

cs470 - Computer Architecture 1 Fall 1998

Midterm Exam

open books, open notes

Starts: 6:25 pm	Ends: 8:00 pm	
Name:		(please print)
ID:		

Problem	Max points	Your mark	Comments
1	25		10+10+5
2	25		10+10+5
3	10		10
	60		

l .	Your first job as a new employee with ACME Computing is to upgrade your boss' computer with a new disk and and a new disk controller. These changes will make every disaccess two times faster. With these enhancements in place , disk accesses account for 25% of the running time. The overall cost of the system increases by 10%.
	a) what is the overall speedup?
	b) what is the overall speedup if you also improve the graphics system with a new graphic card? The new card will make all graphics 20 times faster. Graphics represent 30% of the workload of the original machine (before any improvment is done).

c) Assuming just the disk improvement, decide whether the new system will be more cost
effective than the current one. We say that one system is more cost effective than another if
the ratio of performance divided by cost is higher.

2. Consider the following C statement:

$$a = a*b + b;$$

You have an 8-bit stack machine with 16 bit addresses. a and b are of type very short int (i.e. 8-bit) and are stored in memory starting with the address $0 \times 0 DDD$ (where DDD stands for the first three digits of your SSN). Their initial values are $0 \times 2a$ for a and 0×02 for b. The code starts in memory at address $0 \times 1 = 0$. Below is a list of opcodes (each opcode is one byte wide):

Instruction	Opcode
add	0x20
sub	0x21
mul	0x22
div	0x23
push	0x24
pop	0x25

a) Compile the C code for this stack machine; for each instruction in the program show the

instruction format on the right hand sid; clearly mark the boundaries of each instruction.

Instruction		Instruct	tion For	mat	

b) Show the sequence of addresses issued by the CPU to execute this code; for each address indicate whether it's a memory read or write and what's on the data bus for that particular memory access.

Address	R/W	Data	

Address	R/W	Data	

c) What is the average number of memory accesses per instruction?

3. Write MIPS assembly code for the following piece of a C program:

$$x[6] = x[5] + a;$$

You shall assume that a corresponds to register \$t1 and the array of words x begins at

