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Separating points by axis-parallel lines
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We studytheproblemof separating� pointsin theplane, no
two of which have thesame� or � -coordinateusinga min-
imum number of vertical andhorizontal lines avoiding the
points,so thateachcell of thesubdivision containsat most
onepoint. Weprovethatthisproblemandsomevariantsof it
areNP-complete. We giveanapproximationalgorithm with
ratio � for the planarproblem, anda ratio � approximation
algorithm for the � -dimensionalvariant,in which thepoints
areto be separatedusingaxis-parallel hyperplanes. We re-
ducetheproblemto therectanglestabbingproblem studied
by Gauret al [4]. Their approximationalgorithm usesLP-
rounding.OuralgorithmpresentsanalternativeLP-rounding
procedurewhichalsoworksfor therectanglestabbingprob-
lem.

� ��� ��	�������� ��!"� �
Let # be a set of � points in the plane,no two of which
have thesame� or � -coordinate. We considerthe problem
of finding a minimum setof axis-parallel lines that do not
passthrough any of thegivenpoints, suchthateachcell of
theresultingsubdivisioncontainsatmostonepoint. In other
words,for eachpairof points thereis a line in oursetwhich
separatesthe two points. We refer to this problem as the
separation problemSEPARATION. Its natural extensionin
higher dimensions, calledthemulti-modal sensorallocation
problem in [9], asksfor a minimum cardinality set of hy-
perplaneswhich separate� givenpoints. It hasapplications
to fault-tolerantmulti-modalsensorfusionin thecontext of
embeddedsensornetworks [9]. It is alsoa natural problem
to consider, fromtheperspectiveof computationalgeometry,
andappearsto becloselyrelatedto otherproblemsof sepa-
rating points or hitting objectsstudiedrecently in the CG
literature[1, 2, 5, 6, 7].

When the number of dimensions is part of the input,
the separation problem hasbeenshown to be NP-complete
[8]. However the proof of this result does not carry over
to the casewhenthe number of dimensionsis small (e.g.,
in theplane). We prove that the separation problem is NP-
complete. Our proof canbeadapted to show thatothervari-
antsof theproblemareNP-completeaswell (seebelow). We
presenttwo LP-basedapproximationalgorithmswith ratio �
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in the plane,respectively � in (*) : the first is obtained by
castingtheseparationproblemasa specialcaseof therect-
anglestabbingproblem [5, 4] (seeSection2). The second
usesa different — counting based— rounding procedure.
We show that thesecondalgorithmalsoworks for the rect-
anglestabbingproblem,with thesameratio � . Weexhibit an
infinite sequence of examplesin theplane having integrality
gap +,�� , for bothproblems.Ourmainresultis

Theorem 1 There existsa ratio � approximationalgorithm
for the separation problemin the plane. Theabove prob-
lem is NP-complete. Moreover, assumingP -. NP, there is
an absolute constant/103254 such that no polynomial time
algorithm hasapproximationguarantee6879/:0 .

A natural variant of the above point separation problem
is a coloredversion: the pointsarecolored,andonehasto
find a minimum setof axis-parallel lines, suchthat the set
of points(if non-empty) in eachcell of theresultingsubdivi-
sionis monochromatic.Clearlyhavingeachpointcoloredby
a different color is equivalentto theoriginal problem. Thus
whenthenumbersof colors is partof theinput this problem
is also NP-complete. We prove that it remainsso for any
number ; of colors, ;=<>� . This version also extends to
higher dimensions, asthe original problem does. Both our
algorithms canbe usedto obtaina � -approximatesolution
for thecoloredversion in theplane, or � -approximatesolu-
tionsfor thecoloredversionin (?) .
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Without lossof generality, we canrestrictthesetof vertical
orhorizontalseparatinglinesto asetT of ��UV�XWH6ZY canonical
lines, onefor eachpair of consecutive points with respectto
the � -coordinate,andonefor eachpairof consecutivepoints
with respectto the � -coordinate(say, at theaverage coordi-
natevalueof two consecutivepoints).

We first give two lower boundson [\#\] , the sizeof an
optimal solution. Considerthe complete geometric graph^ . U`_badceY whosevertex set is the set # of � points. We
saythat two edgesof

^
areindependent, if thereis no ver-

tical or horizontal line that intersectsboth in their interior.
Let f be a maximum independent setof edgesof

^
. Then

clearly, [\#\]g<ih f�h , sinceeachedgeof f requiresa distinct
separating line.

Put [N#\] .3j . Themaximumnumberof cellsinducedbyj linesis attainedwhenthelinesaredividedevenlyintoverti-
calandhorizontal. Sinceeachpoint requiresadistinctcell of
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thearrank gementof j lines,wehave Uml j ,P�1n�7o6ZYFUmp j ,�� q�7o6ZYb<� , which implies

[\#\]r<spt�:u ��q?Wv��w U�61Y
In the rectangle stabbing problem[5, 4], we aregiven a

setof (nondegenerate)axis-parallel rectangles in the plane,
with theobjectiveof stabbingall therectangleswith themin-
imumnumber of axis-parallellines(a rectangle is saidto be
stabbedby line x , if x intersectsits interior). Gaur, Ibaraki
andKrishnamurti have recently given a ratio � approxima-
tion algorithm for this problem[4].

Let usfirst seehow theseparationproblemcanbecastas
a rectangle stabbingproblem. For eachpair of points yJa{z}|# , considertherectangle~��Z� , whosediagonal is y�z . Then
separatingall the points in # is equivalent to stabbingall
rectangles ~\�1� , with y�a�z�|�# . Notealsothat it is enough
to restrictourselvesto emptyrectangles, i.e., thosethat do
not containotherpointsof # : stabbingall emptyrectangles~N�Z� guaranteesthatall rectanglesarestabbed.However, in
general this restrictionmaybenotsignificant,asit is easyto
construct exampleswith �\U����mY emptyrectanglesdetermined
by the � points.

Let � bethecollection of rectanglesin therectanglestab-
bing problem. A set T of canonical lines is selectedfirst, as
in theseparationproblem (see[4] for detailsregardingthis
selection).The natural IP (integer program) with variables���

, for ��|}T is

�������������F�X��L�P� � � Ut�:Y
�{�C��� �m�� � d¡ ��£¢�¤�¥d¦F¢�§ � � <36©¨�~g|ª� U�+Y

� � |¬«Z4CaF6P®¨���|}TXw UV¯DY
The linearprogrammingrelaxation of IP is obtainedby re-
placingtheconstraintsUV¯Y by

� � <�4°¨��±|²TXw Ut³:Y
Denoteby �´# thevalueof thelinearprogramin U`�PY . The

algorithm of Gauret al. solvesthelinearprogramandclas-
sifies rectangles as horizontal or vertical (with ties broken
arbitrarily), dependingonwhether

��QµF¶m·�¸V¹ º�·d»¼¤�¥d½�R¢V¤�¥�¦m¢Q§ � � < 6
� ¡P¾ ��Qµ�¿dÀ�¸V¤�¹ Á�¥�½�£¢V¤�¥�¦m¢Q§ � � < 6

� w

It then solves optimally the problem of stabbing the hori-
zontal rectangles by horizontal lines, and that of stabbing
the vertical rectanglesby vertical lines, by solving the cor-
responding linear programs �´#*Â and �´#bÃ . The solutions
of thesetwo linear programsare integral, a property that
follows from the total unimodularity of their systemmatri-
ces. Putting together the two setsof lines resultsin a � -
approximationalgorithm, usingagainthe total unimodular-
ity property. We remark here,that insteadof solving �´# Â

and �´# Ã , onecansolvedirectly thecorrespondingstabbing
problemsusingthegreedy algorithm, sincethesebecomein-
terval stabbingproblems on theline.

Theformulationof theintegerandlinearprogramsfor the
separation problemis analogous.TheIP with variables

�v�
,

for ��|}T is �������������F�X��L�P� � � U�ÄY
�{�C��� �m�� � d¡ ��£¢VÀ�Åm¥�¸V¥�¤�À�¢ �1� �

� <Æ6®¨ÇUVyJa{z�Y U`ÈPY
� � |É«Z4CaF6�©¨��±|²TXw U�ÊY

The linear programming relaxationof IP is obtained by re-
placingtheconstraints UtÊ:Y by

� � <�4Ë¨���|²TXw U�ÌY
The � -approximatesolutionis obtainedin thesameway.

We now provide a new, conceptually simpler, LP-based
algorithm that only solves the linear program U�ÄY�aZU`È�Y�amUtÌ:Y ,
anddirectly rounds thesolution. Go throughthehorizontal
lines in order of their � -coordinates,addingup their frac-
tions. Whenever the total reaches61,P� , pick that line, reset
the total to 4 , andkeepgoing. Do the samewith the ver-
tical lines. The picked lines cannot missany edge! Since�´#ÎÍ=[\#\] , theapproximationratio is � . It is easyto see
thatthis algorithm worksfor therectangle stabbing problem
aswell, with thesameratioof � .

Let � be the set of empty rectangles~Ï�1� . We haveh �Éh . �\U��ÐY and h �Éh . [�UV���ZY . Denote by �²� the setof
emptyrectangles~R�1� , where y lies to the left of z . � can
becomputedin [�UV� � Y time,by computing �o� in [�UV�ÐY time
for eachyo|}# . Thedetailsareomitted.

We finally remark that both algorithms can be usedto
solve the colored version of the separationproblemin the
planewith thesameratio of � : write linearconstraints only
for thesetof bichromaticedges,i.e., thosewhoseendpoints
havedifferent colors.

@�ÑÒ� �Ò� �¼M:BQ	�
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We now show aninfinite sequenceof examples in theplane
having integrality gap +D,�� , for both the rectanglestabbing,
andthe separationproblem. It is enough to do this for the
separation problem(asa specialcaseof the rectangle stab-
bingproblem).

Lemma 2 The integrality gap of the linear programU�ÄY�aZU`È�Y�amUtÌ:Y is +D,�� for an infiniteclassof examples.

Proof. Considerthefive-point configurationin Fig. 1 (left),
thatwe call an

�
. Thepointscanbefractionally separated

with weights 6 ,�� on eachof thefour canonical linesshown
in thefigure. Thus �´#ÔÍr¯D,�� . � . Usingthe trivial lower
bound U�6ZY (or by inspection) gives [\#\]Õ<5p�� u ³1q?Wv� . + ,
andit is easyto seethatthis is tight.
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Figure1: A classof exampleswith integrality gap +,�� .

By repeating ; timesthe
�

diagonally, suchthat two ad-
jacent

�
s shareonepoint, we obtaina configurationwith¯;}7i6 points, as in Fig. 1 (right), for ; . + . One can

think of thepointsbeingplacedon an(infinite) chessboard.
Observe that in eachrow or columnof theboardthepoints
have increasing� and � -coordinates. Again, thepoints can
be fractionally separatedwith weights 61,�� on eachof the
canonical linesshown in thefigure. Thus �´#ÖÍ9¯D;C,�� . �:; .
To separatethe points of each

�
requiresthreelines, and

sincethepoints have increasing� and � -coordinatesin each
row or column, no line usedto separateone

�
is of any help

in separatingother
�

s, thus [\#\]Ë<×+; . It is easyto see
that +; linesarealsoenough,andthelemmafollows. Ø
Ù Ú 
P	�� � MP���e	KM:�m��A �¼�
Ù�ÑÒ� ÛRÜÐÝ �P�QGÞOCA MP�¼M � MP���
Thedecisionversionof theseparationproblemis clearly in
NP, so we only have to prove its NP-hardness.Inspired by
thereduction from Proposition 6.2of [5], we reducethesat-
isfiability problem 3-SAT to the separationproblem in the
plane(SEPARATION). Theinput to 3-SAT is aboolean for-
mula ß in 3-CNF form, i.e., eachclausehasexactly three
literals. Theproblemaskswhether ß is satisfiable.3-SAT is
known to beNP-complete [3]. Let ß have � variablesand à
clauses.Thereductionconstructsa set #*á of ¯P�H7â61� ài7±�
pointsin the plane,no two of which have thesame� or � -
coordinate. The construction is illustratedin Figure 2 forß . UVã�7���7 äDY�U �ª7 ��7âäYFU �H7 ��7 äDY . Here � . ¯ andà . + ; thethreeclausesaredenotedå£æ , å � , åèç .

Thereare threetypesof points: variable points, clause
pointsandcontrol points. Thecontrol pointscomein pairs
andhave increasing� -coordinateswhenscannedfrom left
to right: denoted é æ amwFwmw�a�éFêdë�ì ��í ì � . For 6vÍÔîªÍÔ�o7g6 ,
thepair é �dï�ð æ adé �dï ”forces”a horizontal line (which is more
usefulthanthevertical line separatingthepair),andfor �ª7�}Í3î�Ír���Þ7±à57Õ6 , thepair é ��ï�ð æ a�é ��ï ”forces” a vertical
line. We call theselinesgrid lines, andwe denote by ñ the
lowesthorizontal grid line. Therearethreevariablepoints

x

t

z

y

C1 C2 C3

h

20

24
q

q

q1

a b c d

Figure2: Thepoint set #8á corresponding to ß . U�ã�7â��7ä:YFU �Ç7 �L7�äYFU ��7 ��7 ä:Y . Thesolution(setof separatinglines)
corresponding to the truth assignmentã . 6Pa�� . 6:a{� .
4�adä . 6 is shown; the grid lines aresolid, while the other
separating linesaredashed.

for eachvariable,andnineclausepointsfor eachclause.The
ninepoints of eachclauseå aremadeup of six pointsthat
appear in the rows of thevariables thatappearin å (above
thehorizontal line ñ ), andthreepoints below ñ . We have a
pair of pointsin thegrid cell givenby eachvariable-clause
pair UV��adå£Y , wherethevariable � appearsin å , thussixpoints
per clauseabove line ñ . The threepointsof eachvariable
require two separatinglines. Every optimalsolutioncanbe
assumedto useexactly onevertical line, asoneverticalline
also separatestwo control points and a secondone is not
needed. The choiceof the higher(resp. lower) horizontal
linecorrespondstosettingof thevariable to true(resp.false).
If � appearsunnegatedin å , thepair of pointsis separated
by the higherhorizontal line, whereasif � appears negated
in å , thepair of pointsis separatedby the lower horizontal
line.

Clearly, constructing # á canbeaccomplished in polyno-
mial time. Theresultfollowsonceweestablishthefollowing
claim(proof omitted).

Claim 1 ß is satisfiableif andonly if # á canbeseparated
using ¯P�H7ò+Pài79� lines.

We canusethe samereduction to show that the separa-
tion problem with coloredpoints is alsoNP-complete. The� -coloring that we usehasthe property that all the edges
specifiedin theabove proof arebichromatic (i.e., their end-
points have differentcolors). We omit thedetailsfor lack of
space.We thushave

Corollary 1 Theseparation problemin theplanewith col-
oredpointsis NP-complete.
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Themaximum+ -satisfiability problemMAX-3SAT is thatof
finding a truth value assignment which satisfiesthe max-
imum number of clausesin a Booleanformula in 3-CNF
form. For eachfixed ; , defineMAX-3SAT Ut;�Y to be there-
strictionof MAX-3SAT to Booleanformulaein which each
variable occurs at most ; times. Theorem 3 below is im-
mediatefrom Theorems29.7,29.11, andCorollary 29.8 in
[10].

Theorem 3 [10] AssumingP -. NP, thereisanabsolutecon-
stant /�ö÷2Ë4 such that no polynomial time algorithm for
MAX-3SAT(5)satisfiesat least U�6èWo/Zö}Y�à clausesfor every
satisfiableformula ß with à clauses.

To prove the approximation hardnessstatedin Theorem1,
we usethe samereduction, and Theorem 3. Calculations
show thatonecantake / 0 . /�ö²,PÈP³ . We omit thedetails.

ø ùJMDGª
P	{úP�
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Following [4], it is now straightforwardto observe thatboth
our algorithms yield a factor � approximation for the sepa-
rationproblem in (*) . This holds for thecoloredversionas
well. Onehasto replace6 ,�� with 61, � in thecorresponding
places. In the first phase,after solving the linear program,
edgesareclassifiedinto � types,dependingonthecoordinate
for whichthesumof fractional weightsis at least 6 , � . In the
secondphase,the first algorithm solves � linear programs
(asin [4]), or solves � interval stabbing problemsontheline
(as in Section2). The secondalgorithmcyclesthrough all
coordinatesandfor eachcoordinate,goesthrough thehyper-
planesin order, andpicks a hyperplane whenthe total sum
of thefractional weightsreaches61,�� . Thetotal is thenreset
to 4 , andtheprocesscontinues.

ø Ñó@ û � � �PAó���Q! � Bü	�MDGª
P	{úP�
Several interestingquestions regardingtheseparationprob-
lem in the planeremain, suchas: Is it possibleto improve
the ratio � approximation? Do specialcases,e.g.,pointsin
convex position,admitbetterapproximation ratios,or even
exactsolutions?Are thereplanar exampleshaving integral-
ity gaplargerthan +D,�� ? We have examplesfor which every
LP solution is not half integral. Using rounding, one can
obtaina ratio +,P� approximation for instanceswhoseLP so-
lution is half integral. Onecanpotentially strengthentheLP
by adding constraints requiring thateachtriplet of pointsis
fractionally separatedby at least � , but we did not find yet
any benefitin doingthat.
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