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Abstract. The node-weighted Steiner tree problem is a variation of clas-
sical Steiner minimum tree problem. Given a graph G = (V, E) with node
weight function C : V → R+ and a subset X of V , the node-weighted
Steiner tree problem is to find a Steiner tree for the set X such that
its total weight is minimum. In this paper, we study this problem in
unit disk graphs and present a (1+ε)-approximation algorithm for any
ε > 0, when the given set of vertices is c-local. As an application, we use
node-weighted Steiner tree to solve the node-weighted connected domi-
nating set problem in unit disk graphs and obtain a (5+ε)-approximation
algorithm.

Keywords: Node-weighted Steiner tree, minimum weighted connected
dominating set, polynomial-time approximation scheme, approximation
algorithm.

1 Introduction

Given a graph G = (V, E) and a subset X ⊆ V , the classical Steiner tree problem
is to find a tree of shortest length in G interconnecting X , where the length is
the sum of the lengths of all edges in the tree. This problem is known to be NP-
hard in graphs, and it is also proved to be NP-hard in most other metrics rather
than Euclidean [7]. Lots of effort have been devoted to study the approximation
algorithms for this problem [4,10,14,17,20] and some of them have successfully
achieved constant ratios [10,17,20]. The best known result among all of them is
ρ = 1 + ln 3

2 ≈ 1.55 by Robins et.al [17] up till now.
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The Node-weighted Steiner Tree problem (NWST) is a variation of the clas-
sical Steiner tree problem. Given a graph G = (V, E) with node weight function
C : V → R+ and a subset X of V , which is denoted as the terminal set, the
node-weighted Steiner tree problem is to find a Steiner tree for the set X such
that the total weight of this Steiner tree is minimum. In 1991, Berman [3] proved
that NWST problem can not be approximated within a factor of o(log k). Later,
Klein and Ravi [13] presented the first asymptotically optimal solution of ap-
proximation ratio 2 ln k, by constructing the Steiner tree using “spiders”, which
is a special kind of tree with at most one node of degree greater than two. Later,
this ratio is improved to be 1.35 lnk by Guha and Khuller [8]. They introduce a
new concept called “branch-spider” based on “spider”.

Recently, researchers are interested in this problem on a special type of graphs
called unit disk graphs, which has a wide application in networks. A unit disk
graph is associated with a set of unit disks in the Euclidean plane. Each vertex
in the graph is the center of a unit disk and an edge exists between two vertices
u and v if and only if the Euclidean distance between u and v is at most 1. Zou
et al. [21] is the first to give a 3.875-approximation algorithm by converting the
node-weighted Steiner tree problem to the classical Steiner tree problem.

In this paper, we concern about the same problem from a different perspective.
We present a polynomial-time approximation scheme (PTAS) when the given
set of vertices is c-local. A polynomial-time approximation scheme (PTAS) is a
family of approximation algorithm with ration 1+ε for any ε > 0 and such a
scheme would be the best for a NP-hard problem we can expect.

As an application, we use our algorithm to solve minimum weighted connected
dominating set problem in unit disk graph. The Minimum Weighted Connected
Dominating Set problem (MWCDS) is a generalization of the minimum con-
nected dominating set problem. Given a graph G = (V, E) with node weight
function C : V → R+, the minimum weighted connected dominating set prob-
lem is to find a connected dominating set of G such that its total weight is
minimized. Up till now, the best known approximation ratio for MWCDS in
general graphs is O(log n) [8].

In unit disk graphs, researchers usually construct an approximation algorithm
for MWCDS with the following two steps. The first step is to find a DS, and
the second step is to interconnect DS. Ambühl et al. [1] gave the first constant-
factor algorithm for MWCDS with an approximation ratio of 89 with a 72-
approximation algorithm for MWDS. Huang et al. [11] improved the approx-
imation ratio from 89 to 10+ε with a (6+ε)-approximation algorithm for the
first step. Recently, Dai and Yu [6] gave a (5+ε)-approximation algorithm for
MWDS. Therefore, the best known approximation ratio for MWCDS in UDG
is 8.875+ε. In this paper, we first give a (4+ε)-approximation algorithm for
MWDS and then obtain a (5+ε)-approximation algorithm by using Steiner tree
to interconnect such DS.

The rest of this paper is organized as follows. In Section 2, we give some useful
notations and lemmas. In Section 3, we introduce our main strategy, which
is the partition and shifting strategy. Based on the partition, we present our



38 X. Li et al.

algorithm in Section 4. In Section 5, we first show that our algorithm is a PTAS
for NWST in unit disk graphs when the given set of vertices is c-local. Then, as
an application, we obtain a (5+ε)-approximation algorithm for MWCDS in unit
disk graphs.

2 Preliminaries and Fundamental Lemmas

Given a node-weighted unit disk graph G = (V, E) with weighted function C, and
the terminal set X . For convenience, we normalize the weight function C such that
for any vertex v in G, C(v) ≥ 1. And we denote a vertex u in the Steiner tree T
for X as terminal vertex if u ∈ X ; otherwise, we call it Steiner vertex.

We introduce two kinds of distance between any two vertices u and v in
the graph, which are called e-distance and w -distance, respectively. In detail,
diste(u, v) is calculated as the Euclidean distance between the two nodes and
distw(u, v) is calculated as the minimum weight of all the possible paths con-
necting u and v in G. The weight of each path here is calculated as the total
weight of all intermediate vertices on that path.

Since the graph is node-weighted instead of edge-weighted, the construction
of the minimum spanning tree, or saying the minimum node-weighted spanning
tree on terminal set X (denoted as Ts(X)), is a little bit different here. Firstly,
we create an edge-weighted complete graph G′ on terminal set X such that for
any edge (u, v) in G′ (u, v ∈ X), its weight is equal to the w-distance between
u and v. Then let Ts be a minimum spanning tree of G′. Easy to see, for any
edge (u, v) in Ts, it corresponds to the minimum weighted-path between u and
v in G. In the following, we use C(Ts) to denote the total weight of edges in Ts.
Meanwhile, for simplicity, we keep Ts as it is without replacing the weighted-
edge with the corresponding minimum weighted-path between any two nodes in
the node-weighted graph.

A set of vertices X is called c-local in a node-weighted graph if in the minimum
node-weighted spanning tree for X , the weight of longest edge is at most c.
This definition could be considered as the node-weighted version of the c-local
definition given by [18]. In the following of paper, we assume that the terminal
set X is c-local for some constant c.

In [16], Robin et.al showed that the Minimum Spanning Tree Number for
Euclidean metric is 5 and [19] shows that for any unit disk graph G, there exits
a spanning tree T of G such that the maximum degree of G is at most 5. Thus,
we can get the following lemma easily. (Proof is omitted due to lack of space.)

Lemma 1. The minimum spanning tree of a given terminal set in a node-
weighted graph has an approximation ratio of at most 5 for the optimal Steiner
tree of the same given terminal set.

Following are some of the preliminaries for MWCDS problem, which we will
talk about as an application after introducing our own algorithm. Given a graph
G = (V, E), a Dominating Set (DS) is a subset D ⊆ V such that for every vertex
v ∈ V , either v ∈ D, or v has a neighbor in D. If the graph induced from D
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is connected, then D is called a Connected Dominating Set (CDS). Minimum
Connected Dominating Set (MCDS) problem is to find a connected dominating
set in G with minimum size, which is a well-known NP-complete problem[7] and
has been further shown to be NP-complete even though the given graph is a
unit disk graph (UDG)[15]. The MWCDS is a generalization of MCDS, which is
obviously NP-hard problem in unit disk graphs.

3 Partition and Shifting

One of the key strategies adopted in our algorithm is partition and shifting. Con-
sidered as a special way to make restriction and derandomize the probabilistic
result to get a deterministic one, researchers has started to use partition and
shifting strategy [2,9] in approximation algorithms from early 1980s.

Specifically, in our algorithm, we partition the graph according to the following
strategy. Let A be the smallest square containing all vertices of G with size q×q.
For a given integer k, let l = (�q/k�+ 2)k and make the lower left corner of the
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Fig. 1. Two partitions P0,0 and Pi,j with shadow area is A. The black is P0,0 and the
dashed is Pi,j .
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Fig. 2. The interior area and boundary area with boundary width b = (1 + 1.5 log k)c

square A as the center of the coordinate system. We extend the area A to A′ of
size l× l and divide it into small cells such that the size of each cell is k× k (see
Fig 1.) Furthermore, for each cell, we divide it into two parts: interior area and
boundary area with boundary width b = (1 + 1.5 log k)c (as in Fig 2.). We call
this partition as P0,0. Then we shift the extended area A′ to make its lower left
corner positioned at point (−i,−j) (0 ≤ i, j ≤ k − 1) in the coordinate system,
to get another partition Pi,j . Clearly, there are all k2 possible partitions and any
partition contains the area A.

Our intention of making use of partition and shifting strategy is that for any
fixed partition, we first construct the local optimal solution for each cell. Then,
we further modify the union of the local optimal solution of all cells to make
it a feasible solution. In order to achieve the best solution, we use shifting to
obtain a set of solutions on different partitions and choose the best solution
among all these feasible solutions. With this strategy, we could better bound the
approximation ratio of our algorithm.

4 NWST Approximation Algorithm

In this section, we present our approximation algorithm for this problem based on
the partition and shifting strategy introduced in last section. Before introducing
this algorithm, we first give some useful notations.

Recall that Ts is a minimum spanning tree of terminal set X in G. For a fixed
partition P , we call an edge uv a crossing edge if at least one of the end nodes u
or v is contained in boundary area of P . We use Xp to denote the set of terminal
vertices contained in the interior area of P . Note that we study this problem
under a fixed partition P in this section.

The algorithm has two steps as follows. Firstly, for each cell, we construct a
local optimal Steiner forest on terminal vertices in the interior area of this cell.
Then, union all these forests to obtain a local optimal Steiner forest F̂p on Xp.
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In the second step, we add all the crossing edges in TS into F̂p to get a Steiner
tree on terminal set X . We call the resulted graph Gp for a specific partition P .
In order to approximate the minimum node-weighted Steiner tree, we calculate
all Gpi,j for 0 ≤ i, j ≤ k − 1 and choose the minimum one among all of them as
the output of our algorithm.

Following, we describe in detail the construction of the local optimal Steiner
forest and the final Steiner tree in our scheme.

4.1 Local Optimal Steiner Forest F̂p

Our target in this part is to construct a local optimal Steiner forest F̂p on Xp. In
order to achieve this goal, we first group the terminal vertices in the interior area
of every cell satisfying that the w -distance between any two groups is greater
than c. The grouping is achieved by first constructing the minimum spanning
tree on the terminal vertices in the interior area of each cell and then deleting
all edges with weight greater than c. Obviously, by doing so, terminal vertices
will be divided into different connected components. We consider all terminals
vertices in the same connected component to be in the same group. Clearly, the
w -distance between any two groups is greater than c. Otherwise, there will be
another spanning tree with weight less than our minimum spanning tree, which
derives a contradiction.

For a fixed cell, let Y1, . . . , Ym be the different groups of all terminal vertices
after grouping. In order to get desired solution, we merge Y1, . . . , Ym into new
groups, construct Steiner minimum tree for each new group in this cell and
then combine them to form a Steiner forest. If we calculate the total weight
of vertices in the resulted Steiner forest to be the merging-cost of this specific
merging, with different possible merging choices, we choose the merging with
the minimum merging-cost among all of them. The corresponding Steiner forest
is the local optimal Steiner forest that we are after for this cell in partition P .

For a fixed partition P , we denote F̂p the local optimal Steiner forest on the
terminal vertices Xp in graph G. It is calculated as the union of local optimal
Steiner forest in each cell. From the method for F̂p construction described above,
we can obtain the following lemma easily.

Lemma 2. F̂p is a Steiner forest on XP with the following properties:
(1) Each tree in the forest F̂p is completely included in some cell.
(2) The w-distance between any two terminal vertices in different trees of F̂p is
greater than c.

In the following, we will discuss the running time for computing a local optimal
Steiner forest. Let n be the number of vertices of G. Since G is a unit disk graph,
G can be cover by a square with size n×n. Recall that the size of every cell is k×k,
there are at most O(n/k)2 cells. Then, we will discuss the time for computing
a local optimal Steiner forest in a cell. Let Y be the set of terminal vertices in
the interior area in this cell and m the number of groups in the same cell. Since
there is a minimum Steiner tree containing all of edges of induced subgraph
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G[Y ], we shrink every component of G[Y ] to a new vertex and set Y ′ as the set
of these new vertices. Easy to see that m < |Y ′|. If we find a minimum Steiner
tree on Y ′, and replace every vertex in Y ′ by the corresponding component, we
obtain a minimum Steiner tree on Y . Hence, the time-complexity to compute
local optimal Steiner forest is O(2mM(|Y ′|)) [18], where M(|Y ′|) is the time to
compute an optimal Steiner tree on terminal set Y ′ and M(|Y ′|) is exponential
in |Y ′| [5,12]. In order to show |Y ′| is bounded by a constant value, we divide
the cell into some squares such that the size of each square is

√
2

2 ×
√

2
2 . Then the

terminal vertices in each square must belong to the same component of G[Y ].
Hence, there are at most 2k2 components in G[Y ], i.e., |Y ′| ≤ 2k2. In Section 5,
we will show that k is only related with c and ε. Hence, we can compute a local
optimal Steiner forest in polynomial times.

4.2 Constructing NWST Tout from F̂p

Recall that in the above subsection, we get a local optimal Steiner forest F̂p on
Xp and the w -distance between any two terminal vertices in different trees of F̂p

is greater than c.
Let Es

p be the set of all crossing edges in Ts under a partition P . In order to
interconnect the disconnected components in the Steiner forest F̂p, we add all
edges in Es

p into F̂p and then replace every crossing edge by corresponding path
in G. Denote Gp as the resulting graph, we have

Lemma 3. Gp contains a Steiner tree interconnecting X.

Proof. In order to prove this statement, it is sufficient to show (1) X ⊆ V (Gp);
(2) Gp is connected.

Obviously, vertices in the interior area of a partition Xp ⊆ V (Gp). If a vertex
is in the boundary area of a partition, it must be on one of the crossing edges
included in the set Ep, which has already been added into V (Gp). So X ⊆ V (Gp).
It is sufficient to show Gp is connected. For convenience, we keep Gp as it is
without replacing every crossing edge by corresponding path, i.e., Gp is obtained
from F̂p by adding all edges in Es

p. Clearly, if this Gp is connected, after replacing
every crossing edge, the resulting graph Gp is also connected.

Now, suppose to the contrary that Gp is disconnected. Then, Gp can be di-
vided into two disjoint subgraphs G1

p and G2
p such that there are no edges con-

necting G1
p and G2

p in Gp. Since Gp is obtained from F̂p by adding all edges in
Es

p, there are some terminal vertices contained in G1
p and G2

p. Since Ts is a span-
ning tree of terminal set X in G, there is an edge L in Ts connecting G1

p and G2
p.

Because all crossing edges are added in Gp, the edge L must be a non-crossing
edge. Therefore, L is contained in some cell. Denote u and v as the endpoints
of this edge. Also let Tu and Tv be the two trees containing u and v in the cell,
respectively. Since c is the maximum edge weight among all edges in Ts, we have
distw(u, v) ≤ c. On the other hand, from Lemma 2, we have distw(u, v) > c.
This derives a contradiction. Hence, Gp is connected. 
�
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Recall that there are all together k2 different partitions and for every parti-
tion Pi,j , we could obtain a graph GPi,j . Among all k2 graphs, we choose the
minimum-weight graph and prune it into a Steiner tree on X . This final tree,
denoted as Tout, is the output of our algorithm.

5 Theoretical Analysis

In this section, we study the approximation ratio of our algorithm and show that
for any ε > 0, choosing appropriate integer k, the approximation ratio is 1 + ε.

There are two steps in our proof. In the first step, we show that for any
partition P , C(F̂p) ≤ C(TOPT ), where TOPT is the optimal solution for node-
weighted Steiner tree on terminal set X . In the second step, we show that our
algorithm has a performance ratio of 1 + ε.

5.1 C(F̂P ) ≤ C(TOPT )

Let Tp be the minimum Steiner tree in G on Xp. Since TOPT is also a Steiner
tree on Xp, clearly C(Tp) ≤ C(TOPT ). In order to prove C(F̂P ) ≤ C(TOPT ), we
construct a new Steiner forest Fp on Xp, which is modified from Tp satisfying
that each tree in Fp is completely included in a cell and also C(F̂p) ≤ C(Fp).
Following gives some useful notations for further proof.

For any Steiner tree, we call a Steiner vertex a real Steiner vertex if its degree
is at least 3. Besides, a path between two vertices in the Steiner tree is a Stem
if its endpoints are either a terminal vertex or a real Steiner vertex and also all
the other vertices are 2-degree Steiner vertices. We modify Tp to be the desired
forest Fp with the following 3 steps.

In the first step, we delete all stems with weight greater than c in Tp, and
denote the resulting forest by F ′

p. After this, the w -distance between any two
trees in F ′

p is greater than c because of the optimality of Tp. Also we have
C(F ′

p) ≤ C(Tp).
In the second step, we further modify F ′

p to guarantee that each tree in it
is interconnecting terminal vertices in the same cell. If there is a tree T ∗ in F ′

p

connecting terminal vertices in different cells, T ∗ must have some Steiner vertices
between the boundary areas of two adjacent cells since the e-distance between
any two vertices is at most 1. By Steiner vertices, we mean those vertices not
belong to the Xp. If we draw two vertical lines, the distance between which
is 2c as illustrated in the figure 3, there must exist a vertex u in the tree T ∗

within these two lines since the e-distance between any two vertices is at most
1. Therefore, the e-distance between u and any boundaries of the interior area
is more than 1.5c log k. Since the weight of any stem in F ′

p is at most c and the
weight of any vertex is at least 1, the e-distance between any two adjacent real
Steiner vertices is at most c, where two real Steiner vertices are adjacent if they
can be connected without any other real Steiner vertices. Now, we count the
number of real Steiner vertices to connect the vertex u and any boundary of the
interior area. Clearly, it must use at least

1 + 2 + · · · + 2(1.5 log k)−1 = 21.5 log k − 1 = k1.5 − 1
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2c

u

*
T

Boundary areaBoundary area

Interior
area

Fig. 3. The tree T ∗ and the vertex u

real Steiner vertices in the tree T ∗(see figure 3). Hence, there are at least

k1.5 − 1 + (k1.5 − 1)(c − 1) = c(k1.5 − 1)

Steiner vertices in the tree between u and the boundary of interior area. By
deleting all of these vertices, at most k more trees will be created along this
boundary. If the w -distance of any two trees is at most c, connect them to be a
new tree. As there are at most k trees, the whole weight will increase at most
c(k − 1). Meanwhile, as we delete at least c(k1.5 − 1) vertices, which means the
whole weight decreases at least c(k1.5 − 1). Hence, the weight of the new F ′

p is
decreased by doing so. Repeating this step until there are no trees connecting
different cells, denoted the resulting forest by F ′′

p . We can see that the w -distance
between any two trees in F ′′

p is also greater than c and C(F ′′
p ) ≤ C(F ′

p).
In the last step, if any tree of F ′′

p is completely included in a cell, we do
nothing. Otherwise, there must exist a tree such that all its terminal vertices are
in a same cell, but at least one Steiner vertex is in a different cell. In this case,
we modify F ′′

p using the same method described in Step 2. Clearly, any tree in
the new F ′′

p is completely in one cell. Finally, for any tree, we reconstruct Steiner
minimum tree on its terminal vertices in the cell. Let Fp be the resulting graph
afterwards, we can obtain the following lemmas.
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Lemma 4. Fp is a Steriner forest on Tp with the following properties:
(1) Each tree of Fp is completely included in some cell.
(2) The w-distance between any two trees in Fp is greater than c. Furthermore,
the w-distance between any two terminal vertices in different trees of Fp is greater
than c.
(3) C(Fp) ≤ C(Tp) ≤ C(TOPT ).

Lemma 5. C(F̂p) ≤ C(Fp) ≤ C(TOPT ).

Proof. It is only necessary to show C(F̂p) ≤ C(Fp). Recalling the constructions
of F̂p and Fp, for a fixed cell, every Yi is completely contained in one tree of
Fp. Hence, Fp will be one of possible merging solutions as well. Since F̂p is the
minimum solution of all possible merging choices, we have C(F̂p) ≤ C(Fp). 
�

5.2 Performance Analysis

Based on Lemma 5 and the construction of Tout, we obtain the main theorem in
this paper.

Theorem 1. The approximation ratio for the NWST problem used in our algo-
rithm to interconnect the terminal set is 1 + 40c�1 + 1.5 log k
/k.

Proof. Recall that Tout is consisted of two parts, local optimal F̂p and Epi,j . To
bound total weight of the Epi,j , we consider the number of times each vertex in
the terminal set appears in the boundary area in all k2 partitions.

If we divide every cell into 1 × 1 squares, for different partitions, the same
terminal vertex must lie in different square according to the shifting strategy
we used. Since there are at most 4ck�1 + 1.5 log k
 squares in boundary area,
a terminal vertex will appear in the boundary area at most 4ck�1 + 1.5 log k

times. For an edge in Ts, since both of its endpoints are terminal vertices, it will
be considered as a crossing edge at most 2 × 4ck�1 + 1.5 log k
 times in all k2

partitions. Hence, we have
∑

0≤i,j≤k−1

C(Gpi,j ) ≤ k2C(F̂p) +
∑

0≤i,j≤k−1

C(Epi,j )

≤ k2C(TOPT ) +
∑

0≤i,j≤k−1

C(Epi,j )

≤ k2C(TOPT ) + 8ck�1 + 1.5 log k
C(Ts)
≤ k2C(TOPT ) + 8ck�1 + 1.5 log k
 × 5C(TOPT )
≤ k2C(TOPT ) + 40ck�1 + 1.5 log k
C(TOPT ).

Therefore, we have

C
(
Tout

) ≤
(

∑

0≤i,j≤k−1

C(Gpi,j )

)
/k2 ≤

(
1 + 40c�1 + 1.5 log k
/k

)
C

(
TOPT

)
.

The proof is then finished. 
�
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Corollary 1. For any given ε > 0, let k > �(41 c/ε)2
. Then C(Tout) ≤ (1 +
ε) C(TOPT ).

5.3 Application on MWCDS

As an application, we apply NWST algorithm into MWCDS problem. Recall
that the problem of MWCDS is to construct the connected dominating set in
a node-weighted graph with the minimum total weight. Normally, researchers
start with calculating dominating set for the graph first and then interconnect-
ing them. Obviously, the node-weighted Steriner tree can be used in the MWCDS
problem to interconnect all nodes of the DS to get better approximation algo-
rithm. Therefore, we can obtain the following results.

Theorem 2. There is a (4+ε)-approximation algorithm for minimum weighted
dominating set problem. (Proof is omitted due to lack of space.)

Corollary 2. There is a (5+ε)-approximation algorithm for MWCDS by using
node-weighted Steriner tree to interconnect all nodes of the DS.

Proof. For any node-weighted graph G and a given Dominating Set DS of
G, denote OPTCDS and TOPT be the optimal CDS of the G and the opti-
mal Steiner tree of G on the given DS, respectively. Since the induced graph
G[DS

⋃
OPTCDS ] is connected, this graph contains a Steiner tree of G on DS.

Hence, we have C(TOPT ) ≤ C(DS) + C(OPTCDS).
By Theorem 2, for any ε > 0, we can obtain a dominating set D of G with

C(D) ≤ (4 + ε/7) C(OPTCDS). Then, using our algorithm for D, we can get a
Steiner tree T interconnecting D with C(T ) ≤ (1 + ε/7) C(TOPT ). Since D is a
dominating set, clearly, V (T ) is a connected dominating set of G and

C(T ) ≤ (
1 +

ε

7
)

C(TOPT )

≤ (
1 +

ε

7
)

( C(D) + C(OPTCDS) )

≤ (
1 +

ε

7
)(

4 +
ε

7
)

C(OPTCDS) +
(
1 +

ε

7
)
C(OPTCDS)

≤ (
4 + 6

ε

7
)

C(OPTCDS) +
(
1 +

ε

7
)
C(OPTCDS)

≤ (5 + ε) C(OPTCDS).

The proof is then finished. 
�

6 Conclusion and Discussion

In this paper, adopting the strategy of partition and shifting, we propose a
(1 + ε)-approximation algorithm for NWST problem in unit disk graphs, which
is the best solution for this problem we could ever have without proving P=NP.
As an application, we give a (5+ε)-approximation solution for MWCDS problem



A PTAS for Node-Weighted Steiner Tree in Unit Disk Graphs 47

in unit disk graphs afterwards, by interconnecting the DS constructed by the
(4 + ε)-approximation algorithm using our PTAS solution for NWST problem,
which better bounds the performance of the MWCDS compared with existing
algorithms.
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