February 28, 2000

Starts: 18:25

cs470 - Computer Architecture 1 Spring 2000

Midterm Exam

open books, open notes

Name:	(please print))
ID.		

Ends: 20:00

Problem	Max points	Your mark	Comments
1	10		5+5
2	25		20+5
3	20		10+10
4	25		15+5+5
	80		

2 of 6

V1

1. You know the following about the frequency of instructions in your favorite application (which may be a word processor, a spreadsheet or maybe a database):

	f_i	CPI _i
ALU	57%	4
Load/store	33%	6
Control	10%	5

a) compute the average CPI for your application;

b) compute the MIPS rating for your machine using the above table; assume a clock rate of 200 MHz.

```
2. Given the following piece of MIPS assembly:
```

```
.data 0x10000000
var1: .word 0x8192a3b4
var2: .word 0
      .text 0x400040
main: subu $sp, $sp, 4
      sw
            $ra, 0($sp)
      jal
            Mistery
      lw
            $ra, 0($sp)
      addu $sp, $sp, 4
      jr
            $ra
      .text 0x400100
Mistery:
      lui
            $t0, 8192
            $t1, X($t0)
            $t1, 4($t0)
      jr $ra
```

X is the last digit of your SSN modulo 4

a) Show the sequence of addresses issued by the CPU to execute this code. The initial value of the stack pointer (\$sp) is 0x7fffffff0.

Instruction	Address (in hexadecimal)	Read/Write

b) What is the final value of var2?	

1 4 of 6

a) what is the o	verall speedun?				
a) what is the 0'	veran speedup!				
	verall speedup if y				
ics card (you'll make all graphic	verall speedup if y have both the new cs 10 times faster.	w disk and the Graphics repre	new graphics	card)? The n	iew ca
ics card (you'll make all graphic	have both the new es 10 times faster.	w disk and the Graphics repre	new graphics	card)? The n	iew ca
ics card (you'll make all graphic	have both the new es 10 times faster.	w disk and the Graphics repre	new graphics	card)? The n	iew ca
ics card (you'll make all graphic	have both the new es 10 times faster.	w disk and the Graphics repre	new graphics	card)? The n	iew ca
ics card (you'll make all graphic	have both the new es 10 times faster.	w disk and the Graphics repre	new graphics	card)? The n	iew ca
ics card (you'll make all graphic	have both the new es 10 times faster.	w disk and the Graphics repre	new graphics	card)? The n	iew ca
ics card (you'll make all graphic	have both the new es 10 times faster.	w disk and the Graphics repre	new graphics	card)? The n	iew ca
ics card (you'll make all graphic	have both the new es 10 times faster.	w disk and the Graphics repre	new graphics	card)? The n	iew ca
ics card (you'll make all graphic	have both the new es 10 times faster.	w disk and the Graphics repre	new graphics	card)? The n	iew ca
ics card (you'll make all graphic	have both the new es 10 times faster.	w disk and the Graphics repre	new graphics	card)? The n	iew ca
ics card (you'll make all graphic	have both the new es 10 times faster.	w disk and the Graphics repre	new graphics	card)? The n	iew ca

5 of 6

- **4.** You have been asked to compare the memory efficiency of two different styles of instruction sets, one for an *accumulator* architecture and the second for a two-address *load-store* architecture with 16 general purpose registers. The following can be assumed:
 - the opcode is always one byte
 - all memory addresses are 16 bit wide
 - all data operands are four bytes
 - all instructions are an integral number of bytes in length

There are no optimizations to reduce memory traffic, and the variables a, b, c, and d are initially in memory.

a)	Write the ty	wo code sea	mences for	the follo	wing C	code
\mathbf{u}		mo couc scy	uchees for	the rono	WIIIZ C	COUC

a = b + c;

b = a + c;

d = a - b;

Accumulator Architecture

Assembly Instructions	Instruction Bytes Fetched	Data Bytes Transferred

Load-Store Architecture

Assembly Instructions	Instruction Bytes Fetched	Data Bytes Transferred

Load-Store Architecture

Assembly Instructions	Instruction Bytes Fetched	Data Bytes Transferred
b) Which architecture is more efficient	cient as measured by code	size?
,, ,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	cient as measured by total	memory bandwidth re
c) Which architecture is most effi (code + data)?	cient as measured by total	memory bandwidth re
	cient as measured by total	memory bandwidth re
	cient as measured by total	memory bandwidth re
	cient as measured by total	memory bandwidth re
	cient as measured by total	memory bandwidth re
	cient as measured by total	memory bandwidth re
	cient as measured by total	memory bandwidth re
	cient as measured by total	memory bandwidth re
	cient as measured by total	memory bandwidth re
	cient as measured by total	memory bandwidth re
	cient as measured by total	memory bandwidth re
	cient as measured by total	memory bandwidth re

