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Abstract— In randomly-deployed wireless ad hoc networks
with reliable nodes and links, vanishment of isolated nodes
asymptotically implies connectivity of networks. However, in a
realistic system, nodes may become inactive, and links may
become down. The inactive nodes and down links cannot take
part in routing/relaying and thus may affect the connectivity. In
this paper, we study the connectivity of a wireless ad hoc network
that is composed of unreliable nodes and links by investigating
the distribution of the number of isolated nodes in the network.
We assume that the wireless ad hoc network consists of n nodes
which are distributed independently and uniformly in a unit-area
disk or square. Nodes are active independently with probability
0 < p1 ≤ 1, and links are up independently with probability
0 < p2 ≤ 1. A node is said to be isolated if it doesn’t have an up
link to an active node. We show that if all nodes have a maximum
transmission radius rn =

√
ln n+ξ
πp1p2n

for some constant ξ, then
the total number of isolated nodes is asymptotically Poisson with
mean e−ξ and the total number of isolated active nodes is also
asymptotically Poisson with mean p1e

−ξ. In addition, the work
can be extended for secure wireless networks which adopt m-
composite key predistribution schemes in which a node is said
to be isolated if it doesn’t have a secure link. Let p denote the
probability of the event that two neighbor nodes have a secure
link. We show that if all nodes have a maximum transmission
radius rn =

√
ln n+ξ

πpn
for some constant ξ, then the total number

of isolated nodes is asymptotically Poisson with mean e−ξ.

I. INTRODUCTION

A wireless ad hoc network is composed of a collection
of wireless devices distributed over a geographic region. A
communication session is established either through a single-
hop radio transmission if the communication parties are close

enough, or through relaying by intermediate devices otherwise.
Due to no need for a fixed infrastructure, wireless ad hoc
networks can be flexibly deployed at low cost for varying
missions. In many applications, the wireless sensors are de-
ployed in a large volume. The sheer large number of devices
deployed coupled with the potential harsh environment often
hinders or completely eliminates the possibility of strategic
device placement, and consequently, random deployment is
often the only viable option.

To model a randomly deployed wireless ad hoc network, it
is natural to represent the ad hoc devices by a finite random
point process over the deployment region [1] [2] [3] [4] [5].
In addition, due to the short transmission range of radio links,
two wireless devices can build a communication link only if
they are within each other’s transmission range. Assume all
devices have the same transmission radius r, then the induced
network topology is a r-disk graph in which two nodes are
joined by an edge if and only if their distance is at most r.
This is a variant of the model proposed by Gilbert (1961) [6]
and referred as a random geometric graph.

The connectivity of a wireless ad hoc networks is an essen-
tial problem. The connectivity of random geometric graphs
has been studied by Dette and Henze (1989) [7], Penrose
(1997) [8], and others [1] [2] [9] [10]. For a uniform n-
point process over a unit-area square, Dette and Henze (1989)

[7] showed that for any constant ξ, the

(√
ln n+ξ

πn

)
-disk

graph has no isolated nodes with probability exp
(−e−ξ

)
asymptotically. Later, Penrose (1997) [8] established that if a
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random geometric graph induced by a uniform point process or
Poisson point process has no isolated nodes, then it is almost
surely connected.

However, in a realistic system, nodes may become inactive
due to, for example, internal breakdown or being in the moni-
toring state, and links may become down due to, for example,
harsh environment or barriers between nodes. The inactive
nodes and down links cannot take part in routing/relaying and
thus may affect the connectivity. Recently, Wan and Yi et al
[2] [10] showed that if every nodes independently break down
with the same probability p, the network is connected with
probability exp

(−pe−ξ
)

asymptotically. In this paper, based
on the work in [2], we study the connectivity of a wireless
network with unreliable nodes and links by investigating
the number of isolated nodes. We assume nodes are active
independently with the same probability p1 and links are up
independently with the same probability p2. It is referred as
a Bernoulli model. In this model, depending on the meaning
of the ”inactive” nodes, we may have two types of network
connectivity: (1) all active nodes form a connected network;
and (2) all active nodes form a connected network and each
inactive node is adjacent to at least one active node. In both
cases, a node is said to be isolated, if it doesn’t have an up
link to an active nodes. The vanishment of isolated nodes is a
prerequisite for connectivity. We shall prove that the number
of isolated nodes have asymptotic Poisson distributions.

In addition, the work can be extended for secure wireless
networks with m-composite key predistribution schemes. In
many applications, the wireless sensors network is composed
of low cost devices. Due to the limited capacity, traditional
security schemes and key management algorithms are too
complex and not feasible for such a system. The m-composite
key predistribution schemes [11] [12] [13] are proposed to
offer security for randomly-deployed wireless sensor networks.
In the scheme, K distinct keys are randomly chosen from
the key space to form the key pool. A key ring is a k-
element subset of the key pool. Before deployed, each node
randomly loads a key ring into its memory. Two nodes within
each other’s transmission range have a secure link if their
key rings have at least m common keys. In secure wireless
sensor networks, only secure links can participate in the
communication task. Hence, the secure wireless network is
the graph in which two nodes have an edge if their distance is
at most r and they have at least m common keys in their key
ring. In other words, the connectivity of the secure network
only can consider the secure links. A secure wireless network
is said to be connected if all nodes form a connected network
by secure links. A node is said to be isolated, if it doesn’t have
a secure link. Similarly, we shall prove that the number of
isolated nodes in the secure wireless network have asymptotic
Poisson distributions.

In what follows, all integrals considered will be Lebesgue
integrals. For any set S and positive integer k, the k-fold
Cartesian product of S is denoted by Sk. The disk of radius r
centered at x is denoted by B (x, r). The special unit-area disk
or square centered at the origin is denoted by Ω. The symbols

o and ∼ always refer to the limit n → ∞. To avoid trivialities,
we tacitly assume n to be sufficiently large if necessary. For
simplicity of notation, the dependence of sets and random
variables on n will be frequently suppressed.

The remaining of this paper is organized as follows. In
Section II, the main results of this paper are given. In Section
III, we present several useful geometric results and integrals. In
Section IV, we derive the distribution of the number of isolated
nodes. Section V is the conclusion. Due to the limitation on
the paper length, simulation results are not presented in the
paper.

II. MAIN RESULTS

The approach used in this paper is based on the method
used in [2]. We assume that a wireless ad hoc network is
represented by a uniform n-point process over Ω. All nodes
are associated with a maximal transmission radius r which is
a function of n, and two nodes have a link if the distance
between them is at most r.

In the Bernoulli model, nodes are active independently with
probability p1 for 0 < p1 ≤ 1, and links are up independently
with probability p2 for 0 < p2 ≤ 1. Here p1 and p2 can be
constants or functions of n. A node is said to be isolated if
it doesn’t have an up link with an active node. We have the
following theorem about the total number of isolated (active)
nodes.

Theorem 1: Suppose that limn→∞ p1p2 ln n = ∞ and
nodes have the same maximum transmission radius r =√

ln n+ξ
np1p2π for some constant ξ. Then the total number of

isolated nodes is asymptotically Poisson with mean e−ξ, and
the total number of isolated active nodes is also asymptotically
Poisson with mean p1e

−ξ.
This work can be extended for secure wireless networks

which adopt m-composite key predistribution schemes. In
the m-composite key predistribution scheme, the key pool
contains K distinct keys which are randomly chosen from the
key space, and a key ring is composed of k distinct keys drawn
from the key pool. Before deployed, each node randomly loads
k distinct keys drawn from the key pool, which is called a key
ring, into its memory. After deployed, two nodes within each
other’s transmission range have a secure link if their key rings
have at least m common keys. A node is said to be isolated
if it doesn’t have a secure link.

Let qi denote the probability of the event that two key rings
have exactly i common keys. If two key rings have exactly i
common keys, the second one contains i keys from the k keys
of the first one and k− i keys from the remaining K −k keys
not of the first one. Therefore,

qi =

(
k
i

)(
K−k
k−i

)
(
K
k

) .

Let p denote the probability of the event that two nodes (or
key rings) have at least m common keys and q denote the
probability of the event that two key rings have at most m−1
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common keys. Then,

q = q0 + q1 + · · · + qm−1

p = 1 − q
(1)

We have the following theorem about the total number of
isolated nodes in the secure wireless network.

Theorem 2: In m-composite key predistribution schemes,
let p be given by Eq. (1). If limn→∞ p ln n = ∞ and nodes

have the same maximum transmission radius r =
√

ln n+ξ
πpn

for some constant ξ, then the total number of isolated nodes
is asymptotically Poisson with mean e−ξ.

III. PRELIMINARIES

We adopt notations and terminologies used in [2]. For
completeness, we also give their definitions here. Most lemmas
in this section also can be found corresponding ones in [2] but
with some extension.

Let r be the transmission radius of the nodes. For any finite
set of nodes {x1, · · · , xk} in Ω, we use Gr (x1, · · · , xk) to
denote the r-disk graph over {x1, · · · , xk} in which there is
an edge between two nodes if and only if their distance is at
most r. For any positive integers k and m with 1 ≤ m ≤ k,
let Ckm denote the set of (x1, · · · , xk) ∈ Ωk satisfying that
G2r (x1, · · · , xk) has exactly m connected components. For
any set S ⊆ Ω and r > 0, the r-neighborhood of S is the set⋃

x∈S B (x, r) ∩ Ω. We use vr (S) to denote the area of the
r-neighborhood of S, and sometimes by slightly abusing the
notation, to denote the r-neighborhood of S itself.

In the remaining of this section, we give the limits of several
integrals. Similar lemmas can be found in [2].

Lemma 3: If limn→∞ p ln n = ∞ and r =
√

ln n+ξ
πpn for

some constant ξ, then

n

∫
Ω

(1 − pvr (x))n−1
dx ∼ e−ξ.

Lemma 4: If limn→∞ p ln n = ∞ and r =
√

ln n+ξ
πpn for

some constant ξ, then for any fixed integer k ≥ 2,

nk

∫
Ck1

(1 − pvr (x1, x2, · · · , xk))n−k
k∏

i=1

dxi = o (1) .

Lemma 5: Let limn→∞ p ln n = ∞ and r =
√

ln n+ξ
πpn for

some constant ξ. Then for any fixed integers 2 ≤ m < k.

nk

∫
Ckm

(1 − pvr (x1, x2, · · · , xk))n−k
k∏

i=1

dxi = o (1) .

Lemma 6: Let limn→∞ p ln n = ∞ and r =
√

ln n+ξ
πpn for

some constant ξ. Then for any fixed integer k ≥ 2,

nk

∫
Ckk

(1 − pvr (x1, x2, · · · , xk))n−k
k∏

i=1

dxi ∼ e−kξ.

IV. ASYMPTOTIC DISTRIBUTION OF THE NUMBER OF

ISOLATED NODES

Theorem 1 and 2 will be proved by using Brun’s sieve in
the form described, for example, in [14], Chapter 8, which is
an implication of the Bonferroni inequalities.

Theorem 7: Let B1, · · · , Bn be events and Y be the number
of Bi that hold. Suppose that for any set {i1, · · · , ik} ⊆
{1, · · · , n}

Pr (Bi1 ∧ · · · ∧ Bik
) = Pr (B1 ∧ · · · ∧ Bk) ,

and there is a constant µ so that for any fixed k

nk Pr (B1 ∧ · · · ∧ Bk) ∼ µk.

Then Y is also asymptotically Poisson with mean µ.

A. Networks with Bernoulli Nodes and Links

In the Bernoulli model, for applying Theorem 7, let Bi

be the event that Xi is isolated for 1 ≤ i ≤ n and Y be
the number of Bi that hold. Then Y is exactly the number
of isolated nodes. Similarly, let B′

i be the event that Xi is
isolated and active for 1 ≤ i ≤ n and Y ′ be the number of
B′

i that hold. Then Y ′ is exactly the number of isolated active
nodes. Obviously, for any set {i1, · · · , ik} ⊆ {1, · · · , n} ,

Pr (Bi1 ∧ · · · ∧ Bik
) = Pr (B1 ∧ · · · ∧ Bk) ,

Pr
(
B′

i1 ∧ · · · ∧ B′
ik

)
= Pr (B′

1 ∧ · · · ∧ B′
k) .

In addition,

Pr (B′
1 ∧ · · · ∧ B′

k) = (p1)
k Pr (B1 ∧ · · · ∧ Bk) .

Thus, in order to prove Theorem 1, it suffices to show that if

r =
√

ln n+ξ
πp1p2n for some constant ξ, then for any fixed k,

nk Pr (B1 ∧ · · · ∧ Bk) ∼ e−kξ. (2)

The proof of this asymptotic equality will use the following
two lemmas. For convenience, let q1 = 1−p1 and q2 = 1−p2.

Lemma 8: For any x ∈ Ω,

Pr (B1 | X1 = x) = (1 − p1p2vr (x))n−1
.

Proof: For any x ∈ Ω, let N1 and N2 denote the
number of active nodes and the number of inactive nodes
of X2, · · · ,Xn within vr (X1) respectively. There are exactly
N1 links between X1 and those N1 active nodes. If X1 are
isolated, all of those N1 links must be down. So

Pr (B1 | N1 = i,N2 = j)

= Pr
(

all links of X1 to active
nodes are down

∣∣∣∣ N1 = i,
N2 = j

)
= (q2)

i
,

and

Pr (N1 = i,N2 = j | X1 = x)

=
(

n − 1
i, j

)
(1 − vr (x))n−1−i−j (p1vr (x))i (q1vr (x))j

.
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Thus

Pr (B1 | X1 = x)

=
n−1∑

i+j=0

Pr (B1 | N1 = i,N2 = j) ·
Pr (N1 = i,N2 = j | X1 = x)

=
n−1∑

i+j=0

(q2)
i (n−1

i,j

)
(1 − vr (x))n−1−i−j ·

(p1vr (x))i (q1vr (x))j

= (1 − p1p2vr (x))n−1
.

Therefore, the lemma is proved.
Lemma 9: For any k ≥ 2 and (x1, · · · , xk) ∈ Ωk,

Pr (B1 ∧ · · · ∧ Bk | Xi = xi, 1 ≤ i ≤ k)

≤ (1 − p1p2vr (x1, · · · , xk))n−k
.

In addition, the equality is achieved for (x1, · · · , xk) ∈ Ckk.
Proof: For any (x1, · · · , xk) ∈ Ωk, let N1 and N2 be

the number of active nodes and the number of inactive nodes
of Xk+1, · · · ,Xn within vr (X1, · · · ,Xk) respectively. There
are at least N1 links between X1, · · · ,Xk and those N1 active
nodes. If X1, · · · ,Xk are isolated, all of those links must be
down. So

Pr (B1 ∧ · · · ∧ Bk |N1 = i,N2 = j )

= Pr
(

links of X1, · · · ,Xk to
active nodes are down

∣∣∣∣ N1 = i,
N2 = j

)
≤ (q2)

i
.

Thus,

Pr (B1 ∧ · · · ∧ Bk | Xi = xi, 1 ≤ i ≤ k)

=
n−k∑

i+j=0

Pr (B1 ∧ · · · ∧ Bk | N1 = i,N2 = j) ·
Pr (N1 = i,N2 = j | Xi = xi for 1 ≤ i ≤ k)

≤
n−k∑

i+j=0

(q2)
i (n−k

i,j

)
(1 − vr (x1, · · · , xk))n−k−i−j ·

(p1vr (x1, · · · , xk))i (q1vr (x1, · · · , xk))j

= (1 − p1p2vr (x1, · · · , xk))n−k
.

For any (x1, · · · , xk) ∈ Ckk,

Pr (B1 ∧ · · · ∧ Bk | Xi = xi, 1 ≤ i ≤ k)

= Pr
( ∀1 ≤ i ≤ k, Xi has no up links

to active nodes of Xk+1, · · · ,Xn

)

=
n−k∑

m1+···+mk=0

Pr




∀1 ≤ i ≤ k, vr (xi) contains
mi active nodes, m′

i inactive
nodes, and links of Xi to
active nodes are down




=
n−k∑

m1+···+mk+
m′

1+···+m′
k=0

(
n − k

m1, · · · ,mk,m′
1, · · · ,m′

k

)

·
(

k∏
i=1

(q2p1vr (xi))
mi

)(
k∏

i=1

(q1vr (xi))
m′

i

)

· (1 − vr (x1, · · · , xk))
n−k−

k∑
i=1

(mi+m′
i)

= (1 − p1p2vr (x1, · · · , xk))n−k
.

Therefore, the lemma is proved.
Now we are ready to prove the asymptotic equality (2).

From Lemma 8 and Lemma 3,

nPr (B1) = n

∫
Ω

(1 − p1p2vr (x))n−1
dx ∼ e−ξ.

So the asymptotic equality (2) is true for k = 1. Now we fix
k ≥ 2. From Lemma 9, Lemma 4 and Lemma 5,

nk Pr
(
B1 ∧ · · · ∧ Bk and (X1, · · · ,Xk) ∈ Ωk \ Ckk

)
≤ nk

∫
Ωk\Ckk

(1 − p1p2vr (x1, · · · , xk))n−k
k∏

i=1

dxi

= o (1) .

From Lemma 9 and Lemma 6,

nk Pr (B1 ∧ · · · ∧ Bk and (X1, · · · ,Xk) ∈ Ckk)

= nk

∫
Ckk

(1 − p1p2vr (x1, · · · , xk))n−k
k∏

i=1

dxi

∼ e−kξ.

Thus, the asymptotic equality (2) is also true for any fixed
k ≥ 2. This completes the proof of Theorem 1.

B. Secure Wireless Networks

In secure wireless networks, for applying Theorem 7, let
Bi be the event that Xi is isolated for 1 ≤ i ≤ n and Y be
the number of Bi that hold. Then Y is exactly the number
of isolated nodes. Obviously, for any set {i1, · · · , ik} ⊆
{1, · · · , n} ,

Pr (Bi1 ∧ · · · ∧ Bik
) = Pr (B1 ∧ · · · ∧ Bk) .

Thus, in order to prove Theorem 2, it suffices to show that if

r =
√

ln n+ξ
πpn for some constant ξ, then for any fixed k,

nk Pr (B1 ∧ · · · ∧ Bk) ∼ e−kξ. (3)

The proof of this asymptotic equality will use the following
two lemmas. For convenience, let q = 1 − p. (Here p is the
probability of the event that two key rings have at least m
common keys.)

Lemma 10: For any x ∈ Ω,

Pr (B1 | X1 = x) = (1 − pvr (x))n−1
.

Proof: For any x ∈ Ω, let N denote the number of nodes
of X2, · · · ,Xn within vr (X1). If X1 is isolated, all X1’s
neighbors may have at most m − 1 keys that are also in the
key ring of X1. For X1’s neighbors, the event is independent
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and identical. Thus,

Pr (B1 | X1 = x)

=
n−1∑
i=0

Pr (X1 is isolated | N = i) Pr (N = i | X1 = x)

=
n−1∑
i=0

qi

(
n − 1

i

)
(1 − vr (x))n−1−i

vr (x)i

= (1 − vr (x) + qvr (x))n−1 = (1 − pvr (x))n−1
.

Therefore, the lemma is proved.
Lemma 11: For any k ≥ 2 and (x1, · · · , xk) ∈ Ωk,

Pr (B1 ∧ · · · ∧ Bk | Xi = xi, 1 ≤ i ≤ k)

≤ (1 − pvr (x1, · · · , xk))n−k
.

In addition, the equality is achieved for (x1, · · · , xk) ∈ Ckk.
Proof: For any (x1, · · · , xk) ∈ Ωk, let N denote the

number of nodes of Xk+1, · · · ,Xn within vr (X1, · · · ,Xk).
Each of those N nodes is neighbor to at least one of
X1, · · · ,Xk, but the link is not secured. Therefore, we have
Pr (B1 ∧ · · · ∧ Bk | N = i) ≤ qi. Thus,

Pr (B1 ∧ · · · ∧ Bk | Xi = xi, 1 ≤ i ≤ k)

=
n−k∑
i=0

Pr (B1 ∧ · · · ∧ Bk | N = i) ·
Pr (N = i | Xi = xi for 1 ≤ i ≤ k)

≤
n−k∑
i=0

qi
(
n−k

i

)
(1 − vr (x1, · · · , xk))n−k−i

vr (x1, · · · , xk)i

= (1 − vr (x1, · · · , xk) + qvr (x1, · · · , xk))n−k

= (1 − pvr (x1, · · · , xk))n−k
.

For any (x1, · · · , xk) ∈ Ckk, each of those N nodes has
exactly one neighbor among X1, · · · ,Xk. Therefore, we have
Pr (B1 ∧ · · · ∧ Bk | N = i) = qi and

Pr (B1 ∧ · · · ∧ Bk | Xi = xi, 1 ≤ i ≤ k)

= (1 − pvr (x1, · · · , xk))n−k
.

Therefore, the lemma is proved.
The asymptotic equality (3) can be proved by applying the

same argument used for the Bernoulli model but replacing
Lemma 8 and 9 by Lemma 10 and 11. Thus, we complete the
proof of Theorem 2.

V. CONCLUSIONS

In this paper, the connectivity of wireless networks in
which nodes and links are not reliable is investigated by the
distribution of the number of isolated nodes in the networks.
We assume a wireless network is composed of a collection
of wireless sensors represented by a uniform n-point process
over the unit-area disk or square. In the Bernoulli model,
nodes are active independently with probability 0 < p1 ≤ 1,

and links are up independently with probability 0 < p2 ≤
1. We show that if all nodes have the same transmission
radius rn =

√
ln n+ξ
πp1p2n for some constant ξ, then the total

number of isolated nodes is asymptotically Poisson with mean
e−ξ and the total number of isolated active nodes is also
asymptotically Poisson with mean p1e

−ξ. In the m-composite
key predistribution schemes, let p denote the probability of
the event that two neighbor nodes have a secure link. We
show that if all nodes have the same transmission radius
rn =

√
ln n+ξ
πpn for some constant ξ, then the total number of

isolated nodes is asymptotically Poisson with mean e−ξ. The
problem whether vanishment of isolated nodes almost surely
implies connectivity of networks or not is still open.
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