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Absfrucf- Minimizing SONET ADM costs in single-hub SONETNDM 
ring networks via traffic grooming has been discussed in a number of recent 
works. Recent work [9] gives the exact minimum costs of uniform traffic in both 
UPSR and BLSRL? and proves that the BLSRL? would never be more expensive 
than UPSR under any tnffic pattem, if all wavelengths have same capacity. 

In this paper we consider how to groom both uniform and non-uniform traffic 
to minimize the cost of ADMs in the single-hub UPSR and BLSRL? with mixed 
line speeds. We especially explore the grooming of tnffic when wavelengths 
have two different capacities 91 = 1 and 92 = 4. We show that the problem can 
be confined to just consider the traffic request ri 5 4 for all non-hub node i. By 
adopting the same cost model its in [3]. i.e.. ADMs with speed g1 = 1 and gz = 
4 cost 1 and 2.5 respectively, we provide optimal tnffic partition and grooming 
for uniform traffic demands, and develop optimal or suboptimal solutions for 
non-uniform tnffic demands, depending on the range of all demands from non- 
hub nodes. 

I. INTRODUCTION 

By allowing individual wavelengths to optically bypass 
a node via a wavelength add-drop multiplexer (WADM) 
SONETNDM will reduce the amount of required ADMs. Typ- 
ically, the traffic demand between two nodes is low rated (e.g., 
OC-3), and a high-rate (e.g., OC-48) SONET ring can carry 
a number of such low-speed traffic streams. With WADM, the 
number of ADMs required in a SONET ring is equal to the num- 
ber of nodes that are endpoints of some requests carried in this 
ring. Thus the optimal grooming problem is to partition the set 
of communication requests into a number of groups such that 
each group can be carried in a single SONET ring and the to- 
tal ADM cost is minimized. The minimum ADM cost depends 
on both the underlying network architecture and the traffic pat- 
tern. Three types of SONET self-healing rings have been de- 
fined by standard bodies [4]: a unidirectional path-switched ring 
(UPSR); a two-fiber bidirectional line-switched ring (BLSW2); 
a four-fiber bidirectional line-switched ring (BLSW4). The traf- 
fic demands may be uniform or non-uniform. Each traffic de- 
mand itself is given as an integer number of low speed (trib- 
utary) streams. Alternatively, it can also be represented by its 
tra#ic granularity, defined as the ratio of its demand to the trans- 
mission capacity of a single wavelength. 

The minimum ADM problem has been discussed in a number 
of recent works [ l ]  [2] [3] [5] [6] [7] [SI. [2] and [5] studied op- 
timal grooming of arbitrary full-wavelength lightpaths. [ 11, [7] 
and [SI provided grooming of uniform $, i, and &wavelength 
traffic. [3] and [6] contained some preliminary results on the 
traffic grooming in single-hub rings. In [9], the authors further 
the works in [3] and [6] and provide stronger results about the 
ADM cost of uniform all-to-all traffic in both single-hub UPSR 
and BLSIU2. They establish a reduction from grooming of any 
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duplex traffic to grooming of one-to-all duplex traffic, and then 
to grooming of one-to-all simplex traffic. Therefore, from then 
on we concentrate on only one-to-all simplex traffic. They also 
show that BLSW2 always costs no more than UPSR under any 
traffic and the search for optimal grooming can be confined to 
a narrow subset of valid groomings, referred to as canonical 
groomings. They construct optimal canonical groomings of uni- 
form one-to-all traffic in both UPSR and BLSIU2 rings and de- 
rive the analytic expression of the minimum ADMs. 

The paper is structured as follows. We review the results in [9] 
for optimal traffic grooming in single-hub SONETNDM rings 
with only one line speed in Section 11. We analyze the basic 
properties of arbitrary traffic grooming when wavelengths have 
two different capacities g1 = 1 and g2 = 4 and the cost of cor- 
responding ADMs is 1 and 2.5 respectively in Section 111. And 
we show that the problem can be confined to just consider the 
traffic request r i  < 4 for all non-hub node i. In Section IV and 
Section V, we provide optimal traffic partition and grooming for 
uniform traffic demands, and develop optimal or suboptimal so- 
lutions for non-uniform traffic demands, depending on the range 
of all demands from non-hub nodes. Finally we conclude our 
paper in section VI. 

11. PRELIMINARIES 

We consider a single-hub SONETNDM ring comprising of 
n + 1 nodes numbered O , l , .  , n, clockwise, with hub placed 
at node 0. The traffic demand and the transmission capacity of 
each wavelength are in terms of the basic low-rate (e.g., OC-3) 
traffic streams. We first review the result in [9] for optimal traffic 
grooming in single-hub SONETNDM rings with only one line 
speed. 

In [6], it was proved that the search of optimal grooming 
of uniform sub-wavelength traffic in UPSR can be confined to 
those groomings satisfying that each demand is carried in ex- 
actly one wavelength. In [9], the property is generalized to arbi- 
trary traffic pattern with arbitrary traffic demands in both UPSR 
and BLSIU2. 

Given a set of demands {TI, - . , rn} in a UPSR and the 
wavelength capacity g, a grooming is said to be a canonical 
grooming if at each node 1 5 i 5 n, its demand is carried in 

wavelengths, among which I"] wavelengths each carries 
g units of demands to node i, and t ie  remaining one, if there is 
any, carries ~i mod g units of demands to node i. 

By replacing g as i, the canonical grooming for BLSW2 is 
obtained from the above definition. 

The next lemma states that when looking for optimal traffic 
grooming for single-hub SONETNDM rings with single line 
speed, we can pay attention to only canonical groomings, 
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Lemma I :  [9] Given any set of demands in UPSR or BLSRK:, 
there is a canonical grooming uses minimum ADM. 

We review the approach in [9] to construct optimal grooming 
of uniform traffic in single-hub UPSR. We assume that the traffic 
demand from the hub to each other node is T.  

If T mod g = 0, then the optimal canonical grooming is 
unique in the sense that each wavelength carry g units of de- 
mands exclusively to some node. Thus each node contributes 
2 .  $ = $ ADMs, half at the node itself and half at the hub. So 
the total ADM cost in the working fiber is n . 

Now we assume that T mod g > 0. In any canonical groom- 
ing, at each node there are T - T mod g portion of demands car- 
ried in [$ J wavelengths exclusively. These demands use 27112 J 
ADMs in the working fiber. In any optimal grooming, the re- 
maining demands at each node, referred to as residue demands, 
must use minimum ADM cost. This can be achieved in the same 
way as in [6]. We partition the n nodes into groups 
of at most [AJ nodes. The residue demands of nodes in 
each group are carried in a single wavelength. These residue 
demands totally require n + [-,I ADMs in the working 
fiber. 

Let 

= y. 

c m o  g 

r m o  g 

If T mod g = 0, 2nt - 
F ( g * r i n )  = I n[:l +n[:f+ [&*l otherwise. . 

Then the minimum ADM cost in the working fiber is F(g, T,  n ) ,  
and the total ADM cost is 2F(g, T ,  n ) .  Similarly, the minimum 
ADM cost in BLSW2 is F($,r ,n) .  The optimum canonical 
grooming can be constructed in the similar way. 

Pmo p 

111. SELECT SPEEDS WITH TWO LINE SPEEDS AVAILABLE 

In the previous section, we assume that all SONET rings have 
the same line speed. In this case, the higher the line speed, the 
smaller the number of ADMs. On the other hand, the higher 
the line speed, the higher the cost of the ADM. However, the 
cost of ADM does not increase linearly with the line speed. The 
cost model adopted in [3] assumes that the cost ratio between an 
OC-4n ADM and an OC-n ADM is 2.5. 

However, if we allow the SONET rings to have mixed line 
speeds, we have to partition the traffic from each node into the 
SONET rings of different line speeds. After the partition, tht: 
traffic grooming algorithms developed in the previous sectiori 
can be applied to the rings of any particular line speed. Thus 
a solution has two components: the partition of the traffic, ancl 
the groomings of the traffic in rings of each speed. Both com- 
ponents affect the overall cost. Efficient algorithms or criteria 
should be developed to find traffic partitions which may lead to 
the minimum ADM cost. This section is intended to address this: 
problem. 

To simplify the problem, we assume that there are only twcl 
line speeds gland 92 with g2 = 491 as did in [3]. We also adopi: 
the same cost model used in [3]. We assume that the cost of' 
a ADM of speed g1 is one, and the cost of a ADM of speed 
g2 is 2.5. A simple approach presented in [3] is that for each 
traffic demand with value T ,  assign r mod g2 traffic to SONET 
rings with speed g1 and T - T mod g2 traffic to SONET rings 
with speed g2. The performance of this approach comparing to 

the optimal assignment was not discussed in [3]. In this section, 
more general solutions will be developed and their optimality 
will also be proven. In particular, a complete optimal solution 
for uniform traffic demands is obtained. 

A. Basic Properties 

As there are only two type of speeds, we call a SONET ring 
of speed g1 as a low-speed ring, and a SONET ring of speed 92 
as a high-speed ring without any ambiguity. Similarly, we call a 
SONET ADM of speed g1 as a low-speed ADM, and a SONET 
ADM of speed g2 as a high-speed ADM. For the simplicity of 
presentation, g1 is scaled to one and all demands are scaled ac- 
cordingly. Thus g1 = l,g2 = 4 and all demands are fractional 
numbers or integers. 

In this section, we will study the selection of line speeds in 
IJPSR in detail. The analysis can be extended to BLSR as well. 
Because the ADM cost of the working ring is exactly the same 
as the protection ring, we only consider the cost of the working 
ring. Assume the demand between node i and hub is T; for 1 5 
i 5 n. Then any traffic partition can be represented by an n- 
dimensional vector 

where 0 5 f; 5 ~i is the amount of the traffic between node i 
and hub placed to low-speed rings. For any traffic partition, we 
can groom the traffic carried in low-speed rings and the traffic 
carried in high-speed rings separately. If both groomings are 
canonical, we call the overall grooming is canonical too. 

In the following, we will present some basic properties of op- 
timal traffic partitions. 

Lemma 2: In any optimal traffic partition f = (f1, . , f,,), 
we have f; < 3 for all 1 5 i 5 n, and there is an optimal 
solution f = ( f l , . . .  , f,,) with f; 5 2 for all 1 5 i 5 n. 

We prove the first part of lemma by contradic- 
tiion. Let f = (f1, . . . , f,,) be any optimal traffic partition with 
1; 2 3. Then in a canonical optimal grooming, there are at least 
three low-speed rings devoted exclusively to node i. If we move 
the traffic of node i carried in low-speed rings into one high- 
speed ring, we decrease the cost by 1. This contradicts to the 
optimality o f f .  

We now prove the second part of lemma by contradiction. Let 
j' = ( f l , .  . . , fn) be any optimal traffic partition which contains 
the least number of entries that are more than two. Suppose 
f; > 2 for some 1 5 i 5 n.  Then in a canonical optimal 
grooming of the traffic demands { fi, . . , fn} into low-speed 
riings, at least [fil + Lf;] ADMs are devoted to node i. Now 
we place such fi amount of traffic from node i into [$I new 
high-speed rings, i.e. set f; = 0. As [f;] + Lf;J 2 5[$1 when 
f; > 2, the new solution has no more cost than the solution 
f but contains one less entries which are more than two. This 
contradicts to the selection o f f .  Thus, the lemma is true. H 

Intuitively, if a traffic can fill a high-speed ring, i t  should fill 
fully as many high-speed rings as possible to take advantage of 
the lower cost per bandwidth of the higher speed ring. The next 
lemma verifies such intuition. 

Lemma3: There is an optimal traffic partition f = 
( j 1 ,  

Proofi 

, f,,) with f; L T; mod4 for all 1 5 i 5 n .  
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Pro03 We prove the lemma by contradiction. Let 
f = (f1 , . . . , fn) be any optimal traffic partition satisfying that 
fi 5 2 for all 1 5 i 5 n and it contains the least number of 
nodes such that fi > ri mod 4. Assume that fi > T;  mod 4 for 
some node i. Then in a canonical optimal grooming of the traf- 
fic carried in high-speed rings, in addition to 1-J high-speed 
rings which are devoted exclusively to node i, one high-speed 
ring carries the remaining 4 - fi + ri mod 4 amount of traffic 
from node i. This high-speed ring must also carry traffic from 
other nodes, for otherwise we can fill this ring fully with the traf- 
fic from node i without any additional cost, which contradicts to 
the selection of f = (f1,. . , fn). Let xi > 0 be the amount of 
the traffic carried in this ring from nodes other than node i. Then 
xi > 1 for otherwise we can decrease the total ADM cost by 0.5 
by moving zi to a dedicated low-speed ring, which again con- 
tradicts to the optimality o f f .  As 4 - fi + (ri mod 4) + xi 5 4, 
we have 

1 < xi 5 r,  mod4  + xi < fi 5 2. 

This implies that zi is from only one node, say j, for otherwise 
the portion of the traffic from some node is less than one and 
again we can decrease the total ADM cost by moving it to a 
dedicated low-speed ring. 

Now we look at the fi amount of traffic from node i carried 
in low-speed rings. In a canonical optimal grooming, one ring 
carries traffic of amount 1 from node i exclusively, another ring 
carries fi - 1 amount of traffic from node i and may carry addi- 
tional traffic from other nodes. Finally we relocate all traffic in 
these three rings as follows. Fill the high-speed ring fully with 
the traffic from node i. Fill the first low-speed ring fully with the 
traffic from node j. In the second low-speed ring, keep the orig- 
inal traffic not from node i, and place ri mod 4 amount of traffic 
from node i and zi - 1 amount of traffic from node j. With this 
modification, the total cost is decreased by 2.5 - 1 = 1.5, which 

From the above lemma, there is an optimal solution in which 
[YJ high-speed rings are dedicated to ri - ri mod 4 amount 
of traffic from node i for all 1 5 i 5 n. Thus from now on, 
we assume that ri < 4 for all node i. For any traffic partition 

again contradicts to the optimality o f f .  

f = (fl, + , fn), let 

S ( j )  = (1 I: i 5 n I O  < fi < T i } ,  

U ( f ) = ( l < i < n I f i = O o r r i } .  

Thus the traffic from any node in S(f) is carried in both low- 
speed rings and high-speed rings, and the traffic from any node 
in V(f) is carried in either low-speed rings or high-speed rings 
but not both. 

The next lemma states that at any node, if the traffic of this 
node is carried in both types of rings, then the amount of traffic 
carried in low-speed rings is at most one; and if there is some 
traffic camed in a high-speed ring, its amount is more than one. 

Lemma 4: Let f = (fi,. . . , fn) be any optimal traffic par- 
tition. Then for any 1 < i < n, neither 1 < fi < ri nor 
0 < ri - fi 5 1 is possible. 

Assume that 1 < f; < ri. Then in a canonical 
optimal grooming, the total cost of ADMs used by the traffic ri 
is at least 2 + 1 + 2.5 = 5.5, as at least 3 low-speed ADMs 

Proof: 

is needed (2 at node i, 1 at the hub), and at least 1 high-speed 
ADM is required at node i. But if the traffic ri is entirely carried 
by a high-speed ring, the cost of ADMs is at most 2.5 + 2.5 = 
5 < 5.5, which contradicts to the optimality o f f .  

Now we assume that 0 < ri - fi 5 1. We remove the ri - 
fi amount of traffic from the high-speed ring and put it in a 
dedicated low-speed ring. With this modification, the total cost 
is decreased by 2.5 - 2 = 0.5 which again is impossible as 

As a corollary of Lemma 4, in any canonical optimal groom- 
ing, any high-speed ring can carry traffic from at most three 
nodes. 

The next lemma states that, at any node, when a traffic de- 
mand from a node is at most one, it should be always put in a 
low-speed ring; and when a traffic demand is more than three, it 
should be always put in a high-speed ring. 

Lemma 5: Let f = (fi,. . . , fn) be any optimal partition. 
Then for any node i, if ~i 5 1, fi = ri; and if ri > 3, fi = 0. 

Proof: The first part follows directly from Lemma 4. Now 
we assume that ri > 3 and fi > 0. From Lemma 2 and Lemma 
4,O < fi 5 1, and thus ri - fi > 2. The ri - fi amount of traffic 
from node i must share some traffic from other nodes, for oth- 
erwise we can put all traffic from node i in the high-speed ring 
and decrease the cost by at least one. From Lemma 4 if there 
is some traffic, from any node, carried in a high-speed ring, its 
amount is more than one. Thus the ri - fi amount of traffic from 
node i share one high-speed ring with some amount, denoted by 
zi, of traffic from exactly one node, say j. Note that 

f = (f1,. . , fn) is already optimal. 

1 < xi 5 4 - T i  + fi. 
We replace the fi amount of traffic from node i in some low- 
speed ring by the fi amount of traffic from node j. This may 
save one low-speed ADM. We then place the xi - fi in a ded- 
icated low-speed ring as xi - fi 5 4 - ri < 1. This adds two 
low-speed ADMs. Finally, we place all traffic from node i in the 
high-speed ring originally carrying the ri - fi amount of traffic 
from node i and zi amount of traffic from node j .  Thus after 
the modification, the total ADM cost is decreased by at least 
2.5 - 2 = 0.5, which contradicts to the optimality o f f  =. 

IV. ALL TRAFFIC DEMANDS ARE AT MOST TWO 

In the next, we show that when traffic demand from each node 
is at most two, there is an optimal traffic partition in which none 
of them is carried in both low-speed ring and high-speed ring. 

Lemma6: If ri < 2 for all 1 5 i 5 n, then there is an 
optimal traffic partition f with S(f) = 8. 

, fn) 
be any optimal traffic partition with the smallest IS(f)l. Let 
i E S ( f )  and consider any canonical optimal grooming. From 
Lemma 4,O < fi < 1 and ri - fi > 1. Thus in any canonical 
optimal grooming, the traffic from node i is carried in exactly 
one low-speed ring and exactly one high-speed ring. We con- 
centrate on the high-speed ring carrying the ri - fi amount of 
traffic from node i. It can carry traffic from at most three nodes. 
First of all, it is impossible that this high-speed ring carries the 
traffic from at most two nodes, for otherwise we can put all traf- 
fic from these two nodes in this high-speed ring, which saves 

Prooj We prove it by contradiction. Let f = (fl, 
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at least one low-speed ADM. Thus this high-speed ring must 
carry traffic from exactly three nodes. We denote the other two 
nodes other than node i by j and k. We show that j, k E V(f). 
Suppose to the contrary. We modify the placement of the traffic 
from these three nodes as follows. We use the high-speed ring 
to carry the whole traffic from node i and the whole traffic from 
node j and nothing else. We add at most two new dedicated 
low-speed rings to carry the traffic from node k. We save one 
high-speed ADM and add at most two more low-speed ADMs. 
Thus the modification decreases the total cost by at least 0.5, 
which contradicts to the optimality o f f .  Therefore both j and 
k are in V(f), that is all traffic from node j and k are carried in 
high-speed ring. As ~i - fi > 1, 

T j  + Tk  5 4 - (T i  - fi) < 4 - 1 = 3. 

So we can modify the placement of the traffic from nodes i , j  
and k as follows. We place all the traffic from node i and nothing 
else in two new low-speed rings, and use at most three new low- 
speed rings to carry all traffic from nodes j and I C .  Then four 
high-speed ADMs are saved, and at most ten low-speed ADMs 
are added. The resulting solution has the same cost as f but 
it contains one less nodes whose traffic are carried in both low- 
speed rings and high-speed rings. This contradicts to that IS(f)l 
is the smallest. Thus the lemma is true. H 

A. All Traffic Demands Are at Most g 
The next lemma states that when traffic demand from each 

node is at most $, we can put all traffic in low-speed rings. 
Lemma 7: If ~i 5 2 for all 1 5 i 5 n, then traffic partition 

f = ( T I , .  . . , T,,) is optimal. 
, fn) 

be any optimal traffic partition with fi = 0 or ~i for all 1 5 i 5 
n and the smallest number of zero entries. Consider any canon- 
ical optimal grooming. As any high-speed ring carries traffic 
from at most three nodes, we consider the following three cases. 
If a high-speed ring carries traffic from only one node, we can 
use at most two new low-speed rings to carry all traffic from this 
node. With this modification the cost is decreased by 0.5, which 
contradicts to the optimality o f f .  If a high-speed ring carries 
traffic from two nodes, we can use at most three new low-speed 
rings to carry all traffic from these nodes. This modification de- 
creases the cost by 0.5, which also contradicts to the optimality 
of f .  If a high-speed ring carries traffic from three nodes, we use 
at most four new low-speed rings to carry all traffic in this high- 
speed ring. The resulting solution has the same cost as f, but the 
number of zero entries is decreased by three, which contradicts 
to the selection o f f .  Thus, the lemma is true. H 

Prooj We prove it by contradiction. Let f = (f1,. 

B. All Trajic Demands Are More than 4 
We now consider the traffic with demands more than 3 but at 

most two. 
Lemma 8: Suppose that $ < ~i 5 2 for all 1 5 i 5 n. If n is 

even, then the traffic partition f = (f1,. . . , fn) where fi = 0 
for all 1 5 i 5 n is optimal. If n is odd, then for any 1 5 j 5 n 
the traffic partition f = (f1,. . . , fn) where fi = 0 for i # j 
and fj = T j  is optimal. 

Pro08 We also prove it  by contradiction. Let f = 
(fi, . . . , fn) be any optimal traffic partition with fi = 0 or T~ 

for all 1 5 i 5 n and the smallest number of non-zero entries. 
Assume that fi = ~i and fj = ~ j .  Consider any canonical op- 
timal grooming. There are two low-speed rings devoted to node 
i and two low-speed rings devoted to node j. We relocate the 
traffic from node i and node j to one new high-speed ring. This 
modification saves 8 low-speed ADMs and uses 3 high-speed 
ADMs. The total cost is decreased by 0.5. This contradicts to 
the optimality of f .  Now let f = (fl,. - , fn) be any optimal 
traffic partition with fi = 0 or ~i for all 1 5 i 5 n and at most 
one non-zero entries. Note that in any canonical optimal groom- 
ing, each high-speed ring must carry traffic from two nodes, for 
otherwise we can move it to two low-speed rings and the cost 
would be decreased by 1. Thus if n is even, fi = 0 for all 
1 5 i 5 n, and if n is odd, there is exactly one 1 5 i 5 n with 

< ~i 5 2 for all 1 5 i 5 n we 
can provide optimal grooming as follows. If n is even, then all 
traffic is carried in high-speed rings, and each high-speed ring 
carries the whole traffic from two nodes. If n is odd, then the 
tr,affic from one node is carried in two low-speed rings to carry 
the whole traffic from a node, and the traffic from all other nodes 
are carried in the high-speed rings, with each ring dedicated to a 
pair of nodes. 

fi = T i .  

From the above lemma, if 

v. ALL TRAFFIC DEMANDS ARE MORE THAN TWO 

In general, each high-speed ring can carry traffic from at most 
three nodes. The next lemma states that if all traffic demands are 
more than two, then in any canonical optimal grooming no high- 
speed ring can carry traffic from three nodes. 

Lemma 9: If ~i > 2 for all node i, then in any canonical 
optimal grooming each high-speed ring carries traffic from at 
most two nodes. 

Prooj We prove it by contradiction. Consider a canon- 
ical optimal grooming with traffic partition f = (fi,. . . , fn). 
Assume that three nodes i, j and k appear in a high-speed ring. 
Then i , j ,  k E s(f). As (Ti - fi) -k (Tj  - fj) -k (Tk - fk) 5 4, 
we have 

As fk 5 1, fi + fj > 1, so are fi + fk and fj + fk. This means 
that all the three nodes must appear in three distinct low-speed 
rings. Assume these three rings carry xi, xj and zk amount of 
the traffic from other nodes respectively. Then we have xi + 
Z-i -k xk 5 3 - (fi -k fj -k fk) < 1. Note that T i  -k T j  -k Tk 5 
fi + fj + fk + 4 5 7, AS T k  > 2, Ti  + T j  < 5 ,  SO are Ti + Tk  
and rj + rk. Now we relocate the traffic carried in these three 
low-speed rings and the high-speed ring as follows. We place the 
whole traffic from node i in the high-speed ring, place the whole 
traffic from node j and 4 - ~j amount of traffic from node k in 
a new high-speed ring, and place ~j + Tk - 4 amount of traffic 
from node IC in a low-speed ring as 0 < T, + Tk  - 4 < 1. The 
x,, xj and xk amount of the traffic from other nodes are carried 
exclusively in another low-speed ring. After the relocation, we 
save three low-speed ADMs and add one high-speed ADM. So 
the total cost is decreased by 0.5, which is a contradiction. 

The following lemma states that if all traffic demands are 
greater than two, we can concentrate on those canonical groom- 

498 

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on May 22,2010 at 18:33:53 UTC from IEEE Xplore.  Restrictions apply. 



ing in which exactly one node in each high-speed ring has its 
whole traffic carried in this high-speed ring. 

Lemma 10: If ri > 2 for all 1 5 i 5 n, then there is a 
optimal canonical grooming in which exactly one node in each 
high-speed ring has its whole traffic carried in this ring. 

Proo) We prove it by contradiction. Consider a canonical 
optimal grooming with traffic partition f = (f1, . , f,,) with 
fi 5 2 for all node i. From Lemma 4, fi 5 1 for all 1 5 i 5 n. 
Thus for all 1 5 i 5 n, ~i - fi > 2 - 1 = 1. If a high-speed 
carries traffic from only one node, then it must carry the whole 
traffic from that node. Now we consider a high-speed ring which 
carries traffic from two nodes i, j E S(f). We relocate the traffic 
from node i and node j as follows. The high-speed ring carries 
~i amount of traffic from node i, and 4 - ri amount of traffic- 
from node j. We replace the original fi amount of traffic from 
node i in a low-speed ring by fi amount of traffic from node j .  
The cost of the result grooming is not increased. We repeat such 
procedure for all high-speed rings which each carry traffic from 
two nodes that are both in S(f). In the end, we come up with a 
grooming in which each high-speed ring carries the whole traffic 
from at least one node. Finally we use a canonical grooming to 
place all traffic carried in low-speed rings. Then the resulting 
grooming satisfies the requirement given in the lemma. 

A. All Trafic Demands Are More than 

The following lemma suggests that if all traffic demands are 
more than E, we should cany all traffic in high-speed rings. In 
this optimal traffic partition, the canonical grooming is unique 
and each high-speed ring carries exclusively the whole traffic 
from only one node. 

Lemma 11: If ~i > $ for all 1 5 i 5 n, then the traffic 
partition f = (fi = 0, .  . . , fn = 0) is optimal. 

We consider a canonical optimal grooming with 
the traffic partition f = ( f i t .  . , fn) in which each high-speed 
ring carries the whole traffic from at least one node. Assume 
that fi > 0 for some 1 5 i 5 n. From Lemma 4, fi 5 1. Fur- 
thermore, the high-speed ring where node i appears must carry 
the whole traffic from another node, say j, and no other traffic. 
As (ri - fi) + ~j 5 4, we have fi 2 ~i + r, - 4 > 1. This 

Proofi 

contradicts to fi 5 1. 

B. All Traffic Demands Are at Most $ 
Finally we consider the traffic with demands at most 5 but 

more than two. The next lemma states that in this case, in any 
optimal grooming there is at most one high-speed ring which 
carries exclusively the whole traffic from exactly one node. 

for all 1 5 i 5 n, then in any optimal 
grooming at most one high-speed ring carries exclusively the 
whole traffic from exactly one node. 

Proofi We prove it by contradiction. Consider an optimal 
grooming with traffic partition f = (fi,. . , f,,) in which there 
are two high-speed ring dedicated to node i and node j repul- 
sively. We relocate the traffic from node i and node j as follows. 
We place ~i amount of traffic from node i, and min(4 - T ; ,  r j }  
amount of traffic from node j on one high-speed ring, and if 
Ti  + T j  > 4 W e  place Ti  + T j  - 4 amount of traffic from node j 
on one low-speed ring. This modification saves one high-speed 

Lemma 12: If ri 5 

Range of all T’S 

0;,21,n = 2k 
(051 +I 

ADM and adds at most two low-speed ADMs. The cost is de- 
creased by at least 0.5, which is a contradiction. 

VI. SUMMARY 

For uniform traffic demands, we have provided optimal traf- 
fic partition and grooming, which is summarized in Table I. For 
non-uniform traffic demands, optimal or suboptimal solutions 
have been developed depending on the range of all demands. If 
all demands are at most 1.5, then all of them are carried in low- 
speed rings. If all traffic demands are greater than 1.5 but less 
than two, then with even n, all of them are carried in high-speed 
rings; with odd n, all of them except an arbitrary one are car- 
ried in high-speed rings. If all traffic demands are greater than 
2.5, all of them are carried in high-speed rings. When all traffic 
demands are greater than two but less than 2.5, the solution is 
a little complicated. We first pair up the n nodes. If n is odd, 
some node is stand-alone and its whole traffic is carried in a 
high-speed ring. For each pair of nodes i and j, we use a high- 
speed ring to carry the whole traffic from node i and the remain- 
ing capacity is used to carry the traffic from node j. However, 
how to select the set of nodes to be carried wholly in high-speed 
rings and how to form node pairs to appear in high-speed rings 
remains open. 

The above argument is restricted to U P S R .  However, it can 
be extended to BLSR as well. The optimal traffic partition table 
can be obtained by halving the traffic demand range. 

TABLE I 
SELECT LINE SPEEDS FOR UPSR 

( fl , fz , . . . , fn) 

fi = 0,vi 
f, = T,vi 
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