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Abstract. We present several distributed CDMA/OVSF code assign-
ment algorithms for wireless ad hoc networks modelled by unit disk
graph (UDG). We first give a distributed code assignment whose to-
tal throughput is within a constant factor of the optimum. Then we give
a distributed method such that the minimum rate achieved is within a
constant factor of the optimum. A distributed method that can approxi-
mate both the minimum rate and total throughput is also presented. All
our methods use only O(n) total messages (each with O(log n) bits) for
an ad hoc wireless network of n nodes modelled by UDG.
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1 Introduction

We consider a static wireless ad hoc network consisting of a set V of n nodes
distributed in a two-dimensional plane. Assume all nodes have the same trans-
mission radius r, thus, wireless ad hoc networks are modelled by unit disk graphs
(UDG), in which two nodes are connected iff their Euclidean distance is no more
than r. We assume that the omnidirectional antenna is used by all wireless nodes:
the signal sent by a node will be received by all nodes inside its transmission
region. The transmission region of a node u is thus modelled as a disk D(u, r)
centered at u with radius r. To increase the capacity of the network, frequency
spectrum has to be reused as it is one of the scarcest resources available. Same
channel is not assigned to two nodes if it causes either primary interference or
secondary interference. Primary interference occurs if two nodes use the same
channel and one is inside the transmission region of the other. The secondary
interference occurs if a third node is within the common transmission regions of
two nodes using the same frequency channel. The interference graph G = (V, E)
has an edge uv if two nodes u and v will generate interference when they are
assigned the same channel. Assigning frequency channel efficiently in UDG has
been well-studied [6, 10] but little is known about assigning CDMA/OVSF code
for wireless ad hoc networks while achieving some global quality such as maxi-
mizing the total throughput or the bottleneck of the networks.
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In a CDMA system, the channels are defined by the pseudo-random code-
words. For simplification, we represent each CDMA/OVSF codeword by a binary
string (called colors hereafter). Two colors are said to be prefix-free if neither is
a prefix of the other, which is equivalent to that the corresponding codewords
are orthogonal. The rate of an �-bit color is equal to 2−�+1, which is equal to
the rate of the corresponding codeword. We also say that an �-bit color is in the
�-th layer of the CDMA/OVSF code tree structure. The root has layer 1.

A (proper) vertex coloring is to assign each vertex a color such that two adja-
cent vertices receive different colors. The CDMA code assignment is to assign col-
ors to nodes such that adjacent nodes in the interference graph receive prefix-free
colors, which is called prefix-free vertex coloring. The minimum vertex coloring
of the interference graph has been studied in the context of channel assignment
in wireless ad hoc networks channelized by FDMA, TDMA or CDMA/OVSF
[2–5, 7, 11, 12, 14, 15]. The majority of these CDMA code assignment methods
simply presented networking protocols to obtain a proper vertex coloring with-
out addressing the computational complexity and/or the optimization. Sen and
Huson [13] gave a proof of the NP-hardness of the vertex coloring in interference
graph even when all nodes are located in a plane and have the same transmission
radii. A problem related to the (prefix-free) vertex coloring of the interference
graphs is the distance-2 vertex coloring [8]. A distance-2 vertex coloring of a
graph H is a proper vertex coloring of H2, the square graph of H , which is the
graph obtained by creating an edge between each pair of vertices of H separated
by at most two hops in H . Notice that the colors assigned to two adjacent nodes
in H2 should only be different for a vertex coloring problem, while these two
colors should further be prefix-free for CDMA/OVSF code assignment.

Given a prefix-free CDMA code assignment {cv | v ∈ V }, its throughput and
bottleneck are defined as

∑
v∈V 2−|cv|+1 and minv∈V 2−|cv|+1 respectively, where

|cv| denotes the number of bits of the color cv. The throughput of an interfer-
ence graph G, denoted by τ (G), is then the maximum of the throughput over
all prefix-free code assignments of G. Similarly, the bottleneck of an interfer-
ence graph G, denoted by β (G), is then the maximum of the bottleneck over
all prefix-free code assignments of G. We will study various optimization prob-
lems on prefix-free vertex coloring of the interference graphs: maximize the total
throughput, the minimum rate, and both at the same time.

The main contributions of this paper are as follows. We propose several
efficient distributed CDMA/OVSF code assignment algorithms for wireless ad
hoc networks modelled by UDG. We first study how to assign CDMA/OVSF
code such that the total throughput achieved is within a constant factor of
the optimum. Then we give a method such that the minimum rate achieved is
within a constant factor of the optimum. A method that can approximate both
the minimum rate and total throughput simultaneously is also presented. All
our methods use only O(n) total messages (each with O(log n) bits) for an ad
hoc wireless network of n nodes modelled by UDG.
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2 Distributed Code Assignment

Let Nk(u) be the set of all wireless nodes that are at most k hops away from node
u in UDG, dk(u) be the cardinality of Nk(u). Obviously, nodes that can have
primary interference with u are N1(u) only; nodes that can have either primary
interference or secondary interference with u are N2(u) only. If every node knows
its exact geometry location, a communication efficient protocol [1] is known to
find all two-hop neighbors of all nodes using at most O(n) communications.

2.1 Maximize Throughput τ (G)

First-fit coloring is a class of greedy algorithms for vertex coloring. Assume
that there is a (partial) ordering of all nodes. We then assign code to nodes
sequentially according to the associated ordering by assigning each node the
shortest possible code. Thus, in any first-fit coloring, all nodes receiving the
same code form a maximal independent set (MIS). Intuitively, such MIS should
be a small constant approximation of a maximum independent set to maximize
the throughput. Clearly, the performance of a first-fit code assignment depends
on the ordering used. Indeed, there always exists an ordering in which the first-
fit coloring generates an optimal code assignment. However, such ordering is
unlikely to be found in polynomial time due to the expected NP-hardness of the
max-throughput code assignment. So we seek some node ordering that produces
a code assignment approximating τ(G); such node ordering should be generated
efficiently. We propose several different node orderings and show that all of
them produce a code assignment with total throughput O(τ(G)) and use total
communications O(n). Hereafter, we assume that each message has O(log n) bits.
All node orderings used here are just partial ordering computed locally.

We will first construct the interference graph and then construct an MIS
based on a rank (e.g., ID, or degree, or the node’s geometry position). Nodes in
the MIS are assigned the shortest code 10. For the remaining nodes, we assign
code using the first fit heuristics based on a partial ordering (e.g., ID, or degree,
or the node’s geometry position). Here we assume that every node has a distinc-
tive ID and knows its geometry position if a communication efficient protocol
is needed. Algorithm 1 presents our method (run by every node u) of assigning
CDMA/OVSF code based on ordering by ID to maximize the throughput.

We find an MIS in a distributed manner as follows: initially all nodes’ status
are White; a node becomes InIS if it has a rank smaller than all its neighbors
with status White; a node becomes NotInIS if it has an InIS neighbor. A node
could be either White, or InIS, or NotInIS. The nodes with status InIS form
an MIS. We will show that its size is within a constant factor of the maximum
independent set for an interference graph G. See [9, 17] for more details.

Obviously Algorithm 1 generates a prefix-free code assignment since, for each
pair of neighboring nodes u and v in the interference graph, the node with larger
ID can only assign code after it gets the code of the other node. The total
communication cost is O(n) since we use communication efficient protocol to
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Algorithm 1 Max-Throughput Using ID-ordering by u

1: Node u sends a message to tell its ID to all nodes N1(u). If secondary interference
is not permitted, node u finds N2(u) using a communication efficient method [1].

2: All nodes collectively find an MIS based on a rank ID.
3: Node u assigns a CDMA code represented by binary 10 if u is in the MIS. It then

informs its neighbors in G about its code.
4: If node u receives a CDMA code from its neighbor in G, u marks the corresponding

code used in the CDMA/OVSF tree structure stored locally.
5: Then assign code to the remaining nodes. If node u has an ID smaller than all its

neighbors in G without a code, then node u finds the smallest layer h > 0 in the
local CDMA/OVSF code tree such that layer h has at least 2 free codes not marked
used. Node u picks the first unused code in layer h and informs its neighbors in G
about its code. The picked code is called the first fit code for node u.

collect N2(u) for all nodes and to inform the assigned code to its neighbors in
G. We can also use the node degree (or position) to find an MIS in Algorithm 1.

We then show that the above methods indeed approximate the optimum
throughput τ(G). To do so, we first study the structure of some optimum CDMA
code assignment, called canonical coloring. In [16], we defined the canonical
coloring as follows. Given a graph G = (V, E), partition the vertex set V into
independent sets V1, V2, · · · , Vk with |V1| ≥ |V2| ≥ · · · ≥ |Vk|. Let G0 = G
and Gi be the graph of removing the vertices Vi and the incident edges from
graph Gi−1, for 1 ≤ i ≤ k. Vertex set Vi is a maximum independent set of graph
Gi−1. For 1 ≤ i ≤ k − 1, all nodes in Vi receive the code 1i0, and all nodes in
Vk receive the code 1k. Obviously, the throughput of such canonical coloring is
∑k−1

i=1
|Vi|
2i + |Vk|

2k−1 . Notice that, If there are multiple maximum independent sets
V1, we have to choose the one that produces the largest maximum independent
set V2. Similarly, the selection of the first i maximum independent sets V1, V2,
· · · , Vi produces the largest maximum independent set Vi+1, for 1 ≤ i < k. Call
such sequence of maximum independent set as canonical maximum independent
set decomposition and the corresponding coloring canonical coloring.

Theorem 1. [16] The canonical coloring maximizes the throughput.

This theorem implies that the maximum throughput of any code assignment
is at most the independence number α(G) of the interference graph G. Based
on this observation, we can assign the code as follows. First, compute an MIS
that approximates the maximum independent set (with approximation ratio �).
Then assign the nodes in the MIS a code 10 (its rate is 1/2). For the remaining
nodes, we can recursively find the MIS and assign code 1i0 for the MIS retrieved
in the ith iteration but the messages of this approach could be very large. To
optimize the message complexity, Algorithms 1 used a different approach for
the remaining nodes (actually any prefix-free code assignment for the remaining
nodes works here). Obviously, the throughput generated by assigning nodes in
MIS a code 10 is at least � · α(G)/2. This implies the following theorem (see
appendix for the proof).
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Theorem 2. Algorithm 1 generates a code assignment whose throughput is at
least �/2, where � = 1/5 if only primary interference is concerned and � = 1/13
if secondary interference is also concerned.

When every node knows its position, we can further improve the theoretical
lower bounds on the throughput of the assigned codes as follows. We still con-
struct an MIS first, but instead of using the node ID or the degree as selection
criterion, we select a node u to the MIS if all unassigned neighboring nodes are
inside one half of the disk centered at u. Notice that such node u always exists
since the most left undecided node trivially satisfies this condition.

Algorithm 2 Max-Throughput Using Position-ordering by u

1: Every node finds its neighbors in G using a communication efficient protocol in [1].
2: All nodes together compute an MIS based on rank (x(u), y(u), ID(u)), where x(u),

and y(u) are the x-coordinate and y-coordinate of u.
3: Node u gets code 10 if it is in the computed MIS.
4: All nodes not in MIS get the first fit code in an increasing ordering of

(x(u), y(u), ID(u)) using method similar to the last step of Algorithm 1.

Theorem 3. Algorithm 2 generates a code assignment whose throughput is at
least �/2, where � = 1/3 (� = 1/7 resp.) if primary interference (secondary
interference resp.) is concerned. It uses O(n) messages, each with O(log n) bits.

The proof is similar to Theorem 2 and is omitted. The approximation ratio
could be further improved to be better than �/2, which is analyzed as follows.
The new approach will compute an MIS V ′

1 , and then compute an MIS V ′
2 for

the remaining nodes. Clearly, the number of messages is still O(n). The nodes in
V ′

1 will receive a code 10 and the nodes in V ′
2 will receive a code 110. We assign

codes to other nodes using a method similar to the last step of Algorithm 1.

Theorem 4. An �-approximation algorithm for the maximum independent set
gives a 5

8�-approximation algorithm for the maximum throughput code assign-
ment.

Proof. Consider a canonical maximum independent decomposition V1, V2, · · · ,
Vk of all nodes V . Here |V ′

1 | ≥ � · |V1|. Let ti,j = |V ′
i ∩Vj |
|Vj | , i.e., the portion of Vj

is used in V ′
i . After V ′

1 is generated, we know that the maximum independent
set in the remaining graph has size at least max((1− t1,1) · |V1|, (1− t1,2) · |V2|),
since V1 − V ′

1 ∩ V1 and V2 − V ′
1 ∩ V2 are still independent sets. Notice that

t1,1 · |V1|+ t1,2 · |V2| ≤ V1. Then (1− t1,1) · |V1|+ (1− t1,2) · |V2| ≥ |V2|. It implies
that V ′

2 has size at least � · |V2|/2. Consequently, the throughput τ ′ generated by
partition V ′

1 , V ′
2 , · · · , V ′

k,· · · , V ′
k2

is at least � · ( |V1|
2 + |V2|

2·22 ). Remember that the
canonical coloring has throughput τ at most |V1|

2 + 2 · |V2|
22 using fact |Vi| ≤ |V2|.

From |V2| ≤ |V1|, it is easy to show that τ ′ ≥ 5
8� · τ . This finishes the proof.
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Theorem 5. If node position is known, we can produce a code assignment, using
O(n) total messages, whose total throughput is at least 5/24 (resp. 5/56) of the
optimum when primary interference (reps. secondary interference) is concerned.

2.2 Maximize Bottleneck β(G)

We continue to study how to assign codes to maximize the minimum rate. In-
tuitively, to maximize the throughput, from the canonical code assignment dis-
cussion, the assigned codes should be imbalanced. However, to maximize the
minimum rate, the assigned codes should be as balanced as possible. Clearly,
the previous greedy methods do not generate a balanced code assignment. In
this section, we present a novel distributed method to assign a balanced code.

Our method is based on the following observation. Consider a node u and
all its neighbors in the interference graph G. If all such neighbors and u form a
clique, then the minimum rate of these nodes is approximately 1/d, where d is
the size of the clique. This is achieved when all nodes use the code in level log d.
In other words, to maximize the minimum rate assigned, node u cannot choose
the first fit code; it has to use a code in level close to log d. Putting in other way,
node u cannot be too greedy and it has to leave good codes for its neighbors.
The following Algorithm 3 details our method.

Algorithm 3 Max-Bottleneck by Degree-ordering by a node u

1: All nodes together compute the interference graph G. Assume that each node u
knows its degree d(u) in G. Each node u informs its neighbors in G its degree d(u).

2: Node u constructs a local binary code tree T .
3: If node u has the largest degree d(u) among all neighbors in G without a code,

where ties are broken by smaller ID, node u picks the first unmarked code in the
code tree T stored locally from layer �, where 2�−2 < d(u) + 1 ≤ 2�−1. Here a code
is marked if it is either marked as used or conflicted.
Node u informs its neighbors in G the selected code of u efficiently.

4: If a node u receives a code message from its neighbor in G, u marks the corre-
sponding code used in T , and marks all prefix-codes of this code conflicted in T .

Theorem 6. Algorithm 3 generates a prefix-free code assignment whose mini-
mum rate is within a constant factor of optimum.

Proof. It is easy to show that it generates a prefix-free code assignment (thus
the proof is omitted due to space limit). Consider a node u with the largest
degree d(u) in G. If primary interference is concerned, we partition the disk
D(u, 1) into 6 equal-sized sectors. If secondary interference is also concerned, we
partition the disk D(u, 2) into 13 equal-sized sectors. We already showed that
all neighbors of u inside one sector form a complete subgraph in G. Using the
pigeonhole principle, it is easy to show that among the neighbors of u in G and
u, the minimum clique size is at least c · d(u) + 1, where c = 1/6 for primary
interference graph, and c = 1/13 for secondary interference graph. For a clique
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of size q, the minimum rate of nodes in the clique is obviously at most 2−�log2 q�.
Thus, for any assignment, the minimum rate among neighbors of u and node u is
at most 2−�log2(c·d(u)+1)�. Obviously, the rate by our approach is 2−�log2(d(u)+1)�.
Then 2−�log2(d(u)+1)� ≥ 2−�log2 c� · 2−�log2(c·d(u)+1)� implies that the minimum
rate achieved by Algorithm 3 is at least 1/8 (1/16 resp.) of the optimum if the
primary interference (the secondary interference resp.) is concerned.

2.3 Maximize τ(G) and β(G)

As we discussed before, to maximize the throughput, the assigned codes should
be as imbalanced as possible, while to maximize the bottleneck rate, the assigned
codes should be as balanced as possible. It seems impossible to have a code
assignment that approximates both the total throughput and the bottleneck rate.
In this subsection, we show that by retreating little bit on both requirements,
we can achieve this. Our method is almost a straightforward combination of
previous methods. We first assign the shortest code to the nodes in an MIS. For
the remaining nodes, we assign a balanced code.

Algorithm 4 Max-Throughput and Bottleneck by a node u

1: All nodes together compute the interference graph G. Each node u computes its
degree d(u) in G and informs its neighbors in G about its degree d(u).

2: All nodes together compute an MIS based on the rank by degree. Node ID
or (x(u), y(u), ID(u)) can also be used as the rank criterion. Node u gets
CDMA/OVSF code 10 if it is in the computed MIS. The remaining steps will
assign code for other nodes.

3: Each node u constructs a binary code tree T .
4: If node u is not assigned and has the largest degree d(u) among all its neighbors in

G without a CDMA code, node u picks the first unmarked code from layer � in T ,
where 2�−3 < d(u) ≤ 2�−2. Node u informs all its neighbors in G the selected code.

5: If node u receives a message from its neighbor v informing the code of v, u marks
this code used, and marks all prefix-codes of this code conflicted in tree T .

Theorem 7. Algorithm 4 generates a prefix-free code assignment whose total
throughput is within �/2 of the optimum, and whose minimum rate is within
2−�log2 c�−1 factor of the optimum, where � is the approximation ratio of the
maximum independent set algorithm, c = 1/6 for primary interference and c =
1/13 for secondary interference.

3 Conclusion

We presented several efficient distributed CDMA/OVSF code assignment algo-
rithms. Notice that our theoretical analysis is pessimistic. In [18], we presented
methods to further improve the performance. We conducted extensive simula-
tions and we found that the practical performances of our methods are much
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better than these pessimistic analysis. Our methods can also be used to generate
prefix-free code assignment for wireless ad hoc networks that are not modelled
by UDGs. The UDG network model only enables us to prove that our methods
have constant approximation ratios. However, it is unclear how to bound the
communications in no-UDG model or without position information.

This paper is not intended to solve all critical issues in CDMA based wireless
ad hoc networks. There are several other important issues that should be ad-
dressed, e.g., the mobility of wireless nodes; and the time synchronization among
the mobile wireless nodes. See [18] for more discussions.
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Appendix (Proof of Theorem 2)

Proof. Let’s consider all nodes, denoted by V1, that receive code 10. Clearly,
V1 is independent. We will show that |V1| is within � factor of α(G).

If only primary interference is concerned, G is the original UDG and it is well-
known that the greedy method generates an MIS whose size is at least 1/5 of
the maximum independent set. Obviously, the total throughput generated by our
approach is at least |V1|/2 and the optimum throughput is at most α(G) ≤ 5|V1|.

If the secondary interference is concerned, we will prove that |V1| has size at
least 1/13 of α(G) by showing that, ∀u ∈ V1, there are at most 13 independent
nodes in G. Let D(x, r) be the disk centered at a point x with radius r hereafter.
Consider a disk D(u, 2) centered at node u with radius 2. Then all its neighbors
N2(u) are inside the disk D(u, 2). Partition this disk into 13 equal-sized sectors,
each with angle 2π/13. It is easy to show that the chord ab defined by the sector
�aub has length 4 sin(π/13) < 1. We will show that all neighboring nodes in one
sector are connected. Consider any two nodes x and y from N2(u). We actually
will prove a stronger result: any two neighbors of u in the sector �aub with
‖ab‖ = 1 are connected in the interference graph.

If x and y are inside D(u, 1), then obviously ‖xy‖ < 1. Thus, x and y are
connected in G. If y is inside D(u, 1) but x is not, then there exists a node w
connected to both x and u. Clearly, y and w are all inside D(u, 1) now, thus, edge
yw exists in the original unit disk graph. Thus, node w is inside the common
transmission range of nodes y and x. It implies that x, y are connected in G
(concerning the secondary interference).

Finally, we consider the case when both x and y �∈ D(u, 1). Assume that
node w is connected to both x and u, and node v is connected to both y and
u. See Figure 1 (a) and (d) for an illustration. We will then show that either
‖yx‖ ≤ 1, or ‖yw‖ ≤ 1, or ‖vx‖ ≤ 1. Notice that, if any one is true, then x, y are
connected in G. For the sake of contradiction, assume that ‖yx‖ > 1, ‖yw‖ > 1,
and ‖vx‖ > 1. We partition the region �aub−�cud into 6 regions. Figure 1 (b)
illustrates such six partitions. Here segments ca, db, ab, eb, am have length 1.

We then prove that any two nodes in region efa∪mfb have distance at most
1 and any two nodes in region efbha have distance at most 1. Consider any two
nodes x and y in the region efa ∪ mfb. If both are in the same triangle, then
clearly ‖xy‖ < 1 since the triangles have side-length less than 1. Otherwise, let
x′ and y′ be the intersection point of line xy with segment ea and segment mb
respectively. Figure 1 (b) and (e) illustrate the proof that follows. Obviously,
‖xy‖ ≤ ‖x′y′‖ ≤ min(‖ey′‖, ‖ay′‖). Note that ‖ey′‖ ≤ min(‖em‖, ‖eb‖) < 1 and
similarly ‖ay′‖ ≤ min(‖am‖, ‖ab‖) = 1. Thus, ‖xy‖ ≤ 1. Similar proof reveals
that any two nodes in region efbha have distance at most 1.

If node x is in region 2, then node y cannot be in region 3, 5, and 6 since we
can show that otherwise ‖xy‖ ≤ 1. In other words, node y must be in region 1
or 4 in this case. Similarly, if node x is in region 3, 5, or 6, node y must be in
region 1 or 4 in this case. Thus, we assume that either node x or y (say x w.l.o.g)
is in region 1 by symmetry. Obviously, node y cannot be inside the disk D(x, 1)
since we assume that xy �∈ G. Thus, we have to place node v inside the sector
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�cud but not inside the disk D(x, 1) and place y inside region efmbha but not
inside the disk D(x, 1) while still maintain ‖yv‖ ≤ 1. We then show that this is
impossible. Figure 1 (c) and (f) illustrate the proof that follows.
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Fig. 1. All neighbors in the sector conflict with each other. Here ‖uc‖ = ‖ud‖ = ‖ab‖ =
1 and ‖ua‖ = ‖ub‖ = 2. (a): wx and vy intersect; (b) 6 regions to place node x or y;
(d): wx and vy don’t intersect; (e): no two independent nodes in regions 2 and 5

If the disk D(x, 1) contains the region cgdbha = �aub − �cud, then clearly
node y is inside the disk D(x, 1). It implies that xy is an edge in G. Let p and
q be the points on line ub such that ‖xp‖ = ‖xq‖ = 1. Let s be the point
on ub such that xs is perpendicular to segment pq and t be the point on ub
such that et is perpendicular to segment pq. Clearly, ‖xs‖ ≤ ‖et‖ since x is
inside the triangle 	eub. It is not difficult to show that ‖ce‖ = ‖ea‖ = 1/2.
Then, ‖et‖ = ‖ue‖ · sin(∠aub) < 3

2 sin(π
6 ) = 3/4 <

√
3/2. It implies that

∠xqp = arcsin(‖xt‖/‖xq‖) < π
3 . Thus, edge pq is the longest in triangle 	xpq.

Consequently, ‖pq‖ > 1. It is easy to show that, for any two-hop neighbor y of u
connected through node v, ‖yv‖ ≥ ‖pq‖ if both v and y are not inside the disk
D(x, 1). This is a contradiction to ‖yv‖ ≤ 1. This finishes the proof.
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