October 2, 2000

Starts: 18:25

cs470 - Computer Architecture 1 Fall 2000

Midterm Exam

open books, open notes

Name:	_(please print)
ID.	

Ends: 20:05

Problem	Max points	Your mark	Comments
1	10		5+5
2	25		20+5
3	20		10+10
4	25		15+5+5
	80		

2 of 6

1. You know the following about the frequency of instructions in your favorite application (which may be a word processor, a spreadsheet or maybe a database):

	f_i	CPI _i
ALU	57%	4
Load/store	33%	6
Control	10%	5

a) compute the average CPI for your application;

b) compute the MIPS rating for your machine using the above table; assume a clock rate of 500 MHz.

```
2. Given the following piece of MIPS assembly:
```

```
.data 0x10000000
var1: .word 0x789abcde
var2: .word 0
      .text 0x400040
main: subu $sp, $sp, 4
            $ra, 0($sp)
      sw
      jal
            Mistery
      lw
            $ra, 0($sp)
      addu $sp, $sp, 4
      jr
            $ra
      .text 0x400100
Mistery:
            $t0, 8192
      lui
            $t1, X($t0)
                              # X is the right-most digit of your SSN
                              # modulo 4
            $t1, 4($t0)
      sw
      jr $ra
```


a) Show the sequence of addresses issued by the CPU to execute this code. The initial value of the stack pointer (\$sp) is 0x7fffffe0.

Instruction	Address (in hexadecimal)	Read/Write

b) What is the final value of var2? You shall assume the Big Endian memory model.

1 4 of 6

a) what is th	e overall cheedu	n?			
a) what is th	e overall speedu	h,			
	ne overall speedu				
ics card (yo make all gra	ne overall speedu u'll have both th phics 10 times fa fore any improve	he new disk a aster. Graphic	nd the new g s represent 40	graphics card)	? The new ca
ics card (yo make all gra	u'll have both the phics 10 times fa	he new disk a aster. Graphic	nd the new g s represent 40	graphics card)	? The new ca
ics card (yo make all gra	u'll have both the phics 10 times fa	he new disk a aster. Graphic	nd the new g s represent 40	graphics card)	? The new ca
ics card (yo make all gra	u'll have both the phics 10 times fa	he new disk a aster. Graphic	nd the new g s represent 40	graphics card)	? The new ca
ics card (yo make all gra	u'll have both the phics 10 times fa	he new disk a aster. Graphic	nd the new g s represent 40	graphics card)	? The new ca
ics card (yo make all gra	u'll have both the phics 10 times fa	he new disk a aster. Graphic	nd the new g s represent 40	graphics card)	? The new ca
ics card (yo make all gra	u'll have both the phics 10 times fa	he new disk a aster. Graphic	nd the new g s represent 40	graphics card)	? The new ca
ics card (yo make all gra	u'll have both the phics 10 times fa	he new disk a aster. Graphic	nd the new g s represent 40	graphics card)	? The new ca
ics card (yo make all gra	u'll have both the phics 10 times fa	he new disk a aster. Graphic	nd the new g s represent 40	graphics card)	? The new ca
ics card (yo make all gra	u'll have both the phics 10 times fa	he new disk a aster. Graphic	nd the new g s represent 40	graphics card)	? The new ca
ics card (yo make all gra	u'll have both the phics 10 times fa	he new disk a aster. Graphic	nd the new g s represent 40	graphics card)	? The new ca

5 of 6

- **4.** You have been asked to compare the memory efficiency of two different styles of instruction sets, one for an *accumulator* architecture and the second for a two-address *load-store* architecture with 16 general purpose registers. The following can be assumed:
 - the opcode is always one byte
 - all memory addresses are 16 bit wide
 - all data operands are four bytes
 - all instructions are an integral number of bytes in length

There are no optimizations to reduce memory traffic, and the variables a, b, c, and d are initially in memory.

a)	Write the	two code sec	nuences for	the following	C code
u	* * * 1 1 t C t 1 1 C	two code bec	quences ioi	the following	Couc

a = b + c;

b = a + c;

d = a - b;

Accumulator Architecture

Assembly Instructions	Instruction Bytes Fetched	Data Bytes Transferred

Load-Store Architecture

Assembly Instructions	Instruction Bytes Fetched	Data Bytes Transferred

Load-Store Architecture

e) Which architecture is most efficient as measured by total memory bandwidth recode + data)?	Assembly Instructions	Instruction Bytes Fetched	Data Bytes Transferred
) Which architecture is most efficient as measured by total memory bandwidth re			
) Which architecture is most efficient as measured by total memory bandwidth re			
) Which architecture is most efficient as measured by total memory bandwidth re			
) Which architecture is most efficient as measured by total memory bandwidth re			
) Which architecture is most efficient as measured by total memory bandwidth re			
e) Which architecture is most efficient as measured by total memory bandwidth re			
) Which architecture is most efficient as measured by total memory bandwidth re			
) Which architecture is most efficient as measured by total memory bandwidth re			
) Which architecture is most efficient as measured by total memory bandwidth re	Which analytecture is more office	iont or marry and by and	oigo?
	, vi men aremicectare is more enio	ent us measured by edde	
		ient as measured by total	memory bandwidth r
		ient as measured by total	memory bandwidth r
		ient as measured by total	memory bandwidth r
		ient as measured by total	memory bandwidth r
	e) Which architecture is most effic (code + data)?	ient as measured by total	memory bandwidth r
		ient as measured by total	memory bandwidth r
		ient as measured by total	memory bandwidth r

