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ABSTRACT 
Broadcasting is a fundamental  operation which is frequent 
in wireless ad hoc networks. A simple broadcasting mecha- 
nism, known as flooding, is to let every node retransmit  the 
message to all its 1-hop neighbors when receiving the first 
copy of the message. Despite its simplicity, flooding is very 
inefficient and can result in high redundancy, contention, 
and collision. One approach to reducing the redundancy is 
to let each node forward the message only to a small subset 
of 1-hop neighbors that  cover all of the node's 2-hop neigh- 
bors. In this paper,  we propose two practical heuristics for 
selecting the minimum number of forwarding neighbors: an 
O(n log n) t ime algorithm tha t  selects at most 6 times more 
forwarding neighbors than the optimum, and an O(n 2) t ime 
algorithm with an improved approximation ratio of 3, where 
n is the number of 1- and 2-hop neighbors. The best previ- 
ously known algorithm, due to Bronnimann and Goodrich 
[2], guarantees O(1) approximation in O(n 3 log n) time. 

1. INTRODUCTION 
Wireless ad hoc networks can be flexibly and quickly de- 
ployed for many applications such as automated battlefield, 
search and rescue, and disaster relief. Unlike wired net- 
works or cellular networks, no wired backbone infrastructure 
is installed in wireless ad hoc networks. A communication 
session is achieved either through a single-hop radio trans- 
mission if the communication parties are close enough, or 
through relaying by intermediate nodes otherwise. In this 
paper, we assume that  all nodes in a wireless ad hoc net- 
work are dis tr ibuted in a two-dimensional plane and have 
an equal maximum transmission range of one unit. 

Broadcasting is a fundamental  networking operation in wire- 
less ad hoc networks. I t  is widely and frequently performed 
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in many networking tasks such as paging a part icular host, 
sending an alarm signal, and finding a route to a part icular 
host [1][6][13]. A simple broadcasting mechanism, known 
as flooding, is to let every node retransmit  the message to 
all its 1-hop neighbors when receiving the first copy of the 
message. Despite its simplicity, flooding has a serious draw- 
back, known as the broadcast storm [12]. First ,  because the 
radio propagation is omnidirectional and a physical location 
may be covered by the transmission ranges of several nodes, 
many retransmissions are redundant.  Second, heavy con- 
tention could exist because re t ransmit t ing nodes are prob- 
ably close to each other. Third,  collisions are more likely 
to occur because the RTS/CTS dialogue is inapplicable and 
the t iming of retransmissions is highly correlated. 

The following simple technique was recently exploited [9] [14] 
to reduce redundant  retransmissions: By virtue of beacon- 
ing, each node maintains a local topology of its 2-hop neigh- 
borhood, and relays the message only to a small subset of 
1-hop neighbors which cover (in terms of radio range) all 
nodes that  are two hops away. The subset of 1-hop neigh- 
bors selected by each node is referred to as forwarding set 
[14] or multipoint relaying set [9]. In this paper we consider 
the problem of finding a forwarding set of minimum size. 

M i n i m u m  Forwarding Set P r o b l e m :  Given a source A, 
let 10 and P be the sets of 1- and 2-hop neighbors of A. Find 
a minimum-size subset 5 r of 7) such that  every node in P is 
within the coverage area of at least one node from P.  

1.1 Previous work 
Jacquet et al. [9] and Sinha et al. [14] considered the Min- 
imum Forwarding Set problem assuming no knowledge of 
the geographic location of the nodes. In this case, the Mini- 
mum Forwarding Set problem is essentially the well-studied 
Set Cover problem. Not surprisingly, the heuristic proposed 
in [9] is a t ranslat ion of ChvAtal's greedy algorithm [3] for 
Set Cover, and thus guarantees an approximation factor of 
O(log m), where m is the maximum neighborhood size. The 
greedy algorithm iteratively selects a 1-hop neighbor cover- 
ing the maximum number of 2-hop neighbors not yet cov- 
ered, and terminates  when all 2-hop neighbors have been 
covered. The greedy algorithm does not take into account 
the geometric properties of the Minimum Forwarding Set 
problem, and in fact Figure 1 shows a family of instances 
for which the size of the solution found by the greedy algo- 
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F i g u r e  1: I n s t a n c e  for  w h i c h  t h e  s ize o f  t h e  s o l u t i o n  c o m p u t e d  b y  t h e  g r e e d y  a l g o r i t h m ,  { g l , . . .  ,glogk}, is 
l a r g e r  t h a n  t h e  o p t i m u m  s o l u t i o n ,  {opt1, opt2}, b y  a l o g a r i t h m i c  f a c to r .  

r i thm is larger than the opt imum by a logarithmic factor. 

Under the assumption that  the nodes in the wireless network 
are distr ibuted in a two-dimensional plane and each node 
has unit transmission range, the topology of the network 
is modeled as a unit-disk graph [4]. In this graph, there is 
an edge between two nodes if and only if their distance is 
at most one. The Minimum Forwarding Set problem for 
a given source node s asks for a minimum size set of 1- 
hop neighbors of s dominating 2-hop neighbors of s in the 
unit-disk graph. The related Dominating Set problem in 
unit-disk graphs [4] asks for a subset of nodes dominating 
(i.e., adjacent to) all the other nodes. The Dominating Set 
problem in unit-disk graphs is NP-hard  [4] but  admits a 
PTAS [8]. The Minimum Forwarding Set problem does not 
reduce to the Dominating Set problem in unit-disk graphs 
since dominators are restricted to the set of 1-hop neighbors. 

The Minimum Forwarding Set problem is also related to the 
Unit-Disk Cover problem [7], which asks for the minimum 
number of unit disks covering a given set of points in the 
plane. The Unit-Disk Cover problem is also NP-hard [4] 
and admits  a PTAS [7]. Since in the Unit-Disk Cover prob- 
lem disk centers can be chosen arbitrari ly in the plane, the 
algorithms for this problem do not apply to the Minimum 
Forwarding Set problem where disks must be centered at 
1-hop neighbors only. 

The Minimum Forwarding Set problem is a special case 
of the NP-Hard Disk Cover problem [2], which asks for 
a minimum size subset of a given set of disks covering a 

given set of points. The complexity of Minimum Forward- 
ing Set problems is not known. A constant-ratio approx- 
imation algorithm for Disk Cover, and therefore also for 
Minimum Forwarding Set, was given by Bronnimann and 
Goodrich [2] However, their algorithm - which is a special 
case of a sophisticated algorithm for spaces with bounded 
VC-dimension - has impractical  running-time and its proven 
approximation ratio is a very large constant. 

1.2 Our contributions 
• A 6-approximation algorithm for the Minimum For- 

warding Set problem running in O(n log n) time, where 
n is the total  number of 1- and 2-hop neighbors. 

• A 3-approximation algorithm for the Minimum For- 
warding Set problem running in O(n 2) time. 

• An exact O(n 2) time, and a 2-approximation O(n log n) 
t ime algorithm for the special case of the Minimum 
Forwarding Set problem when all 2-hop neighbors are 
in the same quadrant  with respect to the source node. 

• A constant-factor approximation for the Minimum Disk 
Cover problem with disks of the same radius, based on 
rounding the optimal solution of a linear programming 
relaxation. 

• An experimental  s tudy of the proposed algorithms for 
the Minimum Forwarding Set problem. 

The paper is organized as follows. In next section we refor- 
mulate the Minimum Forwarding Set problem in geometric 
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A l g o r i t h m  1: 1 - H o p  D i s k  C o v e r  

Input :  Unit-disk A, set of unit disks 7) centered inside A, set 
of points 7 ~ outside A such that "P C_ U { D  E ~ }  
O u t p u t :  Subset .T" C ~ such that 7 ~ C U { D  C .T'} 

1. Partition the exterior of A into four quadrants Q1-Q4 by 
two orthogonal lines, not containing points in "P, through 
the center of A (see Figure 2). 

2. For q = 1 , . . .  ,4, compute a disk cover, bL-q, for the points 
in "P n Qq. 

3. Output 9v-- .%-1U.T'2 u.T'3 U.~4. 

Q1 

Q: 

terms, give a high-level algorithm based on decomposition 
into quadrants,  and establish basic geometric properties of 
the part i t ioned sets of 1- and 2-hop neighbors. In Section 
3 we describe a 2-approximation O(nlog  n) t ime algorithm 
for covering 2-hop neighbors in a quadrant.  An exact O(n 2) 
t ime algorithm for the same problem is described in Section 
4. In Section 5 we give an extension of our techniques to the 
Disk Cover problem of [2]. We present preliminary exper- 
imental results comparing the proposed algorithms for the 
Minimum Forwarding Set problem in Section 6 and conclude 
in Section 7. 

2.  P A R T I T I O N  B A S E D  A L G O R I T H M  
Throughout this paper  a unit disk, or just  disk for short, 
refers to a closed disk of radius 1. The boundary of a re- 
gion R of the Euclidean plane is denoted by OR, e.g., the 
boundary circle of a disk D is denoted by OD. Under the 
assumption that  each network node has unit transmission 
range, we reformulate the Minimum Forwarding Set prob- 
lem as follows. 

1 - H o p  D i s k  C o v e r  P r o b l e m :  Given a unit-disk A, a set 
T~ of unit disks centered inside A, and a set of points 7 ~ 
outside A such tha t  7 ~ C C_ U{D E 7)}, find a minimum-size 
subset 9 r of 7) such tha t  7 > C_ U{D E ~-}. 

Our high-level algorithm (Algori thm 1) part i t ions the points 
of P according to the four quadrants  defined by two orthog- 
onal lines through the center of A, and then independently 
solves the 1-Hop Disk Cover problem for each quadrant.  The 
union of these four disk covers is then a disk cover for all 
the points in P .  As usual, the approximation ratio of an al- 
gorithm ,4 for a minimization problem H is the supremum, 
over all instances of H, of the ratio between the output  value 
of .4 and the optimal value. The following theorem relates 
the approximation ratio of Algori thm 1 to the approxima- 
tion ratio that  can be guaranteed for the 1-Hop Disk Cover 
restricted to points in a single quadrant.  

THEOREM 1. If disk covers j r  computed in Step 2 are 
within a factor of ~ of optimum, then Algorithm 1 has an 
approximation ratio of at most 3~ for the 1-Hop Disk Cover 
problem. 

P r o o f .  Let OPT be the optimal set of disks, and denote 
by OPTq, q = 1, 2, 3, 4, the subset of disks in OPT having 

F i g u r e  2: T h e  four quadrants  in A l g o r i t h m  1. 

centers in the qth sector of disk A. The key observation is 
that  points in the quadrant  Qq cannot be covered by disks 
in OPT+2(mod  4)" Therefore, points in 7 ~ fl Q1 must be 
covered by disks in OPT4 U OPT1 U OPT2, and thus, by 
the assumption tha t  ~'q's are within a factor of a of the 
respective opt imum solutions, 

<_ ~(]OPT4] + IOPTli + iOPT2K). 

Similarly, 

BY21 < c~(]OPT1] + IOPT2i + IOPT3i), 

i~3i <_ ~(IOPT~i + IOPT3] + IOPT41), 
tY41 _< ~(iOPT~I + IOPT~I + iOPTll). 

Thus, the output  of the algori thm has size 

i~:li + 1~21 + ]J:~i + i~:~[ 
<__ 3~qOPT~i + IOPT2] + iOPT~I + lOFT41) 
= 3~iOPTI. 

We will show tha t  a = 2 can be achieved in O(n log n) t ime 
(see Section 3), and a = 1 can be achieved in O(n 2) t ime 
(see Section 4). Hence, Algori thm 1 achieves an approx- 
imation factor of 6, respectively 3, within the same t ime 
bounds. I t  is natural  to ask if these approximation ratios 
can be improved by part i t ioning the set of points according 
to k < 4 equal sectors defined by half-lines start ing at the 
center of A. The proof of Theorem 1 can be generalized to 
show tha t  part i t ioning into k sectors gives an approximation 
ratio of ([k/2]  + 1)a for the 1-Hop Disk Cover problem if the 
disk cover for each sector is approximated within a factor of 
a.  Thus, using decomposition into 3 equal sectors does not 
lead to an approximation ratio bet ter  than that  obtained 
by decomposition into quadrants.  Improvements using de- 
composition into 2 equal sectors are possible provided that  
we can find an algorithm for covering the points in a 180 ° 
sector with an approximation ratio of less than 3/2. The 
ideas used in Section 4 to solve exactly the problem for a 
quadrant  do not extend to 180 ° sectors, since these lack the 
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F i g u r e  3: T h e  e x t r e m e  c o n f i g u r a t i o n  in  the  p r o o f  of  
L e m m a  2(b) .  

second of the essential topological properties established for 
the quadrants in the following lemma. 

LEMMA 2. Let Q be an exterior quadrant of A, J = OD 
be its border, and 79 be a set of disks intersecting the interior 
of Q. Then: 
(a) For any disk D E 79, [OD M JI = 2. 
(b) For any two disks D, D' E 79, IOD M OD' M Q[ < 1. 
(c) No two disks in 79 are tangent in Q. 

Proof .  Without loss of generality, we may assume that the 
unit-disk A is centered at the origin and that Q is defined 
by the positive x- and y-axes. Then, the boundary of the 
quadrant Q, J, consists of the two half-lines from (0, 1) to 
(0, cx)), and from (1, 0) to (1, c~), together with a quarter- 
circle of 0A. Let a, b, c be the points with coordinates (0, 0), 

(1,0), and (0, 1), respectively. We will use bc to denote the 
quarter-circle of A enclosed in J. 

(a) Since every D E 79 has non-empty intersection with the 
interior of Q, every circle OD has at least two intersection 
points with J. The closed simple Jordan curve 0D and 
the infinite simple Jordan curve J must intersect an even 
number of times (unless they are tangent, but this cannot 
happen), and thus cannot intersect three times. Thus, to 
complete the proof of part (a) we need to show that OD 
does not intersect J four or more times. 

Let d denote the center of disk D. Then 0 < Ida[ < 1, since 
d is inside A. Note that OD can intersect the x-axis in at 
most two points, of which only one can have x-coordinate 
bigger than 1. Similarly, D can intersect the y-axis in at 
most two points, of which only one can have y-coordinate 
bigger than 1. Furthermore, D intersects ~c at most once. 
Indeed, when two unit-circles with centers within distance 
of at most 1 intersect, the two intersection points axe at least 
27r/3 apart on each of the circles, and hence a quarter-circle 
may contain only one of them. 

F i g u r e  4: T h e  sky l ine  of  a set  of  disks in  a q u a d r a n t .  

(b) Assume, for a contradiction, that D and D' are two 
distinct disks in 79 that  intersect at points h and l, with 
both h and l in Q u J. Let d and d' be the centers of D and 
D', respectively. We will change the configuration a bit, to 
obtain a more extreme case. First, translate d, d/, h, and l 

to the right until d or d' hits bc, and assume, by symmetry, 
that d i s o n  bc .  We still have h , l  E R U J .  Assume also 
that h is to the right of the point l. Now start rotating 
the rhombus hdlld clockwise around d until h hits either the 
x-axis or bc, whichever happens first (see Figure 3). This 
procedure also keeps d I inside the unit-disk A and 1 in Q. 
Let m be the point where the line hd intersects the y-axis. 
As ]d'h I = Idh I = 1, d I must lie in the same side of the 
line hm as a. As the angle ham _-~ ,m< ~ must be within 
the diameter of the unit-disk centered at d that contains h. 
Therefore ]dm I < 1. Thus I, which is in Q, must be outside 
the triangle ahm, and consequently d / must be on the other 
side of the line hm than a, which is a contradiction. 

(c) Let D and D'  be two disks from 79. Then OD and OD' 
cannot be tangent from the interior since they have the same 
radius. If OD and OD are tangent from the exterior, then 
the distance between their centers is 2, and the common 
point can only be the origin a, which is not in Q. • 

3. FAST GEOMETRIC DISK COVERING IN 
A QUADRANT 

In this section we give a fast 2-approximation algorithm for 
the 1-Hop Disk Cover problem with all points of P coming 
from an exterior quadrant Q of unit  disk A. 

The skyline S = (xo, X l , . . .  , xk) of 79 is the upper envelope 
of Qfq(u{__ D E 79}UA) (see Figure 4). The skyline consists of 

arcs x i - l x i  on the border of disks Di E 79U{A}, i = 1 , . . .  , k, 
such that xo E OQMOD1, xi E ODi-JTODi (i = 1, . . .  , k - l ) ,  
and xk E 0Dk f'l OQ. The algorithm (Algorithm 2) starts 
by computing the skyline S with xi 's numbered in counter- 
clockwise order, i.e., with polar coordinates (pi, ri) of points 
xl satisfying p0 < pl < P2 < ' "  < Pk. As established in 
Lemma 8 below, the skyline disks Di covering a point p E P 
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A l g o r i t h m  2: G e o m e t r i c  1 - H o p  D i s k  C o v e r i n g  in  
a q u a d r a n t  

Input :  Unit-disk A, set of unit disks 7) centered inside A, set 
of points "P in the exterior quadrant Q of A such that 

_c u{D s v} 
O u t p u t :  Subset .T C_ 7) such that T' C_ U{D E 5 c} 

1. Find the skyline S = (xO,Xl,X2,...  ,Xk) ofT), where the 
polar coordinates of x i  are (pi,ri) and Po < Pl _< P2 _< " "  
< Pk. Let D i  be the disk containing arc x i - z x i .  

2. For each p E "P with polar coordinates (p, r) ,  find the 
interval [Df i rs t (p)  , Dlast(p)] of skyline disks Di  that cover 
p, via three binary searches: 

(a) find i E {1,. . .  ,k}, such that p E [Pi-l,Pi] 
(b) f irst(p) e- min{j : 1 <_ j <_ i,p E n j }  
(c) last(p) +- max{j:  i <_ j ~ k,p E Dj} 

3. Using the greedy algorithm, find the minimum set ~" of 
disks Di hitting each interval [Dlirst(p) , Dlazt(p)] , p E ~.  

4. Output ~" 

/ 
," ,--F - ' ,  

,,' ,," I . - ---2 ' : - - 'ky,  

F i g u r e  5: T h e  s k y l i n e  o f  {D1, D2, D3} in L e m m a  7. 

form an interval in the sequence D 1 , . . .  , Dk. The algorithm 
computes these intervals for each point of 7 ~, them outputs  a 
minimum size set ~" of skyline disks Di hitt ing all intervals. 
Clearly, the hit t ing set ~- computed by Algorithm 2 is a disk 
cover for the points in 7 ) . Furthermore,  we have: 

THEOREM 3. Algorithm 2 runs in O ( n l o g n )  time, and 
has an approximation ratio of 2 for the 1-Hop Disk Cover 
problem in a quadrant. 

Theorems 1 and 3 immediately give: 

COROLLARY 4. Combined with Algorithm 2, Algorithm 1 
runs in O(n log n) time and has an approximation ratio of 
6 for the Minimum Forwarding Set problem. 

The rest of the section is devoted to the proof of Theorem 
3. 

LEMMA 5. A point q E Q belongs to a disk D E 7) i f  and 
only i f  the half-line L from the center a of A through a point 
q intersects OD n Q at a point q' such that q belongs to the 
segment [a, ql]. 

P r o o f .  Every disk D E T) contains a. Thus, the segment 
[a, q'] is fully contained in D, and every point of L outside 
of this segment is in the exterior of D. • 

LEMMA 6. I f  point p E 7 ~ has polar coordinates (p, r) such 
that p E ~oi-l,pi], then p E Di.  

P r o o f .  Follows immediately from Lemma 5. 

LEMMA 7. Let D1, D2, D3 be three disks of 7) appearing 
in this order in the skyline of { D1, D2, D3 }. Then Dz n D3 n 
Q C _ D 2 A Q .  

P r o o f .  Assume tha t  D1 ND3 N Q  ¢ 0, and let S'  = 
(yo, yl ,  y2, ya) be the skyline of {D1, D2, Da} (see Figure 5). 
Since yl = OD1 NOD2 AQ,  y2 = OD2 AODa NQ, and yl ,  y2 
D1 ND3, Lemma 2(b) implies tha t  OD2 NO(D~ ND3 AQ) --- 0. 

To complete the proof, it suffices to show that  D2 contains 
some point of D1 n D2 n Q. Let x = OD1 n OD2 n Q, and let L 
be the half-line from a through x. Since a E D1, L intersects 
OD1 exactly once, at x. Thus, L does not intersect the arc 
yoyl of the skyline. Similarly, L does not intersect y2y3. It  
follows tha t  L intersects yly2, and, by Lemma 5, x E D2. • 

The following is a straightforward corollary of Lemma 7: 

LEMMA 8. For every p E P ,  the skyline disks Di cover- 
ing p form an interval [D$i~st(p),Dlast(p)] in the sequence 
D 1 , . . .  ,Dk .  

LEMMA 9. The optimum cover of  7 ;) with disks from the 
set {D1, . . .  ,Dk}  of skyline disks contains at most 2 times 
more disks than the optimum cover of 7 ~ with disks from 1). 

P r o o f .  I t  suffices to prove that ,  for every D E T), D n Q 
is covered by at most two skyline disks. Furthermore,  since 
Lemma 5 implies tha t  any set of disks covering 0D O Q fully 
covers D n Q, we only need to show tha t  OD O Q is covered 
by at most two skyline disks. 

Let dl and d2 be the two points of intersection of OD with 
the boundary of the central disk A. By Lemma 2(b), any 
skyline disk Di intersecting D n Q contains at  least one of 
the points dl and d2. The key observation is that ,  for any 
two skyline disks Di and Dj  both containing dl (or both 
containing d2), the arc OD n O D i n  Q is contained in the arc 
OD n O D j n  Q or vice versa. Therefore the minimal set of 
skyline disks covering OD n Q has at most two disks. • 

P r o o f  o f  T h e o r e m  3 .  The approximation ratio of Algo- 
r i thm 2 follows from Lemma 9. Step 1 of the algorithm can 
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F i g u r e  6: T i g h t  e x a m p l e  for  t h e  a p p r o x i m a t i o n  rat io  
o f  A l g o r i t h m  2. 

be implemented in O(n log n) t ime using, e.g., an adaptat ion 
of the divide-and-conquer algorithm in [111 for computing 
the Manhat tan  skyline. The binary searches in Step 2 also 
take O(n log n) time. Finally, the minimum set of points 
hitt ing a set of intervals can be computed in linear in O(n) 
t ime by the following simple greedy algorithm: sort (using 
counting sort) the intervals according to the right endpoint, 
and then repeatedly pick the rightmost point of the first 
(in the sorted order described above) interval not yet hit. 
The work is constant per interval: to check if an interval is 
hit, we only have to compare the leftmost endpoint of the 
interval with the rightmost selected element. II 

R e m a r k .  The approximation ratio of 2 in Theorem 3 is 
tight: Figure 6 gives an instance when the opt imum disk 
cover consisting of skyline disks has size 2, while there is a 
single disk covering the two points of P.  

4. EXACT COMBINATORIAL DISK COV- 
ERING IN A QUADRANT 

In this section we give an O(n 2) exact algorithm (Algorithm 
3) for the 1-Hop Disk Cover problem with all points of P 
coming from an exterior quadrant  Q of unit disk A. The 
algorithm is based on careful removal of disks combinatori- 
ally covered by their neighbors. Below, we say that  a disk 
D E T) is eombinatorially covered (or just  covered) by a set 
of disks if each point in P N D belongs to the union of these 
disks. 

Algorithm 3 sorts all disks with respect to the positions of 
the points of intersection with the boundary of the quadrant  
Q. The main step of the algorithm, called 2-refinement, 
traverses the disks in sorted order recursively dropping disks 
covered by their immediate neighbors on each side. For the 
purpose of simplifying both the algorithm and the proof of 
correctness, two dummy disks are added as the first and 
last disks in the sorted sequence before 2-refinement. Each 
dummy disk covers one private (not covered by any other 
disk) dummy point which ensures that  the dummy disks are 

always part  of any disk cover. 

A l g o r i t h m  3: C o m b i n a t o r i a l  D i s k  C o v e r i n g  

I n p u t :  The set of unit disks 72, {72{ = m, centered inside the 
unit disk A, set of points T ~ in the quadrant Q outside A such 
that T ~ C U { D  E 72} 
O u t p u t :  Minimum size subset .T" C 72 such that 
7:' C U { D  C .?} 

1. For each Di C 7) find l i  and r i ,  the two points of 
intersection between the boundaries ODi with OQ. We 
assume that lj < rj in a fixed orientation of aQ. Renumber 
the disks in 7) such that either l i < l i+ l  or l i = l i+ l  and 
r i  < r i + l  for every i -- 1 , . . .  , m  - 1. 

Add at the beginning and at the end of 72 dummy disks Do 
and Dm+l each containing a private dummy point (i.e., a 
point covered only by Do, respectively Din+ l )  and not 
covering any other point of ~o. 

3. Combinatorial  2-refinement: 
Initialize a stack S with Do and D1 
F o r i = 2 , . . .  , m + l  do 

While top(S) is covered by the disk under top(S) 
together with the disk Di,  pop the stack S 

Push Di on the stack S. 

4. Remove the dummy disks Do and Dm+l .  

5. Output the set ~" of disks from the stack S. 

2 .  

THEOREM 10. Algorithm 3 gives an optimal solution for 
the 1-hop Disk Cover problem in a quadrant and can be im- 
plemented in O(n 2) time. 

Theorems 1 and 10 imply: 

COROLLARY 11. Combined with Algorithm 3, Algorithm 
1 runs in O(nlogn) time and has an approximation ratio of 
3 for the Minimum Forwarding Set problem. 

In the rest of the section, we will prove Theorem 10. With- 
out loss of generality, we assume that  the dummy disks Do 
and Dm+1 are part  of the input. Under this assumption any 
disk cover should contain Do and Dm+l.  

The proof is organized as follows. We first introduce the 
important  topological notion of A-configuration and discuss 
its properties. 

We first show that ,  @@@@@@@@@ with one exception, at 
any moment during the execution of the algorithm, no disk 
in the stack covers any another disk in the stack. 

Then we show tha t  the disks in the stack never form A- 
configurations. 

Next we show that ,  in the maximum-area  opt imum disk 
cover, every two consecutive opt imum disks combinatorially 
cover all disks between them. Finally, we show that  the 
set of disks remaining in the stack after 2-refinement and 
the maximum-area optimal disk cover are interleaved, and 
hence have the same size. 
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We say that (i , j ,k),  0 < i < j < k < m = 1, form a A- 
configuration if the three arcs ODi n Q, ODj M Q and OD~ n Q 
intersect pairwise, and the walk along ODj N Q starting from 
lj towards rj meets ODkNQ no later than OD~AQ (see Figure 
7). A simple topological argument shows that if (i, j, k) 
form a A-configuration, then Dj N Q c_ (Di I.J Dk). Also, 
if (D~ 17 Dk) \ Dj is nonempty, either (i , j ,k)  form a A- 
configuration, or D~ covers Dj, or Dk covers Dj. 

We start with a simple property of the algorithm. 

LEMMA 12. At any moment, in the stack, no disk is cov- 
ered by another, with the possible exception that the topmost 
disk. If the topmost disk is covered by another disk, then it 
covered by the disk right under it in the stack. 

Proof .  Consider the first moment a disk D~ covers a disk 
Dj,  with Dj not the topmost element of the stack. Then D~ 
is the topmost element of the stack. 

If Dy is right under D~, then Dj should have been popped 
from S before Di is pushed. Otherwise, let Dq ~ Dj be the 
disk right under Di in the stack. If walking on ODq n Q 
starting at lq towards rq, we do not meet ODj N Q, then 
Dq C Dj C Di, and D~ should have been popped from S 
before D~ is pushed. If walking on ODq N Q starting at lq 
towards rq, we meet OD~ n Q after meeting OD~ n Q, then 
Dq \ Di C Dj \ D~ and therefore Dq C_ Di, a contradiction as 
before. If walking on ODq n Q starting at Iq towards r~, we 
meet ODj n Q no later than OD~ n Q, then Dj C (Din Dj) c_ 
Dq, contradicting the fact that  this is the first moment the 
lemma does not hold. 

Now let Dj be the topmost element of the stack, and assume 
D~ covers Dj. Let D~ be the disk right under D~ in the stack. 
If Dq = D~, we are done. 

If Dq C Di, by induction we can assume that Dr, the disk 
right under Dq in the stack, also covers Dq. Then Dq should 
have been popped from S before Di is pushed, 

If Dq ~= Di, then the walk on ODq n Q starting at lq towards 
rq meets ODin Q no later than meeting ODjn Q. Indeed. if 
the walk on ODq AQ starting at lq towards rq meets ODj AQ 
before ODi n Q, then Dq \ Di C Dj \ Di = 0, contradicting 
Dq ~= Di. But then Dj C D i n  Dj C Dq, and we are done. 

LEMMA 13. The stack S never contains a A-configuration. 

Proof. Assume for a contradiction that there is a A- 
configuration on the stack S. Let (i, j ,  k) be a A-configuration 
with the smallest k, and, among these, choose the one with 
the largest i. We will show that Dj is right under Dk in the 
stack, and Di is right under Dj in the stack, but  in this case 
Dj should have been popped from S before Dk is pushed, a 
contradiction. 

Assume first that Dj is right under Dk in the stack, and let 
Dq, q ~ i, be the disk under Dj in the stack. By Lemma 12, 

I , / i  . I', ' ,o  

F i g u r e  7: T h e  A - c o n f i g u r a t i o n .  

Dq ~- Di and ODq n Q must intersect OD~ n Q. If the walk 
on ODq n Q starting at lq towards rq meets OD~ n Q before 
ODj AQ, then Dq and Dk cover Dj, and therefore Dj should 
have been popped from S before Dk is pushed. If the walk 
on ODq n Q starting at lq towards rq meets ODj N Q no later 
than ODi N Q, then (i, q, j )  form an earlier A-configuration, 
a contradiction. 

Now assume Dq, q ~ j ,  is right under Dk in the stack. If 
Dq is covered by either Di or Dj,  then by Lemma 12 Dq is 
covered by the disk under it in the stack, and therefore Dq 
should have been popped from S before Dk is pushed. So 
ODq n Q intersects both ODi M Q and ODjn Q. If the walk 
on ODq n Q starting at lq towards rq meets ODj CI Q before 
ODin Q, then (i,j,q) form an earlier A-configuration, a 
contradiction. If the walk on ODq N Q starting at Iq towards 
rq meets ODin Q before ODj n Q, then it must also meet 
ODk n Q before ODjn Q, and therefore (j, q, k) form a A- 
configuration, contradicting the fact that  (i , j ,k) is the A- 
configuration with k - i minimum. 

So in all cases we obtain a contradiction. 

LEMMA 14. Let OPT = {Dta, Dr2,... ,Dtop, } be the max- 
imum-area optimum disk cover, where 0 ---* tz < t2 < ...  < 
topt. Then, for every ti < q < ti+z, i = 0 , . . .  ,opt - 1, Dq 
is combinatorially covered by Dtl [-J Dti+z. 

Proof .  Assume by contradiction that there is a disk Dq ¢~ 
OPT, with tl < q < ti+z such that  Dq is not covered by 
Dti and Dt~+i (see Figure 8). Let p 6 Dq \ (Dt~ U Dry+z). 
W.l.o.g., assume that  p 6 Dtj for j < i. Then (t~,t~,q) form 
a A-configuration, and Dt~ C Dtj U Dq. Hence, OPT' = 
(OPT \ Dt~) U Dq geometrically covers U{D 6 OPT} and 
is itself an optimum disk cover. The contradiction follows 
from the fact that U{D 6 OPT} is a strict subset of U{D 6 
OPT'}. Indeed, Dq is not combinatorially covered by the 
other disks in OPT' and hence participates in the skyline 
of OPT'. Let s be the skyline arc of Dq. The interior of 
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Figure 8: R e p l a c i n g  Dt~ w i t h  Dq inc reases  the  a r ea  
of  t he  o p t i m u m  disk  cover.  

s has no points in common with the disks in O P T '  \ Dq = 
O P T \ D ~ .  Furthermore, since Dt~ is fully covered by OPT' ,  
the interior of s has no points in common with D~. Thus, 
the interior of s is in (U{D 6 OPT ' } )  \ (U{D ~ OPT}) .  • 

5. THE GENERAL MINIMUM DISK COVER 
PROBLEM 

In this section we describe a constant-factor approximation 
algorithm for the following 

M i n i m u m  Disk  Cover  P r o b l e m .  Given a set of unit 
disks D and a set of points P in the Euclidean plane, find a 
minimum-size subset ~- C ~P, such that "P C U{D ~ ~-}. 

This problem is NP-Hard since it contains as a special case 
Dominating Set in unit-disk graphs, a problem shown to be 
NP-Hard in [4]. A polynomial-time algorithm with constant 
approximation ratio for Minimum Disk Cover was first pro- 
vided by [2]. 

If we can obtain a constant ratio for covering an equilateral 
triangle with sizes equal to 1, we can obtain a constant ratio 
for the whole plane, by tiling the plane into triangles and 
separately covering all the triangles, and using the fact that 
one disk in the optimum can only cover points in a constant 
number of triangles. 

Let A B C  be such a triangle. If no point of P is in the 
triangle, there is nothing to be done. Also, if there is a disk 
D E ~ whose center is in the triangle, then D covers all the 
triangle. So, in the following, we assume all the points are 
in the triangle, and all the centers of disks in D are outside 
the triangle. 

The algorithm has four phases: 

LEMMA 15. [~N {Dt,,D~,+~ . . . .  ,Dt,+~-~}[ _< 1 for any 
i = O, . . . .  , opt. 

Proof .  Assume that just after ti+l is pushed on the stack, 
J:N {Dt, ,Dt ,+~, . . .  ,Dt,+~-~} ~ {D~,Dy}, with x < y and 
y - x maximum possible. 

We first show that D~ is covered by D~ and D~+~. Indeed, 
Lemma 14 implies that Dy is covered by Dt~ and D~+ 1 . If 
x = ti, we are done. Otherwise, D~ is covered by D~ and 
D, ,  where D.  is the disk under Dx in the stack, therefore, 
D~ is covered by D~,D~ and Dt~+~. If Dy has a point in 
D.  \ D~, then (v, x, y) is a A-configuration, a contradiction 
to Lemma 13. Thus Dy is covered by D~ and D~+~. 

Let Dz be the disk under D~ in the stack. We will show 
that Dy is covered by Dz and D~i+ 1 and thus Dy should 
have been removed from the stack before Dt~+~ is pushed 
on the stack. Indeed, Dy is covered by D~ and Dti+l and if 
Dy has a point in D~ \D~, then (x, z, y) is a A-configuration, 
a contradiction to Lemma 13. • 

P r o o f  of  T h e o r e m  10. The approximation factor follows 
from Lemma 15. Algorithm 3 can be implemented to run 
in O(n 2) time, where n ---- m + p is the number of cen- 
ters, m, plus the number of points , p. Indeed, Step 1 needs 
O(rnlogm) time, and each of the m iterations in combi- 
natorial 2-refinement can be implemented in O(p) time by 
traversing all points in T'. • 

1. After removing those disks that do not intersect the 
triangle, partition the remaining disks into three sets 
D1, D2, and D3, such that  all the centers of the disks 
in D1 are on the other side of the line A B  than C, all 
the centers of the disks in D2 are on the other side of 
the line B C  than A, and all the centers of the disks 
in D3 are on the other side of the line AC than B. 
If a disk could be put in more than one Di, pick one 
arbitrarily. 

2. For i ---- 1 , . . .  ,3, let Q)i ---- B be the triangle and let 
Ji be the line which separates the centers of the disks 
of ~ i  from the interior of the triangle. Find the sky- 
line as in Section 3, and compute ~i,  the set of disks 
containing some arc of the skyline. 

3. Write the natural  Integer Programming formulation 
involving only the disks in b~l U b~ U ~-3. Solve the 
Linear Programming relaxation. 

4. Round the linear programming optimum to an integer 
solution, as described in Subsection 5.1. 

Later we prove Theorem 16, which claims that the algorithm 
described above has approximation ratio at most 6 for the 
problem of covering the points inside the triangle. 

First, we note that Lemma 2 holds easily when J~ is a 
straight line. For each ~'i, Lemma 8 also holds. Let ~ -- 
~-1 U ~-2 U ~-3, and assume ~" is sorted with 5vl (which is 
sorted) followed by the sorted ~-2, and followed by the sorted 
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5r3. Lemma 9 also holds, and therefore ~- contains a solution 
at most twice opt, the size of an opt imum solution. 

5.1 Rounding 
We use the natural  IP, with variables XD, for D • 5v: 

minimize E X D  

DE.T" 

subject  to E XD > 1 V P • 7 9  (1) 
D : P6D 

XD • {0, 1} VD • 7). (2) 

Let LP be the linear programming relaxation of IP, obtain 
by replacing the constraints 2 by 

XD > O VD 6 7). (3) 

Let Z~ ,  the value of the IP optimum. As argued above, we 
have Z~p < 2 opt. 

Let y be a (fractional) solution to LP. For a point P • B, 
the set of disks covering it consists of at most three intervals, 
say I P, I P,  and I P.  For one of the three intervals, which 
we call simply I P, we have: ~-~DciP yD > 1/3. 

'Consider the following integer program, which we call IP ' ,  
with variables XD, for D • 5r: 

minimize E XD 
D ~  

subject  to E XD >_ 1 VP • 79 (4) 
D 6 1  v 

x o  • {0,1} V D • 7 ) .  (5) 

Let LP'  be the linear programming relaxation of IP' .  The 
matr ix  of IP '  is total ly  unimodular  (see [5], page 200), and 
3y is a solution to LP'.  Therefore IP '  has a solution of size 
at  most 3 ~ D e j : Y D  , and an opt imum for IP '  can be found 
easily by the greedy algorithm, as described at  the end of the 
proof of Theorem 3. Now, if y is an opt imum solution to LP, 
then ~ D e J :  YO < Z ip  < 2 opt, and therefore the solution 
found by the greedy algorithm has size at most 6opt. 

Rounding consists of finding for each point P • B the inter- 
val I P, and then using the greedy algorithm to hit each I F 
with elements of ~ .  In conclusion, we proved: 

THEOREM 16. The algorithm described in this section has 
approximation ratio at most 6 for the covering points inside 
an equilateral triangle with sizes equal to 1 with unit-disks 
from a fixed set 7). 

Since a single disk from the opt imum solution can cover 
points in at  most 17 triangles of the tiling we conclude 

COROLLARY 17. There is a 102-approximation algorithm 
for the Minimum Disk Cover problem. 

6. EXPERIMENTAL RESULTS 
We compared the two algorithms proposed for the Minimum 
Forwarding Set problem on random instances generated as 
follows. The polar coordinates for the specified number of 
1- and 2-hop neighbors of a source node placed at the origin 
were generated by choosing for each point the angle uni- 
formly between [0, 21r) and the radius uniformly from the 
interval (0, 1] for 1-hop neighbors and uniformly from the 
interval (1, 2] for 2-hop neighbors. The two algorithms were 
then applied to the instance obtained by deleting all 2-hop 
neighbors not covered by any 1-hop neighbor. The algo- 
r i thms were implemented as Java applets. As expected, the 
geometric algorithm is much faster than combinatorial one, 
by up to two orders of magni tude in our experiments,  which 
were run on a Pentium II 300MHz PC. 

Table 1 reports the average results over 100 instances gen- 
erated for each instance size. We remark that ,  although 
the geometric disk covering has a worst case approxima- 
tion guarantee twice larger than tha t  of the combinatorial 
disk covering algorithm, on the random instances used in 
our experiments its solution is larger on the average by only 
17-44%. 

7. CONCLUSIONS 
In this paper we presented a geometric O(n log n) 6-approximation 
algorithm and a combinatorial  O(n 2) 3-approximation algo- 
r i thm for selecting forwarding neighbors in wireless ad-hoc 
networks, significantly improving both the running time and 
the approximation ratio of the best  previously known algo- 
ri thm. An extension of our method can be used to obtain 
an alternative constant-rat io polynomial- t ime algorithm for 
the Minimum Disk Cover problem. 

We mention that  Theorem 10 is true in the following more 
general setting. Let J be an infinite simple Jordan curve 
which separates the plane into exactly two regions, and let 
Bi one of these two regions. Let all points 79 be in Bi, and 
each Dj be a region bordered by a simple closed Jordan 
curve 07)j. Also, each 07)j intersects the infinite curve J 
in exactly two points, and, for any two disks Dj and Dk, 
07)j f7 07)k N Bi has at most one point. Moreover, whenever 
two of the curves above intersect, they cross each other. 
Then the combinatorial  disk covering algorithm 3 solves the 
covering problem exactly. 

Refinement techniques can also be applied to a fractional 
solution to the natural  linear program LP to obtain a round- 
ing procedure with a ratio of 2 when P and the centers of 
7) are separated by a straight line. Then, as in Section 5, 
it follows that  the linear program LP has constant integral- 
ity ratio for the general problem. However, when the disks 
in 7) are weighted, we do not know the integrality ratio of 
the corresponding integer and linear programs. The linear 
program is given below: 

minimize E w o x o  
DE'/9 
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Instance Size 
# l - H o p  # 2 - H o p  

60OO 2O00 
3000 1000 
2000 1000 
1000 5OOO 

Geometric Algorithm Combinatorial Algorithm 
Skyline 

44 
40 
38 
29 

Solution 
36 
28 
27 
23 

1-Refined Solution 
197 29 
141 24 
137 22 
93 16 

Relative 
Error 
24% 
17% 
23% 
44% 

Table  1: C o m p a r i s o n  of  the  1-Hop Disk Covers  p roduced  by  the  geomet r i c  and  combina to r ia l  a lgor i thms.  

subject to ~ XD > 1  VPE79 (6) 
D : P E D  

xD > O VD e 79 ( 7 )  
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