
Algorithms for Minimum m-Connected
k-Dominating Set Problem�

Weiping Shang1,2, Frances Yao2, Pengjun Wan3, and Xiaodong Hu1

1 Institute of Applied Mathematics, Chinese Academy of Sciences, Beijing, China
2 Department of Computer Science, City University of Hong Kong

3 Department of Computer Science, Illinois Institute of Technology, Chicago, USA

Abstract. In wireless sensor networks, virtual backbone has been pro-
posed as the routing infrastructure to alleviate the broadcasting storm
problem and perform some other tasks such as area monitoring. Pre-
vious work in this area has mainly focused on how to set up a small
virtual backbone for high efficiency, which is modelled as the minimum
Connected Dominating Set (CDS) problem. In this paper we consider
how to establish a small virtual backbone to balance efficiency and fault
tolerance. This problem can be formalized as the minimum m-connected
k-dominating set problem, which is a general version of minimum CDS
problem with m = 1 and k = 1. In this paper we will propose some
approximation algorithms for this problem that beat the current best
performance ratios.

Keywords: Connected dominating set, approximation algorithm,
k-vertex connectivity, wireless sensor networks.

1 Introduction

A Wireless Sensor Network (WSN) consists of wireless nodes (transceivers) with-
out any underlying physical infrastructure. In order to enable data transmission
in such networks, all the wireless nodes need to frequently flooding control mes-
sages thus causing a lot of redundancy, contentions and collisions. To support var-
ious network functions such as multi-hop communication and area monitoring,
some wireless nodes are selected to form a virtual backbone. Virtual backbone has
been proposed as the routing infrastructure of WSNs. In many existing schemes
(e.g., [1]) virtual backbone nodes form a Connected Dominating Set (CDS) of
the WSN. With virtual backbones, routing messages are only exchanged between
the backbone nodes, instead of being broadcasted to all the nodes. Prior work
(e.g., [8]) has demonstrated that virtual backbones could dramatically reduce
routing overhead.

In WSNs, a node may fail due to accidental damage or energy depletion and
a wireless link may fade away during node movement. Thus it is desirable to
� This work was supported in part by the Research Grants Council of Hong Kong under

Grant No. CityU 1165/04E, the National Natural Science Foundation of China under
Grant No. 70221001 and 10531070.

A. Dress, Y. Xu, and B. Zhu (Eds.): COCOA 2007, LNCS 4616, pp. 182–190, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Algorithms for Minimum m-Connected k-Dominating Set Problem 183

have several sensors monitor the same target, and let each sensor report via
different routes to avoid losing an important event. Hence, how to construct a
fault tolerant virtual backbone that continues to function when some nodes or
links break down is an important research problem.

In this paper we assume as usual that all nodes have the same transmission
range (scaled to 1). Under such an assumption, a WSN can be modelled as
a Unit Disk Graph (UDG) that consists of all nodes in the WSN and there
exists an edge between two nodes if the distance between them is at most 1.
Fault tolerant virtual backbone problem can be formalized as a combinatorial
optimization problem: Given a UDG G = (V, E) and two nonnegative integers
m and k, find a subset of nodes S ⊆ V of minimum size that satisfies: i) each
node u in V \S is dominated by at least k nodes in S, ii) S is m-connected (there
are at least m disjoint paths between each pair of nodes in S). Every node in S
is called a backbone node and every set S satisfying (i-ii) is called m-connected
k-dominating set ((m, k)-CDS), and the problem is called minimum m-connected
k-dominating set problem.

In this paper, we will first study the minimum m-connected k-dominating set
problem for m = 1, 2, which is important for fault tolerant virtual backbone
problem in WSNs. (When m = 1 and k = 1 the problem is reduced to well
known minimum connected dominating set problem.) We propose three central-
ized approximation algorithms to construct k-dominating set and m-connected
k-dominating sets for m = 1, 2. Our performance analysis show that the algo-
rithms have small approximation ratio improving the current best result for small
k. Then for 3 ≤ m ≤ k, we discuss the relation between (m, k)-CDS and (m, m)-
CDS. The remainder of this paper is organized as follows: In Section 2 and 3 we
first give some definitions and then present some related works. In Section 4 we
present our algorithms with theoretical analysis on guaranteed performances. In
Section 5 we conclude the paper.

2 Preliminaries

Let G be a graph with vertex-set V (G) and edge-set E(G). For any vertex v ∈ V ,
the neighborhood of v is defined by N(v) ≡ {u ∈ V (G) : uv ∈ E(G)} and the
closed neighborhood of v is defined by N [v] ≡ {u ∈ V (G) : uv ∈ E(G)} ∪ {v}.
The minimum degree of vertices in V (G) is denoted by δ(G).

A subset U ⊆ V is called an independent set (IS) of G if all vertices in U are
pairwise non-adjacent, and it is further called a maximal independent set (MIS)
if each vertex V \ U is adjacent to at least one vertex in U .

A dominating set (DS) of a graph G = (V, E) is a subset S ⊆ V such that each
vertex in V \S is adjacent to at least one vertex in S. A DS is called a connected
dominating set (CDS) if it also induces a connected subgraph. A k-dominating
set (k-DS) S ⊆ V of G is a set of vertices such that each vertex u ∈ V is either
in S or has at least k neighbors in S.

184 W. Shang et al.

A cut-vertex of a connected graph G is a vertex v such that the graph G \ {v}
is disconnected. A block is a maximal connected subgraph having no cut-vertex
(so a graph is a block if and only if it is either 2-connected or equal to K1 or
K2). The block-cut-vertex graph of G is a graph H where V (H) consists of all
cut-vertices of G and all blocks of G, with a cut-vertex v adjacent to a block
G0 if v is a vertex of G0. The block-cut-vertex graph is always a forest. A 2-
connected graph is a graph without cut-vertices. Clearly a block with more than
three nodes is a 2-connected component. A leaf block of a connected graph is a
subgraph of which is a block with only one cut-vertex.

3 Related Work

Lots of efforts have been made to design approximation algorithms for minimum
connected dominating set problem. Wan et al. [10] proposed a two-phase dis-
tributed algorithm for the problem in UDGs that has a constant approximation
performance ratio of 8. The algorithm first constructs a spanning tree, and then
at the first phase, each node in a tree is examined to find a Maximal Independent
Set (MIS) and all the nodes in the MIS are colored black. At the second phase,
more nodes are added (color blue) to connect those black nodes. Recently, Li et
al. [6] proposed another two-phase distributed algorithm with a better approxi-
mation ratio of (4.8+ ln5). As in [10], at the first phase, an MIS is computed. At
the second phase, a Steiner tree algorithm is used to connect nodes in the MIS.
The Steiner tree algorithm is based on the property that any node in UDG is
adjacent to at most 5 independent nodes.

In [3], Dai et al address the problem of constructing k-connected k-dominating
virtual backbone which is k-connected and each node not in the backbone is
dominated by at least k nodes in the backbone. They propose three localized
algorithms. Two algorithms, k-gossip algorithm and color based (k, k)-CDS al-
gorithm, are probabilistic. In k-Gossip algorithm, each node decides its own
backbone status with a probability based on the network size, deploying area
size, transmission range, and k. Color based (k, k)-CDS algorithm proposes that
each node randomly selects one of the k colors such that the network is divided
into k-disjoint subsets based on node colors. For each subset of nodes, a CDS
is constructed and (k, k)-CDS is the union of k CDS’s. The deterministic algo-
rithm, k-Coverage condition, only works in very dense network and no upper
bound on the size of resultant backbone is analyzed.

Recently, Wang et al. [11] proposed a 64-approximation algorithm for the
minimum (2, 1)-CDS problem. The basic idea of this centralized algorithm is as
follows: i) Construct a small-sized CDS as a starting point of the backbone; ii)
iteratively augment the backbone by adding new nodes to connect a leaf block
in the backbone to other block (or blocks); iii) the augmentation process stops
when all backbone nodes are in the same block, i.e., the backbone nodes are
2-connected. The augmentation process stops in at most |CDS| − 1 steps and
each step at most 8 nodes are added.

Algorithms for Minimum m-Connected k-Dominating Set Problem 185

Most recently, in work [7] we proposed three centralized approximation algo-
rithms to construct k-tuple dominating set and m-connected k-tuple dominating
sets for m = 1, 2, respectively.

4 Approximation Algorithms

We first prove the following lemma, which will be used in our performance analy-
sis of proposed algorithms.

Lemma 1. Let G = (V, E) be a unit disk graph and k a constant such that
δ(G) ≥ k − 1. Let D∗

k be a minimum k-dominating set of G and S a maximal
independent set of G. Then |S| ≤ max{ 5

k , 1}|D∗
k|.

Proof Let S0 = S
⋂

D∗
k, X = S \ S0 and Y = D∗

k \ S0. It is clearly that X
and Y are two disjoint subsets. For all u ∈ X , let cu = |N(u)

⋂
Y |. As D∗

k is a
k-dominating set of G, cu ≥ k for each u ∈ X and we have:

∑
u∈X cu ≥ k|X |.

For all v ∈ Y , let dv = |N(v)
⋂

X |. As G is a unit disk graph, for all v ∈ Y there
are at most 5 independent vertices in its neighborhood and dv ≤ 5. We have:
5|Y | ≥

∑
v∈Y dv. For

∑
u∈X cu = |{uv ∈ E : u ∈ X, v ∈ Y }| =

∑
v∈Y dv, we

have |X | ≤ 5
k |Y |. Hence, |S| = |X | + |S0| ≤ 5

k |D∗
k \ S0| + |S0| ≤ max{ 5

k , 1}|D∗
k|,

which proves the lemma. �

Corollary 1. Let G = (V, E) be a unit disk graph and k a constant such that
δ(G) ≥ k−1. Let D∗

k be a minimum k-dominating set of G and S an independent
set of G satisfying that S

⋂
D∗

k = ∅. Then |S| ≤ 5
k |D∗

k|.

4.1 Algorithm for Computing (1, k)-CDS

The basic idea of our algorithm for the minimum (1, k)-CDS problem is as fol-
lows: First choosing a CDS and then sequentially choosing an MIS k − 1 times
such that all vertices in V \ Dc are k-dominated by set Dc. The algorithm is
more formally presented as follows.

Algorithm A. for computing (1, k)-CDS

1. Choose an MIS I1 of G and a set C such that I1 ∪C is a CDS (refer to [10])
2. for i := 2 to k
3. Construct an MIS Ii in G \ I1 ∪ · · · ∪ Ii−1
4. end for
5. Dc := I1 ∪ · · · ∪ Ik ∪ C
6. return Dc

Theorem 1. Algorithm A returns a solution that is a (5 + 5
k)-approximate so-

lution to the minimum connected k-dominating set problem for k ≤ 5 and 7-
approximate solution for k > 5.

186 W. Shang et al.

Proof: Suppose that Algorithm A, given graph G = (V, E) and a natural number
k ≥ 1, returns Dc = I1 ∪· · ·∪ Ik

⋃
C. Let D∗

k be a minimum k-dominating set of
G. We will show that D is a connected k-dominating set of G. For all u ∈ G\Dc,
at the i-th iteration, u is not in Ii and thus it is dominated by one vertex of Ii.
At the end, u is dominated by at least k different vertices of I1 ∪ · · · ∪ Ik. By the
first step of Algorithm A, C ∪I1 is a CDS and thus I1 ∪· · ·∪Ik

⋃
C is connected.

So, D is a connected k-dominating set of G.
Let Si = Ii

⋂
D∗

k for i = 1, 2, · · · , k. By the rule of Algorithm A, we have
each Ii \ Si is an independent set and (Ii \ Si)

⋂
D∗

k = ∅. Thus it follows from
Corollary 1 that |Ii \ Si| ≤ 5

k |D∗
k \ Si|. Let us prove now the approximation

ratio.

|I1 ∪ · · · ∪ Ik| =
k∑

i=1

|Si| +
k∑

i=1

|Ii \ Si|

≤
k∑

i=1

|Si| +
k∑

i=1

5
k

|D∗
k \ Si|

= (1 − 5
k

)
k∑

i=1

|Si| + 5|D∗
k|.

And
∑k

i=1 |Si| ≤ |D∗
k|. Hence we have |I1 ∪ · · · ∪ Ik| ≤ 5|D∗

k| for k ≤ 5 and
|I1 ∪ · · · ∪ Ik| ≤ 6|D∗

k| for k > 5.
In the end, let C be the set constructed from the first step of Algorithm

A. By using the argument for the proof of Lemma 10 in [10], we can deduce
|C| ≤ |I1|. Hence it follows from Lemma 1 that |C| ≤ max{ 5

k , 1}|D∗
k|, and the

size of connected k-dominating set D is bounded by (5 + 5
k)|D∗

k| for k ≤ 5 and
7|D∗

k| for k > 5. The size of the optimal solution of connected k-dominating set
is at least |D∗

k|. The proof is then finished. �

4.2 Algorithm for Computing (2, k)-CDS

The basic idea of our algorithm for the minimum (2, k)-CDS problem with k ≥ 2
is similar to the method proposed in [11]. It essentially consists of following four
steps:

Step 1. Apply Algorithm A to construct a connected k-dominating set D.
Step 2. Compute all the blocks in D by computing the 2-connected

components through the depth first search.
Step 3. Produce the shortest path in the original graph such that it can

connect a leaf block in D with other part of D but does not contain
any vertices in D except the two endpoints. Then add all intermediate
vertices in this path to D.

Step 4. Repeat Step 2 and Step 3 until D is 2-connected.

Algorithms for Minimum m-Connected k-Dominating Set Problem 187

In Step 2, we can apply the standard algorithm proposed in [9] to compute
all blocks in D, denote the number of blocks in D by ComputeBlock(D). The
algorithm is more formally presented as follows:

Algorithm B. for computing a 2-connected k-dominating set (k ≥ 2)

1. Choose a connected k-dominating set Dc using Algorithm A
2. D := Dc and B:= ComputeBlocks(D)
3. while B > 1 do
4. Choose a leaf block L
5. for vertex v ∈ L not a cut-vertex do
6. for vertex u ∈ V \ L do
7. Construct G′ from G by deleting all nodes in D except u and v
8. Puv :=shortestPath(G′; v, u) and P := P ∪ Puv

9. end-for
10. end-for
11. Pij := the shortest path in P
12. D := D∪ the intermediate vertices in Pij

13. ComputeBlocks(D)
14. end-while
15. return D

Lemma 2. For k ≥ 2, at most two new vertices are added into D at each
augmenting step.

Proof Suppose that L is a leaf block of D and w is the cut-vertex. Consider two
vertices u and v in D with u ∈ L \ {w} and v ∈ V \ L, let Puv be the shortest
path that connects u and v. We claim that Puv has at most two intermediate
vertices. Suppose, by contradiction, that Puv contains u, x1, x2, ..., xl, v, where
l ≥ 3. Since each vertex xi has at least 2 neighbors in D and N(xi) ∩ D ⊆ L or
N(xi) ∩ D ⊆ (V \ L) ∪ {w}, N(x1) ∩ D ⊆ L. If N(x2) ∩ D ⊆ L, x2 must have
a neighbor s in L \ {w}, then the path between sv has a shorter distance than
Puv. Otherwise N(x2)

⋂
D ⊆ (V \L)∪{w}, x2 must have a neighbor s in V \L,

then the path between us has a shorter distance than Puv. Which contradicts
that Puv has the shortest distance. �

Lemma 3. The number of cut-vertices in the connected k-dominating set Dc

by Algorithm A is no bigger than the number of connected dominating sets in
I1 ∪ C chosen in Step 1 of Algorithm A.

Proof Let S = I1 ∪ C be the connected domination set. We will show that no
vertex in Dc \ S is a cut-vertex. For any two vertices u, v ∈ S, there is a path
Puv between them that contains only vertices in S. Since any vertex in Dc \ S
is dominated by at least one vertex in S, Hence, for any two vertices u, v ∈ Dc,
there is a path Puv between them that contains only vertices in S

⋃
{u, v}. Hence,

any vertex in Dc \ S is not a cut-vertex. �

188 W. Shang et al.

Theorem 2. Algorithm B returns a (5 + 25
k)-approximate solution to the min-

imum 2-connected k-dominating set problem for 2 ≤ k ≤ 5 and 11-approximate
solution for k > 5.

Proof Let D∗
k and Dopt be the optimal k-dominating set and 2-connected k-

dominating set, respectively. It is clearly that |D∗
k| ≤ |Dopt|. After S is con-

structed, by Lemmas 2-3, the algorithm terminates in at most |C| + |I1| steps,
and in each step at most two vertices are added. Since |C| + |I1| ≤ 2|I1| ≤
2 max{ 5

k , 1}|D∗
k|, we have |D| ≤ |Dc| + 4 max{ 5

k , 1}|D∗
k|. It follows from Theo-

rem 1 that |Dc| ≤ (5 + 5
k)|D∗

k| for k ≤ 5 and |Dc| ≤ 7|D∗
k| for k > 5. Hence we

obtain |D| ≤ (5 + 25
k)|Dopt| for 2 ≤ k ≤ 5 and |D| ≤ 11|Dopt| for k > 5. �

4.3 Algorithm for Computing (2, 1)-CDS

The main idea of our algorithm is as follows: First, construct a connected domi-
nating set C using the algorithm in [6], and then construct a maximal indepen-
dent set D in G \ C, in the end make C ∪ D to be 2-connected by adding some
new vertices to it.

Algorithm C. for computing 2-connected dominating set

1. Produce a connected dominating set C of G using the algorithm in [6].
2. Construct a maximal independent set D in G \ C

3. S := C ∪ D

4. Augment S using Steps 2-14 of Algorithm B

Theorem 3. Algorithm C returns a 2-connected dominating set whose size is
at most (18.2+3 ln5)|D∗

2 |+4.8, where |D∗
2 | is the size of the optimal 2-connected

dominating set.

Proof Let D∗
1 and D∗

2 be the optimal (1, 1)-CDS and (2, 1)-CDS, respectively. It
is clear that |D∗

1 | ≤ |D∗
2 |. After C and D is constructed, which are a connected

dominating set of G and a dominating set of G \ C, respectively, each vertex in
V \S is dominated by at least two vertices in S. Thus, Lemmas 2-3 also hold true
for Algorithm C. Thus it follows from Lemmas 2-3 that at most |C| steps are
needed before the algorithm terminates, and at each step at most two vertices are
added. Hence, we obtain |S| ≤ 3|C|+ |D|. Using the same argument for Theorem
1 in [6,12], we could show |C| ≤ (4.8 + ln 5)|D∗

1 | + 1.2 and |D| ≤ 3.8|D∗
1| + 1.2

respectively. Thus we obtain |S| ≤ (18.2 + 3 ln 5)|D∗
2 | + 4.8. �

Observe that (18.2 + 3 ln 5) < 23.03. So Algorithm C has a better guaranteed
performance than the 64-approximation algorithm in [11] for the same problem
(when the size of the optimal 2-connected dominating set is not very big).

Algorithms for Minimum m-Connected k-Dominating Set Problem 189

4.4 (m, k)-CDS for 3 ≤ m ≤ k

Let A(m,m) be an α-approximation algorithm for the (m, m)-CDS problem. The
basic idea of algorithm A(m,k) for the minimum (m, k)-CDS problem is as follows:
First choosing a (m, m)-CDS and then sequentially choosing an MIS k−m times.
The algorithm is more formally presented as follows.

Algorithm A(m,k). for computing (m, k)-CDS

1. Choose an (m, m)-CDS S of G using algorithm A(m,m)
2. for i := 1 to k − m
3. Construct an MIS Ii in G \ S ∪ I1 ∪ · · · ∪ Ii−1
4. D := I1 ∪ · · · ∪ Ik−m ∪ S
5. return D

Theorem 4. If there exists an α-approximation algorithm for the (m, m)-CDS
problem, then there exists a (α+6)-approximation algorithm for the (m, k)-CDS
problem, where k > m.

Proof: We first show that D is a (m, k)-CDS of G. For all u ∈ G \ D, u is
not in S and thus it is dominated by at least m vertices of S. And at the i-
th iteration, u is not in Ii and thus it is dominated by one vertex of Ii for
i = 1, ..., k − m. At the end, u is dominated by at least k different vertices of
D. Now we show that D is m-connected, suppose there exist m − 1 vertices in
D such that the induced subgraph D is disconnected by removing the m − 1
vertices. Let X be the vertex set. For S is a (m, m)-CDS, S \ X is a connected
dominating set. So, D \X is connected, a contraction. Hence, D is a (m, k)-CDS
of G.

Let D∗ be the optimal solution of (m, k)-CDS. It is clearly that |S| ≤ α|D∗|,
and |I1 ∪ · · · ∪ Ik−m| ≤ 6|D∗| by similar argument of Theorem 1. This gives a
(α+6)-approximation algorithm for the (m, k)-CDS problem, where k > m. The
proof is then finished. �

5 Conclusion

In this paper we have proposed centralized approximation algorithms for the
minimum m-connected k-dominating set problem for m = 1, 2. Although the
approximation performance ratios of Algorithms A and B are dependent on k,
they are very small when k is not very big, that, in fact, is the case of virtual
backbone construction in wireless sensor networks. For 3 ≤ m ≤ k, we discuss
the relation between (m, k)-CDS and (m, m)-CDS. Our future work is to extend
our study to the more general case of m ≥ 3, and design distributed and localized
algorithms for minimum m-connected k-dominating set problem.

190 W. Shang et al.

References

1. Alzoubi, K.M., Wan, P.-J., Frieder, O.: Distributed heuristics for connected dom-
inating sets in wireless ad hoc networks. Journal of Communications and Net-
works 4(1), 22–29 (2002)

2. Bredin, J.L., Demaine, E.D., Hajiaghayi, M., Rus, D.: Deploying sensor networks
with guaranteed capacity and fault tolerance. In: Proceedings of the 6th ACM In-
ternational Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc),
pp. 309–319. ACM Press, New York (2005)

3. Dai, F., Wu, J.: On constructing k-connected k-dominating set in wireless net-
works. IEEE International Parallel and Distributed Processing Symposium. IEEE
Computer Society Press, Los Alamitos (2005)

4. Kuhn, F., Moscibroda, T., Wattenhofer, R.: Fault-Tolerant Clustering in Ad Hoc
and Sensor Networks. In: Proceedings 26th International Conference on Distributed
Computing Systems (ICDCS) (2006)

5. Koskinen, H., Karvo, J., Apilo, O.: On improving connectivity of static ad-hoc net-
works by adding nodes. In: Proceedings of the 4th annual Mediterranean Workshop
on Ad Hoc Networks (Med-Hoc-Net), pp. 169–178 (2005)

6. Li, Y.S., Thai, M.T., Wang, F., Yi, C.-W., Wan, P.-J., Du, D.-Z.: On greedy con-
struction of connected dominating sets in wireless networks. Wiley Journal on
Wireless Communications and Mobile Computing 5(8), 927–932 (2005)

7. Shang, W.-P., Yao, F., Wan, P.-J., Hu, X.-D.: Algorithms for minimum m-
connected k-tuple dominating set problem. Theoretical Computer Science (to sub-
mitted)

8. Sinha, P., Sivakumar, R., Bharghavan, V.: Enhancing ad hoc routing with dynamic
virtual infrastructures. In: Proceedings of the 20th Annual Joint Conference of the
IEEE Computer and Communications Societies, vol. 3, pp. 1763–1772 (2001)

9. Tarjan, R.: Depth first search and linear graph algorithms. SIAM Journal on Com-
puting 1(2), 146–160 (1972)

10. Wan, P.-J., Alzoubi, K.M., Frieder, O.: Distributed construction of connected dom-
inating set in wireless ad hoc networks. Mobile Networks and Applications 9(2),
141–149 (2004)

11. Wang, F., Thai, T.: On the construction of 2-connected virtual backbone in wireless
networks. IEEE Transactions on Wireless Communications (to appear)

12. Wu, W., Du, H., Jia, X., Li, Y., Huang, C.-H.: Minimum connected dominating
sets and maximal independent sets in unit disk graphs. Theoretical Computer
Science 352(1), 1–7 (2006)

	Algorithms for Minimum m-Connected k-Dominating Set Problem
	Introduction
	Preliminaries
	Related Work
	Approximation Algorithms
	Algorithm for Computing $(1,k)$-CDS
	Algorithm for Computing $(2,k)$-CDS
	Algorithm for Computing (2,1)-CDS
	(m,k)-CDS for $3\leq m\leq k$

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Europe ISO Coated FOGRA27)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

