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Abstract 
T i m e  and Wavelength Dzviszon Multiplexed 

( T W D M )  is one of the most  promiszng ways to  ex- 
ploit the enormous bandwidth an a single-mode optical 
fiber. In this paper, we focus o n  constructing scalable 
T W D M  networks based o n  rotator dzgraphs. To make 
the network be more economacally and technically fea- 
sible and to  zmprove the netwo 
station i s  equipped wzth multzple 
multiple fixed receivers. For such network architec- 
ture, we present the optimal wavelength assignment 
and transmission sched also study cost per- 
formance relation and scheme t o  to  support 
large network s u e  wit assave star couplers. 

1 Introduction 
merging lightwave networks are expected to pro- 
end users with the integrated se 

high speed[2]. The lightwave networ 
plemented via an optical passive star couplerC4, 61 
for high speed local and metropolitan area networks 
(LANs/MANs). Each station has a set of trans 
and receivers. This paper focuses o 

has multiple fixe 
multiple fixed receivers. 
a has T transmitters {( 
receivers {< a , r  >I 0 5 r 5 R- I}. 
( a ,  t ) ,  a and t are called its node ind 
respectfully. For a receiver < a,  r >, a and r are also 
called its node index and local index respectfully. 

A wavelength assignment induces a vzrtual topology 
[Q, 81. The regular topologies such 
Shuffle [5], the de Bruijn graph [7], 
etc., have been exte 
candidate for virtual 
munication patterns including ge 
digraphs, generalized Kautz digraphs, hypercubes and 
star graphs, the reader can refer to [SI. In this paper, 
we use rotator digraphs as the virtual topology. One 
of the main motivations to propose the rotator digraph 

as the regular communication pattern is its extremely 
small diameter and average routing distance. 

The T i m e  and Wavelength Divzsion Multiplexed 
(TWDM) media access protocol is conceived as one 

sing techniques for lightwave net- 
works [SI. The challenges of TWDM are t 
N stations, Wavazl wavelengths, and T tr 
and R receivers in each station, how 
assign wavelengths for each t 
to maximize the transmission 
schedule the transmission (note th 

pre-determined wavelength, there 
uling receptions) to minimize the 

transmission cycle length? scal- 
able the networks if the number of more 

y us- 
ing multiple star couplers? 

This paper is organized as follows. Section 2 intro- 
duces the rotator digraphs 
assignment scheme to real 

than the dimension of the passive star c 

nection of multiple star couplers 
network size. Finally, section 5 CO 

n n-dimensional Rot 

where P, is the symmetric gro 
consists of all permutati 
and S consists of n ~ 1 
where crk = 23...kl(k 
tation of length k for 

and is called the right rotatzon of length k .  The n- 
rotator R, consists of n! nodes. At each node x ,  the 
link TC + 1cais-2 is called the i-th outgoing link of x ,  
and the link xp,+2 + z is called the i-th incoming link 
of x, where 0 5 i < n - 1. 

p k  = k 1 2 . .  . ( k  - l ) ( k  
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The rotator digraphs have a lot of attractive prop- 
erties. All rotator digraphs are vertex and edge sym- 
metric. In [l], it is proved that the diameter of the 
n-rotator is n - 1, and has a simple and optimal rout- 
ing algorithm. They share the fault handling capacity 
of hierarchical Cayley graphs, including the Star and 
Pancake graphs and the binary hypercubes, with good 
performance possible because of the small diameter 
and average routing distance. 

To realize the n-rotator in a network with size 
N = n!, we fisrt partition the n - 1 outgoing (in- 
coming) links at each station a into T (R) groups, 
and associate the t-th (r-th) group with transmitter 
(a ,  t )  (receiver < a,  r >). Then for each link in the ro- 
tator digraph, we tune the pair of transmitters and 
receivers that are associated with it in the second 
step to  the same wavelength channels. This realiza- 
tion scheme can be intuitively interpreted as virtu- 
ally breaking each source (destination) station into T 
(R) small nodes, with each small node implementing 
(n - 1)/T ( (n  - 1)/R) outgoing (incoming) links. This 
realization induces a transmission graph G ( N ,  T, R), 
a bipartite digraph, in which the vertex sets consists 
of all the transmitters and receivers and each link is 
from transmitter to  receiver. 

The above realization scheme only specifies which 
transmitters and receivers should be assigned with the 
same wavelength channels. It does not specify which 
transmitters and receivers can have different wave- 
length channels. In fact, in the extreme case, all the 
transmitters and receivers can be assigned the same 
wavelength channel. However, this trivial wavelength 
assignment provides no transmission concurrence. As 
the transmission concurrence is equal to the number 
of wavelengths employed by the network, it’s desirable 
to maximize the number of wavelengths used subject 
to the number of available wavelengths. To achieve 
this objective, we first characterize the structures of 
the all-liransmitters and receivers that are required to 
have the same wavelength channels by the above real- 
izat ion. 

Since all the transmitters and receivers are fix- 
tuned, for any transmitter (receiver) in the transmis- 
sion graph, all receivers (transmitters) that it connects 
to are forced to have the same wavelength channels of 
the transmitter (receiver). Therefore for any pairs of 
transceivers, if there is path between them assuming 
the links in the transmission graph are bidirectional, 
they must have the same wavelength channel. This 
key observation leads to the concept of subnetworks. 
In the transmission graph, a set of transmitters and 
receivers form a subnetwork if there is a path between 

any two of them if we ignore the unidirectional nature 
the links. 

In summary, we have the following lemma. 

Lemma 1 All transmitters and receivers constituting 
a subnetwork in the transmission graph are assigned 
to  the same wavelength. 

From the above lemma, the maximum number of 
wavelengths that can be employed is equal to the min- 
imum of the number of available wavelengths W and 
the number of subnetworks in the transmission graph. 
We denote by W(T, R) equal to the number of sub- 
networks in the transmission graph. In the next sec- 
tion, we will determine the structure of the subnetwork 
structures completely. 

3 Subnetwork Structures 

works is very simple. 

Theorem 1 Suppose that max(T, R) = n - 1, then 

When max(T, R) = p ,  the structure of the subnet- 

W(T,  R) = N min(T, R) 

However, when max(T, R) < n - 1, the structure of 
the subnetworks is very complicated. In the remaining 
of this section, we assume that T ,R  < n - 1. The 
general frame of our analysis is as follows. 

0 Step 1: Characterize the structure of the set of 
local indices of all transmitters (receivers) in the 
same subnetwork. 

0 Step 2: Characterize the structure of the set of 
node indices of all transmitters (receivers) which 
are in the same subnetwork and have the same 
local indices. 

We begin with Step 1. Let m denote the least 
common multiple of and q, and 

/ m  T m R T = - = - R ’ = - = -  - n-1 a’ - -  n-1 71-1’ 
T m R m 

Then 
T R n - l  - - 
T’ R’ m 

The next lemma gives the result in Step 1. 

Lemma 2 For any subnetwork, there exists a unique 
0 5 k < e such that in this subnetwork 

0 the set of local indices of all transmitters is {t I 
kT’ 5 t < (k + l)?”}; 
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0 the set of local indices of all receivers is  ( r  I kR'  5 
r < ( k  + l)R'}. 

The lemma can be proved as follows. First it's easy 
toshowthatforanyO<t < T - l a n d O < i  5 %$--1, 

and for any 0 5 r 5 R - 1 and 0 5 i 5 9 - 1, 

Therefore, for any subnetwork there exists a unique 
integer 0 5 k < % such that for any transmitter 
( a ,  t )  and receiver (b ,  r )  in this subnetwork, 

Secondly, on the other hand, we can prove the follow- 
ing lemma. 

Lemma 3 Let a be any permutation in P,. 

1. If t modT' > 0,  then for any 5 t' < t ,  
the two transmitters ( a ,  t )  and ( a  n,=,,+, (iq + 
2 ,  iv + l ) ,  r') are in the same subnetwork. 

t 

2. If T mod R' > 0, then for any L&] 5 r' < r ,  the 
two receivers < a , r  > and < a ( r 9  + 2, ( r  - 
1 ) 9 + 2 , . . . , ( r t + 1 ) ~ + 2 , 1 ) , r '  > are in the 
same subnetwork. 

Therefore Lemma 2 is true. 

states that all s 
local indices of 
phic to each other. 

Lemma 4 Let IS be any permutations in P,. 

1. Suppose that the two transmitters (a ,  t )  and (a' ,  t ') 
are in the same subnetwork. T h e n  the two trans- 
mitters (aa ,  t )  and (aa' ,  t') are also in the same 
subnetwork. 

2. Suppose that the two receivers 
b',r' > are zn the same subnetwork. Then  the 
two recezvers < c b , r  > and < ab',r' > are also 
in the same subnetwork. 

Therefore, to study the 
need to consider the su 

some new terminologies. Let IT be any pe 
P,. A symbol i is called znvariant under 
A set S of symbols is called closed under IT if for any 
symbol i E S ,  n(i) E S.  Given a set S of symbols, 
n is called local to S if S is closed under IT and other 

t in S is invariant under T .  

For any 0 5 r < R, let 
n - 1  n - 1  n - 1  5 i < (r+l)-,i mod __. > 0) .  N ,  = {i+2 I r- R T R 

The following lemma characterizes the structure of 
node indices of the transmitters in c k .  

Lemma 5 Let a be any permut  
transmitter (a ,  kT') is in c k  if and only if 

n in P,. Then  the 

(k+l )R '  - 1 1. a is  local to  the set UT=kRt NT; 

2. the set N k R l  U { k m  + 2 )  zs closed closed under a; 

3. for any kR'  < r < ( k  + l)R', the set N, 
under a .  

The proof is very complicated and is omitted here. 
From Lemma 2 and Lemma 5, the number of trans- 
mitters with local indices kT' in c k  is 

( k + 1) R' - 1 

The following two lemma count IN,/ in the case T 5 R 
and in the case T > R respectively. 

If T > R, then 

1 + mo: 1. n - 1  
INTI = - 

Now are able to  calculate W(T, R).  

Theorem 
then W ( T ,  

poser that T ,  R < n - 1. If T < R, 

n - 1  n! 

If T > R, then W ( T ,  R) is  equal t o  

n - 1  n! 
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4 Applications of Subnetwork Struc- 
t ures 

In this section, we will apply the structural proper- 
ties of the subnetworks to the optimal wavelength as- 
signment , the optimal transmission schedule and the 
scalability issues. 

We first study the optimal wavelength assign- 
ment and transmission schedule given NI TI R and 
Wavail. It’s easy to see that the transmission con- 
currence equals to the number of wavelengths em- 
ployed by the network, and the transmission cy- 
cle length equals to the maximal number of trans- 
mitters that share a particular wavelength. Since 
all transmitters and receivers in a subnetwork must 
have the same wavelength channel, to maximize the 
transmission concurrence, the network should exploit 
min(W,,,il , W(T, R)) wavelength channels. To mini- 
mize the transmission cycle length, the subnetworks 
should share Wavail available wavelength channels 
evenly. Once we have the optimal wavelength as- 
signment, the optimal transmission schedule become 
straightforward as we discussed previously. In sum- 
mary, we have the following corollary regarding the op- 
timal wavelength assignment and transmission sched- 
ule. 

Corollary 1 If Wavail 2 W(T, R),  each subnetwork 
has a unique wavelength channel in any optimal wave- 
length assignment. Otherwise, the W ( T ,  R)  subnet- 
works should share the Wavail wavelength channels 
evenly. Therefore, the maximal transmission concur- 
rence is min( Wavail, W (T, R)) ,  and the minimal trans- 

W(T,R)  WO”.il 
mission cycle length i s  NT . p3.q. 

In a single star broadcast-and-select optical net- 
work, the network size is limited by the dimension of 
the optical passive star coupler. To support a larger 
network size, one possible solution is to use multiple 
star couplers, each of which interconnects a subset of 
the stations in the network. The structure of subnet- 
works can provide a straightforward implementation 
of multi-star broadcast-and-select optical networks. If 
we carefully select the values of T and R, the num- 
ber of transmitters and receivers in each subnetwork 
can be far less than the dimension of each individual 
star coupler. Therefore it’s possible to use one star 
coupler to interconnect multiple subnetworks. To re- 
duce the number of star couplers, each coupler should 
interconnect as many subnetworks as possible. 

5 Conclusion 

One potential problem for multihop lightwave net- 
works is the long delay of the message. To reduce such 
delay, we propose the rotator digraphs as the virtual 
topology as the rotator digraphs has extremely short 
diameter and average routing distance. To improve 
the network throughput and reduce the transmission 
cycle length, we use multiple fixed transmitters and 
multiple fixed receivers at each station. In this paper, 
we have studied the network structure. Based on the 
elegant structural properties, we have derived the opti- 
mal wavelength assignment and transmission schedule 
and given an scheme for interconnection of multiple 
star couplers to support scalable network size. 
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