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Abstract— Connected dominating set (CDS) has a wide range
of applications in wireless ad hoc networks. A number of
distributed algorithms for constructing a small CDS in wireless
ad hoc networks have been proposed in the literature. The
majority of these distributed algorithms follow a general two-
phased approach. The first phase constructs a dominating set,
and the second phase selects additional nodes to interconnect
the nodes in the dominating set. In this paper, we prove that
the approximation ratio of the two-phased algorithm in [10] is at
most 7 1

3
, improving upon the previous best-known approximation

ratio of 7.6 due to [12]. We also propose a new two-phased
approximation algorithm and prove that its approximation ratio
is at most 6 7

18
. Our analyses exploit an improved upper bound

on the number independent points that can be packed in the
neighborhood of a connected finite planar set.

I. INTRODUCTION

Connected dominating set (CDS) has a wide range of
applications in wireless ad hoc networks (cf. a recent survey
[3] and references therein). Consider a wireless ad hoc network
with undirected communication topology G = (V,E). A
CDS of G is a subset U ⊂ V satisfying that each node in
V \U is adjacent to at least one node in U and the subgraph
of G induced by U is connected. A number of distributed
algorithms for constructing a small CDS in wireless ad hoc
networks have been proposed in the literature. The majority
of these distributed algorithms follow a general two-phased
approach [1], [2], [4], [8], [9], [10]. The first phase constructs
a dominating set, and the nodes in the dominating set are
called dominators. The second phase selects additional nodes,
called connectors, which together with the dominators induce
a connected topology. The algorithms in [1], [2], [4], [8], [9],
[10] differ in how to select the dominators and connectors. For
example, the algorithm in [2] selects the dominators using the
Chvatal’s greedy algorithm [5] for Set Cover, both algorithms
in [1], [9] selects an arbitrary maximal independent set (MIS)
as the dominating set, and all the algorithms in [4], [8], [10]
choose a special MIS with 2-hop separation property as the
dominating set.

The approximation ratios of these two-phased algorithms
[1], [2], [4], [8], [9], [10] have been analyzed when the
communication topology is a unit-disk graph (UDG). For a
wireless ad hoc network in which all nodes lie in a plane and
have equal maximum transmission radii normalized to one,
its communication topology G = (V,E) is often modelled

by a UDG in which there is an edge between two nodes if
and only if their Euclidean distance is at most one. Except
the algorithms in [2], [9] which have logarithmic and linear
approximations ratios respectively, all other algorithms in
[1], [4], [8], [10] have constant approximation ratios. The
algorithm in [1] targets at distributed construction of CDS in
linear time and linear messages. With this objective, it trades
the size of the CDS with the time complexity, and thus its
approximation ratio is a large constant (but less than 192). The
analyses of the algorithms in [4], [8], [10] rely on the relation
between the independence number (the size of a maximum
independent set) α (G) and the connected domination number
(the size of a minimum connected dominating set) γc (G) of
a UDG G. A loose relation

α (G) ≤ 4γc (G) + 1

was obtained in [10], which implies the an upper bound of 8
on the approximation ratios of both algorithms in [4], [10]. A
refined relation

α (G) ≤ 3.8γc (G) + 1.2

was discovered in [12]. With such refined relation, the upper
bound on the approximation ratios of both algorithms in [4],
[10] was reduced from 8 to 7.6, and an upper bound of 5.8 +
ln 5 ≈ 7. 41 on the approximation ratio of the algorithms in [8]
was derived (the bound 4.8+ln 5 ≈ 6. 41 in [8] was incorrect).

In this paper, we first prove a tighter relation between the
independence number and the connected domination number
in Section II: for every connected UDG G with at least two
nodes,

α (G) ≤ 3
2
3
γc (G) + 1.

We then obtain an improved upper bound of 71
3 on the

approximation ratio of the algorithm in [10] in Section III. In
addition, we propose a new two-phased algorithm in Section
IV. The first phase of this new algorithm selects the dominators
as that in [10], but the second phase selects the connectors in a
natural greedy manner. We prove that the approximation ratio
of this new algorithm is at most 6 7

18 .
We remark that in a recent paper [7] claimed that for any

connected UDG G,

α (G) ≤ 3.453γc (G) + 8.291.
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However, the proof for a key geometric extreme property
underlying such claim was missing, and such proof is far
from being apparent or easy. We will discuss this in Section
V. Consequently, we regard this bound as a conjecture rather
than a proven result.

In the remaining of this section, we introduce some terms
and notations. A unit-disk (respectively, unit-circle, unit-arc)
refers to a disk (respectively, circle, arc) of radius one. For any
point u, we use Du to denote the unit-disk centered at u, and
∂Du to denote the boundary circle of Du. The neighborhood
of a point set S is defined to be ∪u∈SDu. A finite planar set of
points are said to be independent if their pairwise distances are
all greater than one, and are said to be connected if it induces
a connected unit-disk graph. A finite planar set S is called a
star if there is a point v ∈ S such that S ⊂ Dv . Clearly every
star contains at least one point. A star consisting of k points
is referred to as a k-star.

II. BOUND ON INDEPENDENCE NUMBER

Throughout this section, we use I to represent an arbitrary
set of independent points in the plane. For any planar point u
and finite planar set U , define

I (u) = I ∩ Du,

I (U) = ∪u∈UI (u) .

It’s trivial that |I (u)| ≤ 5 for any planar point u, and
|I (u) \ I (o)| ≤ 4 for two points o and u with ou ≤ 1. Thus,
if ou ≤ 1, then |I (o) � I (u)| ≤ 8. The next lemma states
that the bound 8 cannot be achieved.

Lemma 1: If ou ≤ 1, then |I (o) � I (u)| ≤ 7.
The proof of this lemma is delayed to the appendix. Now

suppose that {u1, u2, u3} ⊂ Do. Then

∣∣(∪3
j=1I (uj)

) \ I (o)
∣∣ ≤

3∑
j=1

|I (uj) \ I (o)| ≤ 12.

The next lemma gives a condition under which the bound 12
cannot be achieved.

Lemma 2: Suppose that {u1, u2, u3} ⊂ Do. If

(I (o) \ {o}) \ ∪3
j=1I (uj) �= ∅,

then ∣∣(∪3
j=1I (uj)

) \ I (o)
∣∣ ≤ 11.

The proof of this lemma is delayed to the appendix. For
any positive integer n, denote

φn =
{

3n + 2, if n ≤ 2;
min {3n + 3, 21} , if n ≥ 3.

It’s easy to verify that φn ≤ 11n/3 + 1 for n ≥ 2.
Theorem 3: Suppose that S is an n-star n ≥ 1. Then

|I (S)| ≤ φn. If n ≤ 4 and maxv∈S |I (v)| ≤ 4, then
|I (S)| ≤ φn − 1.

Proof: Theorem 3 is trivial for n = 1. The well-known
Wegner Theorem [11] on finite circle packing implies that any
disk of radius two contains at most 21 points whose pairwise

distances are all at least one. As the result, |I (S)| ≤ 21. Since
3n + 3 ≥ 21 when n ≥ 6, Theorem 3 holds when n ≥ 6.
Hence, we only have to prove Theorem 3 for 2 ≤ n ≤ 5. Let
S = {o, u1, u2, · · · , un−1}. For the clarity of presentation,
we denote I0 = I (o), Ij = I (uj) for each 1 ≤ j < n,
and I∗j = ∪0≤i<n,i �=jIi for each 0 ≤ j < n. Then, for each
0 ≤ j < n,

|I (S)| =
∣∣I∗j ∣∣ +

∣∣Ij \ I∗j
∣∣ = |Ij | +

∣∣I∗j \ Ij

∣∣ .

If |I0| = 5, then

|I (S)| ≤ |I0|+
n−1∑
j=1

|Ij \ I0| ≤ 5 + 3 (n − 1) = 3n + 2 ≤ φn.

If |I0| ≤ 1, then

|I (S)| ≤ |I0|+
n−1∑
j=1

|Ij \ I0| ≤ 1+4 (n − 1) = 4n−3 ≤ φn−1.

Thus, the theorem holds if |I0| = 5 or |I0| ≤ 1. So, we assume
that 2 ≤ |I0| ≤ 4. Then, o /∈ I .

Case 1: n = 2. By Lemma 1, |I0 � I1| ≤ 7. Hence either
|I1 \ I0| ≤ 3 or |I0 \ I1| ≤ 3. By symmetry, assume the former
occurs.

|I (S)| = |I0| + |I1 \ I0| ≤ 5 + 3 = 8.

If max0≤j≤1 |Ij | ≤ 4, then |I0 ∪ I1| ≤ 7.
Case 2: n = 3. Then,

|I (S)| = |I0 ∪ I1| + |I2 \ (I0 ∪ I1)| ≤ 8 + 4 = 12.

If max0≤j≤2 |Ij | ≤ 4. Then, |I0 ∪ I1| ≤ 7 and hence |I (S)| ≤
11.

Case 3: n = 4. If I0 \ I∗0 = ∅, then |I (S)| = |I∗0 | ≤ 3 · 5 =
15. If I0 \I∗0 �= ∅, then |I∗0 \ I0| ≤ 11 by Lemma 2, and hence

|I (S)| = |I0| + |I∗0 \ I0| ≤ 4 + 11 = 15.

Now, we assume that max0≤j≤3 |Ij | ≤ 4. If I0 \ I∗0 = ∅,
then |I (S)| = |I∗0 | ≤ 3·4 = 12. So we assume that I0\I∗0 �= ∅.
Then, |I∗0 \ I0| ≤ 11. If |I0| ≤ 3, then

|I (S)| = |I0| + |I∗0 \ I0| ≤ 3 + 11 = 14.

So we further assume |I0| = 4. Then for each 1 ≤ j < 4,

|Ij \ I0| = |Ij ∪ I0| − |I0| ≤ 7 − 4 = 3

we have |Ij \ I0| ≤ 7−4 = 3, and hence |I∗0 \ I0| ≤ 3 ·3 = 9.
So,

|I (S)| = |I0| + |I∗0 \ I0| ≤ 4 + 9 = 13.

Case 4: n = 5. We prove |I (S)| ≤ 18 by contradiction.
Assume to the contrary that |I (S)| ≥ 19. Then, for each 1 ≤
j ≤ 4,

19 ≤ |I (S)| =
∣∣I∗j ∣∣ +

∣∣Ij \ I∗j
∣∣ ≤ 15 + 4 = 19,

which implies that |I (S)| = 19 ,
∣∣I∗j ∣∣ = 15 and

∣∣Ij \ I∗j
∣∣ = 4

for each 1 ≤ j ≤ 4. Thus, for each 1 ≤ j ≤ 4, we have
|Ij \ I0| = 4 since

4 =
∣∣Ij \ I∗j

∣∣ ≤ |Ij \ I0| ≤ 4.
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Furthermore, |I0| = 3 as

|I0| ≤ |I (S)| −
4∑

j=1

∣∣Ij \ I∗j
∣∣ = 3

and

|I0| ≥ |I (S)| −
4∑

j=1

|Ij \ I0| = 3.

For each 1 ≤ i ≤ 4,

|(∪1≤j≤4,j �=iIj) \ I0| ≥
∑

1≤j≤4,j �=i

∣∣Ij \ I∗j
∣∣ = 12,

and consequently by Lemma 2,

I0 ⊆ ∪1≤j≤4,j �=iIj .

On the other hand, for each 1 ≤ j ≤ 4,

|Ij ∩ I0| = |Ij | − |Ij \ I0| ≤ 5 − 4 = 1.

Let I0 = {x1, x2, x3}. Since I0 ⊂ ∪3
j=1Ij , we have

|Ij ∩ I0| = 1 for each 1 ≤ j ≤ 3. By symmetry, we assume
that xj ∈ Ij for each 1 ≤ j ≤ 3. Since I0 ⊂ ∪4

j=2Ij , we
must have x1 ∈ I4. But then, x3 /∈ I1 ∪ I2 ∪ I4, which is
a contradiction. Thus, Theorem 3 holds when n = 5. This
completes the proof of theorem 3.

In the next, we extend Theorem 3 from a star to an
arbitrary connected planar set. A star-decomposition of a V is
a partition of V into stars. A star-decomposition is said to be
nontrivial if none of the its stars is a singleton.

Lemma 4: Any connected planar set of at least points has
a non-trivial star-decomposition.

Proof: We prove the lemma by induction. When n =
2, V itself is a star and the claim holds trivially. Now
suppose that the lemma holds for any connected planar set
V with 2 ≤ |V | ≤ n − 1. Consider a connected planar
set V of n ≥ 3 points.. Let G be the UDG induced by
V . Pick an arbitrary node v ∈ V . By induction hypothesis,
all non-singleton (connected) components of G − {v} allows
nontrivial star-decompositions. Let S denote the collection of
stars in the nontrivial star-decompositions of all non-singleton
components of G − {v}. We consider two cases:

Case 1: G−{v} has at least one singleton component. Then
all these singleton components are adjacent to v.They together
with v form a star denoted by S. Then, S∪{S} is a nontrivial
star-decomposition of V .

Case 2: G−{v} has no singleton components. Let u be an
arbitrary neighbor of v in G, and S be the star in S containing
u. If S ⊂ Du then (S \ {S})∪{S ∪ {u}} is a nontrivial star-
decomposition of V ; otherwise, |S| ≥ 3 and hence (S \ {S})∪
{S \ {u} , {u, v}} is a nontrivial star-decomposition of V .

Lemma 5: Let S be a star-decomposition of a finite con-
nected planar set V, and S is a star in S. If none of the stars
in S \ {S} is singleton, then |I (V ) \ I (S)| ≤ 11

3 |V \ S|.
Proof: Suppose that S consists of k sets. Consider an

ordering of the sets in S satisfying that V1 = S and for

each 2 ≤ i ≤ k the set Vi is adjacent to ∪i−1
j=1Vj . For each

2 ≤ i ≤ k, let ui ∈ ∪i−1
j=1Vj which is adjacent to Vi. Then,(

I (Vi) \ I
(∪i−1

j=1Vj

)) ∪ {ui} is independent. By Theorem 3,

∣∣I (Vi) \ I
(∪i−1

j=1Vj

)∣∣ + 1 ≤ 11
3

|Vi| + 1

and consequently

∣∣I (Vi) \ I
(∪i−1

j=1Vj

)∣∣ ≤ 11
3

|Vi| .

Thus,

|I (V ) \ I (S)| =
k∑

i=2

∣∣I (Vi) \ I
(∪i−1

j=1Vj

)∣∣

≤ 11
3

k∑
i=2

|Vi| =
11
3

|V \ S| .

Theorem 6: Suppose that V is a connected planar set of
n ≥ 2 points. Then |I (V )| ≤ 11n/3+1. If maxv∈V |I (v)| ≤
4, then|I (V )| ≤ 11n/3. If V ∩I �= ∅, then |I (V )| ≤ 11n/3−
1.

Proof: Let S be a nontrivial star-decomposition S of
V . Pick an arbitrary star S ∈ S. By Theorem 3, |I (S)| ≤
11
3 |S| + 1. By Lemma 5,

|I (V ) \ I (S)| ≤ 11
3

|V \ S| .

Hence,

|I (V )| = |I (S)| + |I (V ) \ I (S)| ≤ 11
3

|V | + 1.

If maxv∈V |I (v)| ≤ 4, then |I (S)| ≤ 11
3 |S| and consequently

|I (V )| ≤ 11
3 |V |.

Now suppose that V ∩ I �= ∅. Let v ∈ V ∩ I , and let l
be the number of singleton components of G − {v}. Then,
l ≤ 5. These l singleton nodes together with v induces a star
S of l + 1 nodes. Then, |I (S)| ≤ 4l + 1. By Lemma 4, each
non-singleton component of G − {v} has a nontrivial star-
decomposition. Hence, By Lemma 5 we have

|I (V ) \ I (S)| ≤ 11
3

|V \ S| =
11
3

(n − l − 1) .

Thus,

|I (V )| ≤ (4l + 1) +
11
3

(n − l − 1)

=
(

11
3

n − 1
)

+
l − 5

3
≤ 11

3
n − 1.

Theorem 6 immediately implies the following relation be-
tween the independence number and connected domination
number of any connected UDG with at least two nodes.

Corollary 7: For every connected UDG G with at least two
nodes, α (G) ≤ 3 2

3γc (G) + 1.
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III. IMPROVED APPROXIMATION RATIO OF THE

ALGORITHM IN [10]

In this section, we derive a tighter bound on the approxi-
mation ratio of the distributed algorithm proposed in [10]. Let
G be a unit-disk graph. For convenience of presentation, we
omit the parameter of G in α (G) and γc (G). Let OPT be a
a minimum CDS of G. The CDS produced by the algorithm
in [10] consists of a maximal independent set I and a set C of
connectors. Specifically, let T be an arbitrary rooted spanning
tree of G. The set I is selected in the first-fit manner in the
breadth-first-search ordering in T . Let s be the neighbor of
the root of T which is adjacent to the largest number of nodes
in I . Then, C consists of s and the parents (in T ) of the
nodes in I�I (s). It was proved in [10] that I ∪ C is a CDS
and |I ∪ C| ≤ 8γc − 1. Later on, it was proved in [12] that
|I ∪ C| ≤ 7.6γc +1.4. The next theorem further improves the
bound on |I ∪ C|.

Theorem 8: |I ∪ C| ≤ 7 1
3γc.

Proof: If γc = 1, then |I| ≤ 5 and |C| = 1, hence
|I ∪ C| ≤ 6 < 7 1

3 − 1. Thus, the theorem holds if γc = 1.
From now on, we assume that γc ≥ 2. Then, |I| ≥ |I (s)| ≥ 2.
Clearly, |C| ≤ 1+|I�I (s)| = |I|−|I (s)|+1. Thus, |I ∪ C| ≤
2 |I| + 1 − |I (s)|. If I ∩ OPT �= ∅, then |I| ≤ 11

3 γc − 1 by
Theorem 6, and |I ∪ C| ≤ 2 |I|−1 ≤ 7 1

3γc−3. So we further
assume that I ∩ OPT = ∅. If |I (s)| ≥ 3, then |C| ≤ |I| − 2
and hence

|I ∪ C| ≤ 2 |I| − 3 ≤ 2
(

11
3

γc + 1
)
− 2 = 7

1
3
γc.

So we assume that |I (s)| = 2. Then, |I ∪ C| ≤ 2 |I|−1. Pick
an arbitrary v ∈ OPT which is adjacent to the leader. Then,

1 ≤ |I (v)| ≤ |I (s)| = 2.

Let l be the number of singleton components of the UDG over
OPT \{v}. Then l ≤ 5. These l singleton nodes together with
v induces a star S of l + 1 nodes and we denote m = |I (S)|.
By Lemma 4, each non-singleton component of G − {v} has
a nontrivial star-decomposition. Hence, By Lemma 5 we have

|I \ I (S)| ≤ 11
3

|OPT \ S| =
11
3

(γc − 1 − l) .

Then, |I| ≤ m+ 11
3 (γc − 1 − l). Thus,

|I ∪ C| ≤ 2 |I| − 1 ≤ 2
(

m +
11
3

(γc − 1 − l)
)
− 1

= 7
1
3
γc − 2

(
11
3

(1 + l) +
1
2
− m

)
.

Denote δ = 11
3 (1 + l) + 1

2 −m. In the next, we prove δ ≥ 0,
from which the theorem follows immediately.

If l = 0, then m = |I (v)| ≤ 2 and

δ ≥ 11
3

+
1
2
− 2 > 0.

If l = 5, then m ≤ 21 and

δ ≥ 11
3

· 6 +
1
2
− 21 = 1.

Next, we assume that 1 ≤ l ≤ 4. It’s easy to see that m ≤
|I (v)| + 4l ≤ 2 + 4l. Thus,

δ ≥ 11
3

(1 + l) +
1
2
− (2 + 4l) =

13
6

− l

3
≥ 13

6
− 4

3
> 0.

We remark that with a more subtle analysis, we can actually
show that |I ∪ C| ≤ 7 1

3γc − 1.

IV. A NEW APPROXIMATION ALGORITHM

In this section, we present a new two-phased approximation
algorithm and prove that its approximation ratio is at most 6 7

18 .
The first phase of this algorithm is the same as the algorithm in
[10], and we let I be the selected maximal independent set. But
the second phase selects the connectors in a more economic
way. Before we describe the algorithm for the second phase,
we introduce some terms and notations. For any subset U ⊆
V \ I , let q (U) be the number of connected components in
G [I ∪ U ]. For any U ⊆ V \ I and any w ∈ V \ I , define

�wq (U) = q (U) − q (U ∪ {x}) .

The value �wq (U) is referred to as the gain of w with respect
to U . Clearly, if w ∈ I ∪ U , then �wq (U) = 0; if w /∈
I∪U , then �wq (U) is one less than the number of connected
components in G [I ∪ U ] adjacent to w since I is a maximal
independent set.

The next lemma is essential to both the correctness and the
performance analysis of our new algorithm.

Lemma 9: Suppose that there are q (U) > 1 for some
U ⊆ V \ I . Then, there exists a w ∈ V \ (I ∪ U) such that
�wq (U) ≥ max {1, �q (U) /γc − 1}.

Proof: Since the set I has 2-hop separation property [10],
there is a node w which is adjacent to at least two connected
components of G [I ∪ U ]. For such node w, �wq (U) ≥ 1.
Now, let di be the number of components adjacent to the i-
th node in OPT for 1 ≤ i ≤ γc. Then,

∑γc

i=1 di ≥ q (U)
because each component of of G [I ∪ U ] must be adjacent to
some node in OPT . So, max1≤i≤γc

di ≥ �q (U) /γc. Let w
be the node in OPT which is adjacent to the largest number
of connected components in G [I ∪ U ]. Then, �wq (U) ≥
�q (U) /γc − 1.

The above lemma implies that for any set U ⊆ V \I , the set
I ∪U is a CDS if and only if q (U) = 1, which holds further
if and only if every node has zero gain. So, we propose the
following greedy algorithm for the second phase. We use C
to denote the sequence of selected connectors. Initially C is
empty. While q (C) > 1, choose a node w ∈ V \ (I ∪ C)
with maximum gain with respect to C and add w to C. When
q (C) = 1, then I ∪ C is a CDS. Let C be the output of the
second phase. We have the following bound on |I ∪ C|.

Theorem 10: |I ∪ C| ≤ 6 7
18γc.

Proof: If γc = 1, then |I| ≤ 5 and |C| ≤ 1, hence
|I ∪ C| ≤ 6. Thus, the theorem holds trivially if γc = 1.
From now on, we assume that γc ≥ 2. By Corollary 7,
|I| ≤ ⌊

3 2
3γc

⌋
+ 1. We break C into three contiguous (and

possibly empty) subsequences C1, C2 and C3 as follows. C1

338340

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on May 21,2010 at 17:22:25 UTC from IEEE Xplore.  Restrictions apply. 



is the shortest prefix of C satisfying that q (C1) ≤
⌊
3 2

3γc

⌋−3,
and C1 ∪ C2 is the shortest prefix of C satisfying that
q (C1 ∪ C2) ≤ 2γc + 1. We show that |C1| ≤ 1, |C2| ≤
13
18γc−1, and |C3| ≤ 2γc−1, from which the theorem follows
immediately. In the following, the gain of a node u ∈ C is
always with respect to the prefix of C just before u.

We first prove |C1| ≤ 1. This is trivial if |I| ≤ ⌊
3 2

3γc

⌋− 2.
So we assume that |I| ≥ ⌊

3 2
3γc

⌋−1. Let w be the first node in
C. We claim that q ({w}) ≤ ⌊

3 2
3γc

⌋ − 3, which would imply
C1 = {w} immediately.

Case 1: |I| =
⌊
3 2

3γc

⌋ − 1. Since
⌊
3 2

3γc

⌋ − 1 ≥ 3γc, the
gain of w is at least two by Lemma 9, and hence

q ({w}) ≤
⌊
3
2
3
γc

⌋
− 1 − 2 =

⌊
3
2
3
γc

⌋
− 3.

Case 2: |I| =
⌊
3 2

3γc

⌋
. Since

⌊
3 2

3γc

⌋
> 3γc, the gain of w

is at least three by Lemma 9, and hence

q ({w}) ≤
⌊
3
2
3
γc

⌋
− 3.

Case 3: |I| =
⌊
3 2

3γc

⌋
+ 1. By Theorem 6 and the greedy

choice of w, |I (w)| = 5. Thus, the gain of w is four, and
hence

q ({w}) =
⌊
3
2
3
γc

⌋
+ 1 − 4 =

⌊
3
2
3
γc

⌋
− 3.

Next, we prove |C3| ≤ 2γc − 1. By Lemma 9since each
node in C3 has gain at least one. If q (C1 ∪ C2) ≤ 2γc, then

|C3| ≤ q (C1 ∪ C2) − 1 ≤ 2γc − 1.

If q (C1 ∪ C2) = 2γc + 1, then the first node in C3 has gain
at least two with respect to C1 ∪ C2 by Lemma 9, and hence

2 + (|C3| − 1) ≤ q (C1 ∪ C2) − 1 = 2γc + 1 − 1,

which implies that |C3| ≤ 2γc − 1.
Finally, we prove |C2| ≤ 13

18γc − 1. This inequality holds
trivially if C2 = ∅. So we assume that C2 �= ∅. Then, γc > 2,
for otherwise

⌊
3 2

3γc

⌋ − 3 = 2γc and hence C2 = ∅. Since⌊
3
2
3
γc

⌋
− 3 > 2γc + 1

when γc > 2, the gain of each node in C2 is at least
two by Lemma 9. Let v be the last node in C2. Then,
q (C1 ∪ C2 \ {v}) ≥ 2γc + 2. Thus,

2 (|C2| − 1) ≤ q (C1) − q (C1 ∪ C2 \ {v})
≤

⌊
3
2
3
γc

⌋
− 3 − (2γc + 2) ,

which implies that

|C2| ≤
⌊⌊

5
3
γc − 3

⌋
/2

⌋
.

It’s easy to verify that when 3 ≤ γc ≤ 5,⌊⌊
5
3
γc − 3

⌋
/2

⌋
=

⌊
13
18

γc

⌋
− 1.

Hence |C2| ≤ 13
18γc − 1 when 3 ≤ γc ≤ 5. In the next, we

assume that γc ≥ 6. In this case,
⌊
3
2
3
γc

⌋
− 3 ≥ 3γc + 1.

We break C2 further into two contiguous (and possibly empty)
subsequence C ′

2 and C ′′
2 satisfying that C1∪C ′

2 is the shortest
prefix of C satisfying that q (C1 ∪ C ′

2) ≤ 3γc+2. We consider
two cases:

Case 1: q (C1 ∪ C ′
2) ≤ 3γc + 1. We prove that |C ′

2| ≤
2
9γc − 1 and |C ′′

2 | ≤ γc

2 , would imply

|C2| ≤ 2
9
γc − 1 +

γc

2
=

13
18

γc − 1.

We first show that |C ′
2| ≤ 2

9γc − 1.This inequality holds
trivially if C ′

2 = ∅. So we assume that C ′
2 �= ∅. By Lemma

9, each node in C ′
2 has gain at least three. Let w be the last

node in C ′
2. Then, q (C1 ∪ C ′

2 \ {w}) ≥ 3γc + 3. So,

3 (|C ′
2| − 1) ≤ q (C1) − q (C1 ∪ C ′

2 \ {w})
≤

⌊
3
2
3
γc

⌋
− 3 − (3γc + 3) ,

which implies that |C ′
2| ≤ 2

9γc−1. Next, we show that |C ′′
2 | ≤

γc/2. This inequality holds trivially if C ′′
2 = ∅. So, we assume

that C ′′
2 �= ∅. If m ≤ 3γc, then

2 (|C ′′
2 | − 1) ≤ q (C1 ∪ C ′

2) − q (C1 ∪ C2 \ {v})
≤ 3γc − (2γc + 2) ,

which implies that |C ′′
2 | ≤ γc/2. If m = 3γc +1, then the first

node in C ′′
2 has gain at least three and hence

3 + 2 (|C ′′
2 | − 2) ≤ q (C1 ∪ C ′

2) − q (C1 ∪ C2 \ {v})
≤ 3γc + 1 − (2γc + 2) ,

which also implies that |C ′′
2 | ≤ γc/2. Therefore, |C ′′

2 | ≤ γc/2.
Case 2: q (C1 ∪ C ′

2) = 3γc + 2. We prove that |C ′
2| ≤

2
9γc − 5

3 and |C ′′
2 | ≤ γc+1

2 , which would imply

|C2| ≤ 2
9
γc − 5

3
+

γc + 1
2

=
13
18

γc − 1
1
6
.

Since each node in C ′
2 has gain at least three by Lemma 9,

we have

3 |C ′
2| ≤ q (C1) − q (C1 ∪ C ′

2) ≤
⌊
3
2
3
γc

⌋
− 3 − (3γc + 2) ,

which implies |C ′
2| ≤ 2

9γc − 5
3 . Since the first node in C ′′

2 has
gain at least three by Lemma 9, we have

3 + 2 (|C ′′
2 | − 2) ≤ q (C1 ∪ C ′

2) − q (C1 ∪ C2 \ {v})
≤ 3γc + 2 − (2γc + 2) ,

which implies |C ′′
2 | ≤ γc+1

2 .
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V. DISCUSSIONS

The largest number of independent points that can be packed
in the neighborhood of a connected planar set plays a key
role in obtaining tight bounds on the approximation ratio of
various algorithms for minimum connected dominating set.
In this paper, we first prove that at most φn independent
points can be packed in the neighborhood of an n-star, where
φn is equal to 3n + 2 if n ≤ 2, and min {3 (n + 1) , 21}
otherwise. Such bound is tight for n ≤ 3, as shown by an
instance illustrated in 1. Fix a node o at the origin, and let
u1 = (1, 0) and u2 = −u1. Denote by D0, D1 and D2the
unit-disks centered at o, u1 and u2 respectfully. Let ε be
a very small positive parameter ε, and let v1 = (1/2, ε),
w1 = (0, 1 − ε) , v2 = −v1, and w2 = −w1. When ε is
sufficiently small, I0 = {v1, w1, v2, w2} is independent. Since
the distances from v1 and w1 to the topmost point on ∂D1

are both greater than one, there is a point p1 ∈ ∂D1 satisfying
that (1) p1 lies on the proper left side of the vertical diameter
of D1, and (2) both v1p1 and w1p1 are greater than one. Let
p2 ∈ ∂D1 which is symmetric to p1 about the line ou1. Then,
v1p2 > v1p1 > 1 and w2p2 = w1p1 > 1. Let q1 and q2 be
the two points evenly on the the major arc between p1 and p2.
Then I1 = {p1, q1, p2, q2} is independent. In addition, I0 ∪ I1

is independent set. Let I2 be the symmetric image of I1 with
respect to the vertical diameter of D0. Then I0 ∪ I1 ∪ I2 is
independent.

2

p1

p2

q1

q2

u1

w1

w2

v2
v

1u o

Fig. 1. The neighborhood of a 2-star (resp. 3-star) may contain 8 (resp. 12)
independent points.

Using the technique of star-decomposition, we also obtain
an upper bound of 3 2

3n + 1 on the maximum number of
independent points that can be packed in the neighborhood
of a connected planar set of n points. On the other hand, we
can generalize the instance in Figure 1 to an instance in Figure
2, which shows that the number of independent points in the
neighborhood of n ≥ 3 linear points with consecutive distance
equal to one may contain 3 (n + 1) independent points. We
conjecture that this is a worst instance, and that 3 (n + 1) is the
maximum number of independent points that can be packed in
the neighborhood of a connected planar of n ≥ 3 points. If this
conjecture is true, we can show that the approximation ratio
of the algorithm in [10] is at most 6, and the approximation
ratio of the algorithm given in Section IV is at most 5.5.

A recent paper [7] claimed an upper bound of 3.453n +
8.291 on the maximum number of independent points that
can be packed in the neighborhood of a connected planar set

(a)

(b)

o

x1

o0

p2

o5

x2

y2

q2

u5

v6

w5

o6

v2

v1

u2
u1

w1
w2

u3

v3

v4

v5

w3
w4

u4

1 o2 o3 o4

y1

p1

q1

x1

p2

x2

y2

q2

o0 o5

v2

v1

u2
u1

w1
w2

u3

v3

v4

v5

w3
w4

u4

o1 o2 o3 o4

y1

p1

q1

Fig. 2. The neighborhood of n linear points with consecitive distance equal
to one may contain 3n + 3 independent points: (a) n is even; (b) n is odd.

V of n points using a simple area-argument. Specifically, let I
be a set of independent points in the neighborhood of V , and
let Ω denote the union of disks of radius 1.5 centered at V .
Construct the Voronoi diagram defined by I , and let V or (u)
denote the Voronoi cell of a point u ∈ I . Then,

|I| ≤ area (Ω)
minu∈I area (V or (u) ∩ Ω)

.

It is obvious that area (Ω) achieves maximum when all points
in V are linear with consecutive distance equal to one. On the
other hand, the area of V or (u)∩Ω was claimed in [7] to be at
least the area of H∩Ω where H is a regular hexagon centered
at u with side equal to 1/

√
3. The proof for such claim given

in [7] was simply that “it follows immediately from the well-
known result by Fejes Tóth [6], which proves that the densest
packing of unit disks in the plane is attained by a hexagonal
lattice”. However, it is hardly possible to imply such claim
by the classical and result of Fejes Tóth immediately. While
the result of Fejes Tóth can be proved very easily, the proof
for the previous claim is far from being apparent or easy.
Consequently, we regard the bound 3.453n + 8.291 claimed
in [7] as a conjecture, rather than a proven result.
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APPENDIX: PROOFS OF LEMMA 1 AND LEMMA 2

A minor (respectively, major) arc is an arc of a circle having
measure at most (respectively, at least) 180o. An arc-polygon is
a bounded region surrounded by a finite number of minor unit-
arcs and line segments. A vertex of an arc-polygon is a point
on the boundary which is not in the interior of any boundary
arc or line segment. It’s easy to show that the diameter of an
arc-polygon is at most one if and only if the diameter if its
vertex set is at most one. We first introduce two lemmas that
will be used in both the proof of Lemma 1 and the proof of
Lemma 2.

Lemma 11: Consider a convex quadrilateral oupv with
ov = up (see Figure 3(a)). Then ∠ovp + ∠upv ≤ 180o if
and only if vp ≥ ou.

p

uo

v

Fig. 3. If ov = up and vp ≥ ou, then ∠ovp + ∠upv ≤ 180o.

Lemma 12: Suppose that 0 < ou ≤ 1, a ∈ ∂Do ∩ ∂Du,
p ∈ ∂Du satisfying that ap ≤ 1 ≤ op (see Figure 4(a)),
v1 ∈ ∂Dp ∩ ∂Do which is on the same side of op as a,
∂Dp ∩ ∂Du = {v2, q} with v2 on the same side of up as a,
and q ∈ ∂Dp ∩ ∂Do which is on the same side of oq as a.
Then diam ({v1, v2, p, s}) = 1.

Due to the space limitation, we omit the proofs of Lemma
11 and Lemma 12.

Now, we prove Lemma 1 by contradiction. Assume to the
contrary that |I (o) � I (u)| ≥ 8. Then, |I (o) � I (u)| = 8,
and |I (u) \ I (o)| = |I (o) \ I (u)| = 4. By symmetry, assume
that u lies straight right to o (see Figure 5). Let ∂Do∩∂Du =

v1v1

v2
v2

u

s

p

u’

o
o’

q

u

s

p

o

q

a

(a) (b)

Fig. 4. diam ({v1, v2, p, s}) = 1.

{a, a′} with a above ou. Sort of the four points in I (u)\I (o)
(resp., I (o)\I (u)) in the clockwise (resp., counterclockwise)
order with respect to u (resp., o), and let uq1 and uq′1 (resp.,
oq2 and oq′2) be the radii of Du (resp., Do) through the second
point and the third point respectively (see Figure 5). Let p1 ∈
∂Dq1 ∩∂Du which is on the same side of uq1 as a. Then p1 /∈
Do. Let s1 ∈ ∂Dq1 ∩∂Do which is on the same side of oq1 as
a. Then, the arc triangle ap1s1 contains exactly one point in
I . Similarly, we construct the other three arc triangles a′p′1s

′
1,

ap2s2, a′p′2s
′
2 as shown in Figure 5. Each of them contains

exactly one point in I . Thus, diam ({p1, s1, p2, s2}) > 1
and diam ({p′1, s′1, p′2, s′2}) > 1. On the other hand, since
∠q1up1 = ∠p′1uq′1 = 60o < ∠q′1oq1, we have ∠p1up′1 <
180o. Similarly, ∠p′2up2 < 180o. Thus, either ∠uop2 +
∠p1uo < 180o or ∠p′2ou + ∠oup′1 < 180o. By symmetry,
we assume that the former inequality holds. Then by Lemma
11, p1p2 < ou. By Lemma 12, diam ({p1, p2, s1}) ≤ 1
and diam ({p1, p2, s2}) ≤ 1. Applying Lemma 12 again,
diam ({p1, s1, p2, s2}) ≤ 1, which is a contradiction.

q

1p2

p’1

q’2

p’2

s’2 s’1

p

1

s2 s1q2

q’1

o

a’

a

u

Fig. 5. |Io � Iu| ≤ 7.

We proceed to prove Lemma 2 by establishing three addi-
tional lemmas.

Lemma 13: Suppose that ou ≤ 1, a ∈ ∂Do∩∂Du, and v ∈
Do\Du (see Figure 6). Let p = a if av ≥ 1 and otherwise the
point on ∂Du \Do with pv = 1. Then, ∠uov +∠puo ≥ 150o.

Lemma 14: Suppose that ou ≤ 1, ∂Do ∩ ∂Du = {a, a′},
and v ∈ I (o) \ I (u) (see Figure 7). Let p = a if av ≥ 1 and
otherwise the point on ∂Du\Do with pv = 1, and let q, q′, p′ ∈
∂Du be such that pqq′p′ is a semicircle not containing a and
the four points p, q, q′, p′ are evenly distributed. Let s′ ∈
∂Dq′ ∩ ∂Do which is on the same side of oq as a′. Assume
that |I (u) \ I (o)| = 4. Then p′ /∈ Do and the arc triangle
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o u

p
av

(a) (b)

v

o u

a(p)
v1

v2

Fig. 6. ∠uov + ∠puo ≥ 150o: (a) av ≥ 1; (b) av < 1.

a′p′s′ contains exactly one point in I . In addition, ap < ou
and a′p′ ≤ ou.

v

o

q

q’

p’

p

u

s

s’

a

a’

Fig. 7. p′ /∈ Do, a′p′ ≤ ou, and arc triangle a′p′s′ contains exactly one
point in I .

Lemma 15: Suppose that 0 < ou ≤ 1, a ∈ ∂Do ∩ ∂Du,
p ∈ ∂Du \Do satisfying that ap ≤ ou, v ∈ ∂Dp ∩∂Do which
is on the same side of op as a, q ∈ ∂Dp∩∂Du on the different
side of pu from a, and s ∈ ∂Dp∩∂Du which is one the same
side of oq as p (see Figure 8). Let w ∈ Du \ Do which lies
on the same side of ou as a but is not on the line ou, and
x be such that wxvo is a parallelogram. Assume that the arc
triangle aps contains one point in I .

1) If wp > 1 ≥ wv, then x /∈ Do∪Du and Dw\(Do ∪ Du)
contains at most one point in I which lies on the same
side of wx as a.

2) If wp ≤ 1 or w lies on the same side of ov as a, then
Dw \ (Do ∪ Du) contains at most three points in I .

The proof of Lemma 13 utilizes Lemma 11, and the proofs
of Lemma 14 and Lemma 15 utilize Lemma 12. Due to the
space limitation, these three proofs are omitted.

Finally, we can complete the proof of Lemma 2. For the
clarity of presentation, we denote I0 = I (o), Ij = I (uj) for
each 1 ≤ j ≤ 3, and I∗j = ∪0≤i≤3,i �=jIi for each 0 ≤ j ≤ 3.
We prove Lemma 2 by contradiction. Assume to the contrary
that |I∗0 \ I0| > 11. Then

∣∣Ij \ I∗j
∣∣ = 4 for each 1 ≤ j ≤ 3.

Thus, for any 1 ≤ i < j ≤ 3, we have |Ii � Ij | = 8, which
implies that uiuj > 1 by Lemma 1. Suppose that u1, u2 and
u3 are in counterclockwise order with respect to o (see Figure
9). Let v ∈ (I0 \ {o})\ I∗0 . By symmetry, we assume that v is
between ou1 and ou2. Then, the four points u1, v, u2, u3 are
independent. So their adjacent angle separations are all more

p

x

o u

q

a

w

v

s

Fig. 8. Bound on the number of points in (Dw \ (Do ∪ Du)) ∩ I .

than 60o and less than 180o. Hence, for i = 1 and 2, the point
v is on the same side of oui as ai while u3 is on the same
side of oui as a′

i. For i = 1 and 2, let pi be the point ai

if aiv ≥ 1 and otherwise the point on ∂Di \ Do such that
piv = 1, and let qi, q

′
i, p

′
i ∈ ∂Di be such that piqiq

′
ip

′
i is a

half circle not containing ai and the four points pi, qi, q′i, p′i
are evenly distributed. Let s′i ∈ ∂Dq′

i
∩ ∂Do which is on the

same side of oqi as a′
i. By Lemma 14, p′i /∈ Do , a′

ip
′
i ≤ oui

and the arc triangle a′
ip

′
is

′
i contains exactly one point in I . Let

v′
i ∈ ∂Dp′

i
∩ ∂Do which is on the same side of op′i as a′

i. By
Lemma 15(2), u3p

′
i > 1 and u3 lies on the different side of ov′

i

from a′
i. In other words, ov′

1 lies between ou3 and ou1, and ov′
2

lies between ou2 and ou3. By Lemma 13, ∠u1ov+∠p1u1o ≥
150o. On the other hand, in the convex quadrilateral ou1p

′
1v

′
1,

the side ou1 ≤ 1 and all other three sides equal to one. By
Lemma 11, ∠v′

1ou1 + ∠ou1p
′
1 ≥ 180o. Hence, ∠v′

1ou1 ≥
180o − ∠ou1p

′
1 = ∠p1u1o. Therefore, ∠v′

1ou1 + ∠u1ov1 ≥
150o. Similarly, we can show that ∠vou2 + ∠u2ov2 ≥ 150o.
Thus, ∠v′

2ov
′
1 ≤ 60o. So u3v

′
i ≤ 1. Let xi be the point such

that u3xiv
′
io is a parallelogram for i = 1 and 2. We split

D3 \ (Do ∪ D1 ∪ D2) by u3x1 and u3x2 into three regions.
The middle region has a diameter of at most one and contains
at most one point in I . By Lemma 15, each of the other two
regions contains at most one point in I . So |I3 \ I∗3 | ≤ 3,
which is a contradiction.

p

3
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1a’

u2

q’2

q’1
p’2

1u

a2
1a

u

1

p2

s’1

p’1

1x
x2

s’2

v’1
v’2

v

o

Fig. 9. At most 11 independent points can be packed in
(∪3

i=1Di

) \ Do.
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