserting a field. 

� Algebraic right shift sets the carry bit (CA) if the operand is negative and any
1 bits are shifted out. Thus, a signed divide by any constant power of 2 that
rounds toward 0 can be accomplished with an SRAWI followed by ADDZE,
which adds CA to the register. 

� CBTLZ will count leading zeros. 

� SUBFIC computes (immediate – RA), which can be used to develop a one’s
or two’s complement. 

� Logical shifted immediate instructions shift the 16-bit immediate to the left
16 bits before performing AND, OR, or XOR.  
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PA-RISC was expanded slightly in 1990 with version 1.1 and changed significantly
in 2.0 with 64-bit extensions in 1996. PA-RISC perhaps has the most unusual fea-
tures of any desktop RISC machine. For example, it has the most addressing
modes, instruction formats, and, as we shall see, several instructions that are really
the combination of two simpler instructions. 

Nullification 

As shown in Figure D.6.9, several RISC machines can choose not to execute the
instruction following a delayed branch in order to improve utilization of the
branch slot. This is called nullification in PA-RISC, and it has been generalized to
apply to any arithmetic/logical instruction as well as to all branches. Thus, an add
instruction can add two operands, store the sum, and cause the following instruc-
tion to be skipped if the sum is zero. Like conditional move instructions,
nullification allows PA-RISC to avoid branches in cases where there is just one
instruction in the then part of an if statement. 

A Cornucopia of Conditional Branches 

Given nullification, PA-RISC did not need to have separate conditional branch
instructions. The inventors could have recommended that nullifying instructions
precede unconditional branches, thereby simplifying the instruction set. Instead,
PA-RISC has the largest number of conditional branches of any RISC machine.
Figure D.11.1 shows the conditional branches of PA-RISC. As you can see, several
are really combinations of two instructions. 

Synthesized Multiply and Divide 

PA-RISC provides several primitives so that multiply and divide can be synthe-
sized in software. Instructions that shift one operand 1, 2, or 3 bits and then add,
trapping or not on overflow, are useful in multiplies. (Alpha also includes instruc-
tions that multiply the second operand of adds and subtracts by 4 or by 8: S4ADD,
S8ADD, S4SUB, and S8SUB.) The divide step performs the critical step of nonre-
storing divide, adding or subtracting depending on the sign of the prior result.
Magenheimer et al. [1988] measured the size of operands in multiplies and
divides to show how well the multiply step would work. Using this data for C pro-
grams, Muchnick [1988] found that by making special cases the average multiply
by a constant takes 6 clock cycles and multiply of variables takes 24 clock cycles.
PA-RISC has 10 instructions for these operations. 

D.11 Instructions Unique to PA-RISC 2.0 D.11
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The original SPARC architecture used similar optimizations, but with increas-
ing numbers of transistors the instruction set was expanded to include full multi-
ply and divide operations. PA-RISC gives some support along these lines by
putting a full 32-bit integer multiply in the floating-point unit; however, the inte-
ger data must first be moved to floating-point registers. 

Decimal Operations 

COBOL programs will compute on decimal values, stored as 4 bits per digit, rather
than converting back and forth between binary and decimal. PA-RISC has instruc-
tions that will convert the sum from a normal 32-bit add into proper decimal digits.
It also provides logical and arithmetic operations that set the condition codes to test
for carries of digits, bytes, or halfwords. These operations also test whether bytes or
halfwords are zero. These operations would be useful in arithmetic on 8-bit ASCII
characters. Five PA-RISC instructions provide decimal support. 

Remaining Instructions 

Here are some remaining PA-RISC instructions: 

� Branch vectored shifts an index register left 3 bits, adds it to a base register,
and then branches to the calculated address. It is used for case statements. 

� Extract and deposit instructions allow arbitrary bit fields to be selected from
or inserted into registers. Variations include whether the extracted field is
sign-extended, whether the bit field is specified directly in the instruction or
indirectly in another register, and whether the rest of the register is set to
zero or left unchanged. PA-RISC has 12 such instructions. 

Name Instruction Notation 

COMB Compare and branch if (cond(Rs1,Rs2)) {PC <-- PC + offset12} 

COMIB Compare imm. and branch if (cond(imm5,Rs2)) {PC <-- PC + offset12} 

MOVB Move and branch Rs2 <-- Rs1, if (cond(Rs1,0)) {PC <-- PC + offset12} 

MOVIB Move immediate and branch Rs2 <-- imm5, if (cond(imm5,0)) {PC <-- PC + offset12} 

ADDB Add and branch Rs2 <-- Rs1 + Rs2, if (cond(Rs1 + Rs2,0)) {PC <-- PC + offset12} 

ADDIB Add imm. and branch Rs2 <-- imm5 + Rs2, if (cond(imm5 + Rs2,0)) {PC <-- PC + offset12} 

BB Branch on bit if (cond(Rsp,0) {PC <-- PC + offset12} 

BVB Branch on variable bit if (cond(Rssar,0) {PC <-- PC + offset12} 

FIGURE D.11.1 The PA-RISC conditional branch instructions. The 12-bit offset is called offset12 in this table, and the 5-bit immediate is called
imm5. The 16 conditions are =, <, <=, odd, signed overflow, unsigned no overflow, zero or no overflow unsigned, never, and their respective complements.
The BB instruction selects one of the 32 bits of the register and branches depending if its value is 0 or 1. The BVB selects the bit to branch using the shift
amount register, a special-purpose register. The subscript notation specifies a bit field. 
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� To simplify use of 32-bit address constants, PA-RISC includes ADDIL, which
adds a left-adjusted 21-bit constant to a register and places the result in
register 1. The following data transfer instruction uses offset addressing to
add the lower 11 bits of the address to register 1. This pair of instructions
allows PA-RISC to add a 32-bit constant to a base register, at the cost of
changing register 1. 

� PA-RISC has nine debug instructions that can set breakpoints on instruc-
tion or data addresses and return the trapped addresses. 

� Load and clear instructions provide a semaphore or lock that reads a value
from memory and then writes zero. 

� Store bytes short optimizes unaligned data moves, moving either the leftmost
or the rightmost bytes in a word to the effective address, depending on the
instruction options and condition code bits. 

� Loads and stores work well with caches by having options that give hints
about whether to load data into the cache if it’s not already in the cache. For
example, load with a destination of register 0 is defined to be a software-
controlled cache prefetch. 

� PA-RISC 2.0 extended cache hints to stores to indicate block copies, recom-
mending that the processor not load data into the cache if it’s not already in
the cache. It also can suggest that on loads and stores, there is spatial locality
to prepare the cache for subsequent sequential accesses. 

� PA-RISC 2.0 also provides an optional branch target stack to predict indirect
jumps used on subroutine returns. Software can suggest which addresses get
placed on and removed from the branch target stack, but hardware controls
whether or not these are valid. 

� Multiply/add and multiply/subtract are floating-point operations that can
launch two independent floating-point operations in a single instruction in
addition to the fused multiply/add and fused multiply/negate/add intro-
duced in version 2.0 of PA-RISC.  

It’s hard to pick the most unusual feature of ARM, but perhaps it is conditional
execution of instructions. Every instruction starts with a 4-bit field that deter-
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mines whether it will act as a nop or as a real instruction, depending on the condi-
tion codes. Hence, conditional branches are properly considered as conditionally
executing the unconditional branch instruction. Conditional execution allows
avoiding a branch to jump over a single instruction. It takes less code space and
time to simply conditionally execute one instruction. 

The 12-bit immediate field has a novel interpretation. The 8 least
significant bits are zero-extended to a 32-bit value, then rotated right the
number of bits specified in the first 4 bits of the field multiplied by 2. Whether
this split actually catches more immediates than a simple 12-bit field would be
an interesting study. One advantage is that this scheme can represent all pow-
ers of 2 in a 32-bit word. 

Operand shifting is not limited to immediates. The second register of all arithmetic
and logical processing operations has the option of being shifted before being oper-
ated on. The shift options are shift left logical, shift right logical, shift right arithmetic,
and rotate right. Once again, it would be interesting to see how often operations like
rotate-and-add, shift-right-and-test, and so on occur in ARM programs. 

Remaining Instructions 

Below is a list of the remaining unique instructions of the ARM architecture: 

� Block loads and stores—Under control of a 16-bit mask within the instruc-
tions, any of the 16 registers can be loaded or stored into memory in a single
instruction. These instructions can save and restore registers on procedure
entry and return. These instructions can also be used for block memory
copy—offering up to four times the bandwidth of a single register load-
store—and today block copies are the most important use. 

� Reverse subtract—RSB allows the first register to be subtracted from the
immediate or shifted register. RSC does the same thing, but includes the
carry when calculating the difference. 

� Long multiplies—Similar to MIPS, Hi and Lo registers get the 64-bit signed
product (SMULL) or the 64-bit unsigned product (UMULL). 

� No divide—Like the Alpha, integer divide is not supported in hardware. 

� Conditional trap—A common extension to the MIPS core found in desktop
RISCs (Figures D.6.1 through D.6.4), it comes for free in the conditional exe-
cution of all ARM instructions, including SWI. 

� Coprocessor interface—Like many of the desktop RISCs, ARM defines a full
set of coprocessor instructions: data transfer, moves between general-
purpose and coprocessor registers, and coprocessor operations. 



D-38 Appendix D A Survey of RISC Architectures for Desktop, Server, and Embedded Computers

� Floating-point architecture—Using the coprocessor interface, a floating-
point architecture has been defined for ARM. It was implemented as the
FPA10 coprocessor. 

� Branch and exchange instruction sets—The BX instruction is the transition
between ARM and Thumb, using the lower 31 bits of the register to set the
PC and the most significant bit to determine if the mode is ARM (1) or
Thumb (0).

In the ARM version 4 model, frequently executed procedures will use ARM
instructions to get maximum performance, with the less frequently executed ones
using Thumb to reduce the overall code size of the program. Since typically only a
few procedures dominate execution time, the hope is that this hybrid gets the best
of both worlds. 

Although Thumb instructions are translated by the hardware into conventional
ARM instructions for execution, there are several restrictions. First, conditional
execution is dropped from almost all instructions. Second, only the first 8 registers
are easily available in all instructions, with the stack pointer, link register, and pro-
gram counter used implicitly in some instructions. Third, Thumb uses a two-
operand format to save space. Fourth, the unique shifted immediates and shifted
second operands have disappeared and are replaced by separate shift instructions.
Fifth, the addressing modes are simplified. Finally, putting all instructions into 16
bits forces many more instruction formats. 

In many ways the simplified Thumb architecture is more conventional than
ARM. Here are additional changes made from ARM in going to Thumb: 

� Drop of immediate logical instructions—Logical immediates are gone. 

� Condition codes implicit—Rather than have condition codes set optionally,
they are defined by the opcode. All ALU instructions and none of the data
transfers set the condition codes. 

� Hi/Lo register access—The 16 ARM registers are halved into Lo registers and
Hi registers, with the 8 Hi registers including the stack pointer (SP), link
register, and PC. The Lo registers are available in all ALU operations. Varia-
tions of ADD, BX, CMP, and MOV also work with all combinations of Lo and Hi
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registers. SP and PC registers are also available in variations of data transfers
and add immediates. Any other operations on the Hi registers require one
MOV to put the value into a Lo register, perform the operation there, and
then transfer the data back to the Hi register. 

� Branch/call distance—Since instructions are 16 bits wide, the 8-bit condi-
tional branch address is shifted by 1 instead of by 2. Branch with link is
specified in two instructions, concatenating 11 bits from each instruction
and shifting them left to form a 23-bit address to load into PC. 

� Distance for data transfer offsets—The offset is now 5 bits for the general-
purpose registers and 8 bits for SP and PC. 

Register 0 plays a special role in SuperH address modes. It can be added to another
register to form an address in indirect indexed addressing and PC-relative
addressing. R0 is used to load constants to give a larger addressing range than can
easily be fit into the 16-bit instructions of the SuperH. R0 is also the only register
that can be an operand for immediate versions of AND, CMP, OR, and XOR. 

Below is a list of the remaining unique details of the SuperH architecture: 

� Decrement and test—DT decrements a register and sets the T bit to 1 if the
result is 0. 

� Optional delayed branch—Although the other embedded RISC machines
generally do not use delayed branches (see Appendix A), SuperH offers
optional delayed branch execution for BT and BF. 

� Many multiplies—Depending if the operation is signed or unsigned, if the
operands are 16 bits or 32 bits, or if the product is 32 bits or 64 bits, the
proper multiply instruction is MULS, MULU, DMULS, DMULU, or MUL. The
product is found in the MACL and MACH registers. 

� Zero and sign extension—Byte or halfwords are either zero-extended (EXTU)
or sign-extended (EXTS) within a 32-bit register. 

� One-bit shift amounts—Perhaps in an attempt to make them fit within the
16-bit instructions, shift instructions only shift a single bit at a time. 
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� Dynamic shift amount—These variable shifts test the sign of the amount in a
register to determine whether they shift left (positive) or shift right (nega-
tive). Both logical (SHLD) and arithmetic (SHAD) instructions are sup-
ported. These instructions help offset the 1-bit constant shift amounts of
standard shifts. 

� Rotate—SuperH offers rotations by 1 bit left (ROTL) and right (ROTR),
which set the T bit with the value rotated, and also have variations that
include the T bit in the rotations (ROTCL and ROTCR). 

� SWAP—This instruction either swaps the high and low bytes of a 32-bit
word or the two bytes of the rightmost 16 bits. 

� Extract word (XTRCT)—The middle 32 bits from a pair of 32-bit registers are
placed in another register. 

� Negate with carry—Like SUBC (Figure D.6.6), except the first operand is 0. 

� Cache prefetch—Like many of the desktop RISCs (Figures D.6.1 through
D.6.4), SuperH has an instruction (PREF) to prefetch data into the cache. 

� Test-and-set—SuperH uses the older test-and-set (TAS) instruction to per-
form atomic locks or semaphores (see  Chapter 9). TAS first loads a byte
from memory. It then sets the T bit to 1 if the byte is 0 or to 0 if the byte is
not 0. Finally, it sets the most significant bit of the byte to 1 and writes the
result back to memory.  

The most unusual feature of the M32R is a slight VLIW approach to the pairs of
16-bit instructions. A bit is reserved in the first instruction of the pair to say
whether this instruction can be executed in parallel with the next instruction—
that is, the two instructions are independent—or if these two must be executed
sequentially. (An earlier machine that offered a similar option was the Intel i860.)
This feature is included for future implementations of the architecture. 

One surprise is that all branch displacements are shifted left 2 bits before being
added to the PC and the lower 2 bits of the PC are set to 0. Since some instructions
are only 16 bits long, this shift means that a branch cannot go to any instruction in
the program: it can only branch to instructions on word boundaries. A similar
restriction is placed on the return address for the branch-and-link and jump-and-
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link instructions: they can only return to a word boundary. Thus for a slightly
larger branch distance, software must ensure that all branch addresses and all
return addresses are aligned to a word boundary. The M32R code space is proba-
bly slightly larger, and it probably executes more NOP instructions than it would
if the branch address were only shifted left 1 bit. 

However, the VLIW feature above means that a NOP can execute in parallel
with another 16-bit instruction, so that the padding doesn’t take more clock
cycles. The code size expansion depends on the ability of the compiler to schedule
code and to pair successive 16-bit instructions; Mitsubishi claims that code size
overall is only 7% larger than that for the Motorola 6800 architecture. 

The last remaining novel feature is that the result of the divide operation is the
remainder instead of the quotient.  

MIPS-16 is not really a separate instruction set but a 16-bit extension of the full
32-bit MIPS architecture. It is compatible with any of the 32-bit address MIPS
architectures (MIPS I, MIPS II) or 64-bit architectures (MIPS III, IV, V). The ISA
mode bit determines the width of instructions: 0 means 32-bit-wide instructions
and 1 means 16-bit-wide instructions. The new JALX instruction toggles the ISA
mode bit to switch to the other ISA. JR and JALR have been redefined to set the
ISA mode bit from the most significant bit of the register containing the branch
address, and this bit is not considered part of the address. All jump-and-link
instructions save the current mode bit as the most significant bit of the return
address. 

Hence, MIPS supports whole procedures containing either 16-bit or 32-bit
instructions, but it does not support mixing the two lengths together in a single
procedure. The one exception is the JAL and JALX: these two instructions need 32
bits even in the 16-bit mode, presumably to get a large enough address to branch
to far procedures. 

In picking this subset, MIPS decided to include opcodes for some three-
operand instructions and to keep 16 opcodes for 64-bit operations. The combina-
tion of this many opcodes and operands in 16 bits led the architects to provide
only 8 easy-to-use registers—just like Thumb—whereas the other embedded
RISCs offer about 16 registers. Since the hardware must include the full 32 regis-
ters of the 32-bit ISA mode, MIPS-16 includes move instructions to copy values
between the 8 MIPS-16 registers and the remaining 24 registers of the full MIPS
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architecture. To reduce pressure on the 8 visible registers, the stack pointer is con-
sidered a separate register. MIPS-16 includes a variety of separate opcodes to do
data transfers using SP as a base register and to increment SP: LWSP, LDSP, SWSP,
SDSP, ADJSP, DADJSP, ADDIUSPD, and DADDIUSP. 

To fit within the 16-bit limit, immediate fields have generally been shortened to
5 to 8 bits. MIPS-16 provides a way to extend its shorter immediates into the full
width of immediates in the 32-bit mode. Borrowing a trick from the Intel 8086,
the EXTEND instruction is really a 16-bit prefix that can be prepended to any
MIPS-16 instruction with an address or immediate field. The prefix supplies
enough bits to turn the 5-bit fields of data transfers and 5- to 8-bit fields of arith-
metic immediates into 16-bit constants. Alas, there are two exceptions. ADDIU and
DADDIU start with 4-bit immediate fields, but since EXTEND can only supply 11
more bits, the wider immediate is limited to 15 bits. EXTEND also extends the 3-bit
shift fields into 5-bit fields for shifts. (In case you were wondering, the EXTEND
prefix does not need to start on a 32-bit boundary.) 

To further address the supply of constants, MIPS-16 added a new addressing
mode! PC-relative addressing for load word (LWPC) and load double (LDPC) shifts
an 8-bit immediate field by 2 or 3 bits, respectively, adding it to the PC with the
lower 2 or 3 bits cleared. The constant word or doubleword is then loaded into a
register. Thus 32-bit or 64-bit constants can be included with MIPS-16 code,
despite the loss of LIU to set the upper register bits. Given the new addressing
mode, there is also an instruction (ADDIUPC) to calculate a PC-relative address
and place it in a register. 

MIPS-16 differs from the other embedded RISCs in that it can subset a 64-bit
address architecture. As a result it has 16-bit instruction-length versions of 64-bit
data operations: data transfer (LD, SD, LWU), arithmetic operations (DADDU/IU,
DSUBU, DMULT/U, DDIV/U), and shifts (DSLL/V, DSRA/V, DSRL/V). 

Since MIPS plays such a prominent role in this book, we show all the additional
changes made from the MIPS core instructions in going to MIPS-16: 

� Drop of signed arithmetic instructions—Arithmetic instructions that can trap
were dropped to save opcode space: ADD, ADDI, SUB, DADD, DADDI, DSUB. 

� Drop of immediate logical instructions—Logical immediates are gone too:
ANDI, ORI, XORI. 

� Branch instructions pared down—Comparing two registers and then branch-
ing did not fit, nor did all the other comparisons of a register to zero. Hence
these instructions didn’t make it either: BEQ, BNE, BGEZ, BGTZ, BLEZ, and
BLTZ. As mentioned in Section D.3, to help compensate MIPS-16 includes
compare instructions to test if two registers are equal. Since compare and set
on less than set the new T register, branches were added to test the T register. 
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� Branch distance—Since instructions are 16 bits wide, the branch address is
shifted by one instead of by two. 

� Delayed branches disappear—The branches take effect before the next
instruction. Jumps still have a one-slot delay. 

� Extension and distance for data transfer offsets—The 5-bit and 8-bit fields are
zero-extended instead of sign-extended in 32-bit mode. To get greater range,
the immediate fields are shifted left 1, 2, or 3 bits depending on whether the
data is halfword, word, or doubleword. If the EXTEND prefix is prepended to
these instructions, they use the conventional signed 16-bit immediate of the
32-bit mode. 

� Extension of arithmetic immediates—The 5-bit and 8-bit fields are zero-
extended for set on less than and compare instructions, for forming a PC-
relative address, and for adding to SP and placing the result in a register
(ADDIUSP, DADDIUSP). Once again, if the EXTEND prefix is prepended to
these instructions, they use the conventional signed 16-bit immediate of the
32-bit mode. They are still sign-extended for general adds and for adding to
SP and placing the result back in SP (ADJSP, DADJSP). Alas, code density
and orthogonality are strange bedfellows in MIPS-16! 

� Redefining shift amount of 0—MIPS-16 defines the value 0 in the 3-bit shift
field to mean a shift of 8 bits. 

� New instructions added due to loss of register 0 as zero—Load immediate,
negate, and not were added, since these operations could no longer be
synthesized from other instructions using r0 as a source.  

This appendix covers the addressing modes, instruction formats, and all instruc-
tions found in 10 RISC architectures. Although the later sections concentrate on
the differences, it would not be possible to cover 10 architectures in these few
pages if there were not so many similarities. In fact, we would guess that more
than 90% of the instructions executed for any of these architectures would be
found in Figures D.3.5 through D.3.11. To contrast this homogeneity, Figure
D.17.1 gives a summary for four architectures from the 1970s in a format similar
to that shown in Figure D.1.1. (Imagine trying to write a single chapter in this style
for those architectures!) In the history of computing, there has never been such
widespread agreement on computer architecture.  
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This style of architecture cannot remain static, however. Like people, instruc-
tion sets tend to get bigger as they get older. Figure D.17.2 shows the genealogy of
these instruction sets, and Figure D.17.3 shows which features were added to or
deleted from generations of desktop RISCs over time. 

As you can see, all the desktop RISC machines have evolved to 64-bit address
architectures, and they have done so fairly painlessly.   
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IBM 360/370 Intel 8086 Motorola 68000 DEC VAX 
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FIGURE D.17.1 Summary of four 1970s architectures. Unlike the architectures in Figure D.1.1, there is little agreement between these
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FIGURE D.17.2 The lineage of RISC instruction sets. Commercial machines are shown in plain text and research machines in bold. The
CDC 6600 and Cray-1 were load-store machines with register 0 fixed at 0, and separate integer and floating-point registers. Instructions could not
cross word boundaries. An early IBM research machine led to the 801 and America research projects, with the 801 leading to the unsuccessful RT/PC
and America leading to the successful Power architecture. Some people who worked on the 801 later joined Hewlett-Packard to work on the PA-RISC.
The two university projects were the basis of MIPS and SPARC machines. According to Furber [1996], the Berkeley RISC project was the inspiration of
the ARM architecture. While ARM1, ARM2, and ARM3 were names of both architectures and chips, ARM version 4 is the name of the architecture
used in ARM7, ARM8, and StrongARM chips. (There are no ARM v.4 and ARM5 chips, but ARM6 and early ARM7 chips use the ARM3 architecture.)
DEC built a RISC microprocessor in 1988 but did not introduce it. Instead, DEC shipped workstations using MIPS microprocessors for three years
before they brought out their own RISC instruction set, Alpha 21064, which is very similar to MIPS III and PRISM. The Alpha architecture has had
small extensions, but they have not been formalized with version numbers; we used version 3 because that is the version of the reference manual. The
Alpha 21164A chip added byte and halfword loads and stores, and the Alpha 21264 includes the MAX multimedia and bit count instructions. Inter-
nally, Digital names chips after the fabrication technology: EV4 (21064), EV45 (21064A), EV5 (21164), EV56 (21164A), and EV6 (21264).“EV” stands
for “extended VAX.” 
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PA-RISC SPARC MIPS Power 

Feature 1.0 1.1 2.0 v. 8 v. 9 I II III IV V 1 2 PC 

Interlocked loads X " " X " + " " X " " 

Load-store FP double X " " X " + " " X " " 

Semaphore X " " X "  + " " X " " 

Square root X " " X " + " " + " 

Single precision FP ops X " " X " X " " "  +

Memory synchronize X " " X " + " " X " " 

Coprocessor X " " X — X " " " 

Base + index addressing X " " X " + X " " 

Equiv. 32 64-bit FP registers " "  + + " X " "

Annulling delayed branch X " " X " + " " 

Branch register contents X " " + X " " " 

Big/little endian + " + X " " "  +

Branch prediction bit + + " " X " " 

Conditional move + + X “ —

Prefetch data into cache + + + X " " 

64-bit addressing/int. ops + + + " + 

32-bit multiply, divide + " + X " " " X " " 

Load-store FP quad + + — 

Fused FP mul/add + + X " " 

String instructions X " " X " — 

Multimedia support X " X X

FIGURE D.17.3 Features added to desktop RISC machines. X means in the original machine, + means added later, " means continued
from prior machine, and — means removed from architecture. Alpha is not included, but it added byte and word loads and stores, and bit count and
multimedia extensions, in version 3. MIPS V added the MDMX instructions and paired single floating-point operations. 
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