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Abstract— Relative neighborhood graph (RNG) has been
widely used in topology control and geographic routing in
wireless ad hoc networks. Its maximum edge length is the
minimum requirement on the maximum transmission radius by
those applications of RNG. In this paper, we derive the precise
asymptotic probability distribution of the maximum edge length
of the RNG on a Poisson point process over a unit-area disk. Since
the maximum RNG edge length is a lower bound on the critical
transmission radius for greedy forward routing, our result also
leads to an improved asymptotic almost sure lower bound on the
critical transmission radius for greedy forward routing.

I. INTRODUCTION

Relative neighborhood graph (RNG) of a finite planar set
was originally introduced first by [15] with applications in
pattern recognition. It is a bounded-degree planar graph con-
taining the Euclidean minimum spanning tree as a subgraph.
Due to its simple construction and maintenance, RNG has
found many applications in localized topology control (e.g.,
[6], [8], [9]) and geographic routing (e.g., [1], [7], [13]) in
wireless ad hoc networks. All these applications require the
maximum transmission radius of the networking nodes be no
shorter than the longest edge in the RNG. While the maximum
edge length in the RNG can be computed in polynomial time,
little is known about its random behavior when the underlying
vertex is a random point set. In this paper, we derive the
precise asymptotic distribution of the maximum edge length
in the RNG of a Poisson point process over a unit-area disk
with density n, which is denoted by Pn. Denote the maximum
edge length of a geometric graph G by λ (G), and the RNG
of a finite planar set V by RNG (V ). Let

β = 1/

√
2
3
−

√
3

2π
≈ 1.6.

The main result of this paper is stated in the following theorem.
Theorem 1: For any constant ξ, we have

lim
n→∞

Pr

[
λ (RNG (Pn)) ≤ β

√
ln n + ξ

πn

]
= e−

β2

2 e−ξ

.

It is interesting to compare the maximum edge length of the
RNG with the maximum edge length of the (Euclidean) min-
imum spanning tree (MST), which is also known the critical

transmission radius for connectivity [5], and the maximum
edge length of the Gabriel graph (GG) [4], which also has
many applications in wireless ad hoc networks. Let MST (V )
and GG (V ) denote the MST and the GG of finite planar set
V . It’s well-known that for any finite planar set,

MST (V ) ⊆ RNG (V ) ⊆ GG (V ) .

Thus,

λ (MST (V )) ≤ λ (RNG (V )) ≤ λ (GG (V )) .

The asymptotic distributions of λ (MST (Pn)) and
λ (GG (Pn)) were derived in [11] (based on an earlier
result [2]) and in [16] respectfully. Specifically, for any
constant ξ,

lim
n→∞

Pr

[
λ (MST (Pn)) ≤

√
ln n + ξ

πn

]
= e−e−ξ

,

lim
n→∞

Pr

[
λ (GG (Pn)) ≤ 2

√
ln n + ξ

πn

]
= e−2e−ξ

.

So roughly speaking, the maximum edge length of the RNG
(respectfully, GG) of a Poisson point process is asymptotically
about 1.6 times (respectfully, twice) its critical transmission
radius for connectivity.

Another parameter closely related to the maximum edge
length of the RNG is the critical transmission radius for greedy
forward routing [3], [14]. In greedy forward routing, each
node discards a packet if none of its neighbors is closer to
the destination of the packet than itself, or otherwise forwards
the packet to the neighbor closest to the destination of the
packet. The critical transmission radius of a planar node set V
for greedy forward routing, denoted by σ (V ), is the smallest
transmission radius by V which ensures successful delivery
of any packets from any source node in V to any destination
node in V . Clearly, λ (RNG (V )) ≤ σ (V ). It was recently
proved in [17] that for any constant ε > 0, it is asymptotically
almost sure (abbreviated by a.a.s.) that

(1 − ε) β

√
ln n

πn
≤ σ (Pn) ≤ (1 + ε) β

√
lnn

πn
.
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This immediately implies that for any constant ε > 0, it is
a.a.s. that

λ (RNG (Pn)) ≤ (1 + ε) β

√
ln n

πn
.

In other words, (1 + ε) β
√

ln n
πn is an a.a.s. upper bound

on λ (RNG (Pn)). While this a.a.s. bound is weaker than
Theorem 1, it had inspired us to conjecture and then prove
Theorem 1. This a.a.s. bound will also be used in the proof of
Theorem 1. As the immediate consequence of Theorem 1, a
tighter a.a.s. lower bound on σ (Pn) can be obtained: Suppose
that limn→∞ ξn = ∞ and limn→∞ ξn/ ln n = 0. Then it is
a.s.s. that

σ (Pn) ≥ β

√
ln n − ξn

πn
.

In what follows, o is origin of the Euclidean plane R
2, and

D is the unit-area (closed) disk centered at o. We assume that
Pn is the Poisson point process over D with density n. We
denote by Xn = (X1, · · · ,Xn) the uniform n-point process
over D. The symbols O, o,∼ always refer to the limit n → ∞.
To avoid trivialities, we tacitly assume n to be sufficiently large
if necessary. For simplicity of notation, the dependence of sets
and random variables on n will be frequently suppressed. For
any set S and positive integer k, the k-fold Cartesian product
of S is denoted by Sk. The Euclidean norm of a point x
is denoted by ‖x‖, and the Euclidean distance between two
points u and v is denoted by ‖uv‖. The Lebesgue measure
(or area) of a measurable set A ⊂ R

2 is denoted by |A|. The
topological boundary of a set A ⊂ R

2 is denoted by ∂A.
The open (respectively, closed) disk of radius r centered at x
is denoted by D (x, r) (respectively, D (x, r)). For any finite
planar set V , K (V ) denotes the complete (geometric) graph
on V which consists of line segments between all pairs of
nodes in V .

The remaining of this paper is organized as follows. In
Section II, we present several useful geometric results. In
Section III, we derive the limits of some relevant integrals.
In Section IV, we give the proof for Theorem 1.

II. GEOMETRIC PRELIMINARIES

For x ∈ D, let t (x) denote the distance between x and ∂D,
which is equal to 1√

π
− ‖x‖. For any 0 < ρ < 1√

π
, define

Dρ (0) = {x ∈ D : t (x) ≥ ρ} ,

Dρ (1) =

{
x ∈ D :

√
1
π
− ρ2 ≤ t (x) < ρ

}
,

Dρ (2) =

{
x ∈ D : t (x) <

√
1
π
− ρ2

}
.

With this notation, the midpoint of any line segment xy ⊂ D is
not in D‖xy‖/2 (2). For x ∈ D and 0 < ρ < 1√

π
, define θ (x, ρ)

as follows. If x ∈ Dρ (0), then θ (x, ρ) = 2π. If x ∈ Dρ (2),
then θ (x, ρ) = 0. If x ∈ Dρ (1), let u and v be the two
intersection points of ∂B (x, ρ) and ∂D, and define θ (x, ρ) =
2π−∠uxv (see Figure 1). We claim that ρθ (x, ρ) ≤ 2πt (x).

The claim holds trivially if x ∈ Dρ (0) or x ∈ Dρ (2). So,
we consider the case that x ∈ Dρ (1). It’s easy to see that
θ (x, ρ) ≤ 4 arcsin t(x)

ρ . Using the equality sin α ≥ 2
π α for

any α ∈ [0, π/2], we obtain

θ (x, ρ) ≤ 4 · π

2
· t (x)

ρ
=

2πt (x)
ρ

.

Thus, ρθ (x, ρ) ≤ 2πt (x).

ρ

x

t(x)
vu

Fig. 1. If x ∈ Dρ (1), then θ (x, ρ) = 2π − 2∠uxv.

The lune of a line segment e = ab, denoted by L (e), is
the intersection of the disks D (a, ‖ab‖) and D (b, ‖ab‖); e
is called the waist of L (e); the two intersection points of
∂D (a, ‖ab‖) and ∂D (b, ‖ab‖) are called the vertices of L (e).
It’s easy to verify that

|L (e)| = π ‖e‖2
/β2.

If e ⊂ D and the midpoint of e is apart from ∂D by at least√
3

2 ‖e‖, then L (e) ⊂ D. The next lemma gives a lower bound
on |L (e) ∩ D| if otherwise.

Lemma 2: Consider a line segment e ⊂ D with midpoint
z. If t (z) ≤

√
3

2 ‖e‖, then

|L (e) ∩ D| ≥ 1
2
|L (e)| + ‖e‖

2
t (z) .

Proof: Let a and b be the two endpoints of e, and c1

and c2 be the two vertices of L (e) with c1 being farther away
from the center of D (see Figure 2). Then, the half lune abc2

is fully contained in D. If c1 ∈ ∂D, then the triangle abc1 is
contained in D and its area is ‖e‖

2 ‖az‖ ≥ ‖e‖
2 t (z). So, the

lemma holds if c1 ∈ ∂D. Now assume that c1 /∈ ∂D. Let u be
the intersection point of c1z and ∂D. Then, the triangle abu
is contained in D and its area is‖e‖

2 ‖uz‖ ≥ ‖e‖
2 t (z). So, the

lemma also holds if c1 /∈ ∂D.
Two line segments are said to be compatible if the two

endpoints of either segment is not contained in the lune of the
other segment. The next lemma generalizes Lemma 2 in [17]
by taking into account the boundary effect.

Lemma 3: Suppose that e1 and e2 are two compatible
segments in D satisfying that ‖e1‖ , ‖e2‖ ∈ [R/2, R] for some
R ≤ 1

200
√

π
. Let z1 and z2 be the midpoints of e1 and e2

respectfully. If ‖z1z2‖ ≤
√

3R and z1 is farther away from
the center of D than z2, then

|(L (e2) \ L (e1)) ∩ D| ≥ 0.0029R ‖z1z2‖ .
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Fig. 2. L (e) ∩ D contains the triangle abc2 and the half lune abu.

The proof of this lemma is very lengthy and complicated.
We omit the proof in this conference version due to the
limitation on the space.

For any line segment e, we define

ν (e) = |L (e) ∩ D| .

For any geometric graph H , define

ν (H) = |(∪e∈HL (e)) ∩ D| ,

and χ (H) to be indicator for all edges of H are pairwise
compatible. An edge e ∈ E is called an outermost edge of
H if its midpoint is the nearest to ∂D. For any finite planar
set V and any positive number r, the r-disk graph of V is a
geometric graph over V in which there is an edge between
two nodes if and only if their distance is at most r. The next
lemma generalizes Lemma 3 to the multiple lunes.

Lemma 4: Suppose that H is a geometric graph over a
finite subset of D with at least two edges satisfying that (1)
χ (H) = 1, (2) all the edges have length between R/2 and
R for some R ≤ 1

200
√

π
, and (3) the midpoints of its edges

induce a connected
√

3R-disk graph. Let e be an outermost
edge of H , and 
 be the largest distance between the midpoint
of e and the midpoints of other edges of H . Then,

ν (H) ≥ ν (e) + 0.0029R
.

Proof: Let e′ be the edge of H whose midpoint is the
farthest from the midpoint of e. Let P = z1z2 · · · zk be the
min-hop path between the midpoint z1 of e and the midpoint
zk of e′ in the

√
3R-disk graph over the midpoints of the

edges in H . For each 1 ≤ i ≤ k, let ei be the edge of H
whose midpoint in zi. Then, e1 = e and ek = e′. For each
2 ≤ j ≤ k, let Hj denote the subgraph of H consisting of the
edges ei for 1 ≤ i ≤ j. We will prove by induction on j with
2 ≤ j ≤ k that

ν (Hj) ≥ ν (e1) + 0.0029R

j−1∑
i=1

‖zizi+1‖ . (1)

By Lemma 3, the inequality (1) holds when j = 2. Since P is
the min-hop path, ‖z1z3‖ >

√
3R and L (e3) is disjoint from

L (e1). Thus,

ν (H3) ≥ ν (e1) + ν (e3)

≥ ν (e1) +
1
2
|L (e3)| ≥ ν (e1) +

π ‖e3‖2

2β2

≥ ν (e1) +
πR2

8β2
≥ ν (e1) +

π

16
√

3β2
R · 2

√
3R

≥ ν (e1) + 0.044R

2∑
i=1

‖zizi+1‖ .

Hence, the inequality (1) holds when j = 3. Next, assume
that j > 3. Since L (ej) is disjoint from each L (ei) with
1 ≤ i ≤ j − 2, we have

ν (Hj) ≥ ν (Hj−2) + ν (ej) .

By the induction hypothesis, we have

ν (Hj) ≥ ν (e1) + 0.0029R

j−3∑
i=1

‖zizi+1‖ +
πR2

8β2

≥ ν (e1) + 0.0029R

j−3∑
i=1

‖zizi+1‖ + 0.044R · 2
√

3R

> ν (e1) + 0.0029R

j−1∑
i=1

‖zizi+1‖ .

Thus, the inequality (1) holds. By the principle of induction,
the inequality (1) holds for every 2 ≤ j ≤ k.

Since ν (H) ≥ ν (Hk) and

k−1∑
i=1

‖zizi+1‖ ≥ ‖z1zk‖ = 
,

the lemma holds.

III. INTEGRAL INGREDIENTS

In this section, we derive the asymptotic values of several
integrals. We will frequently change the integral variables
using a technique introduced in [16]. Consider a tree topology
on k planar points x1, x2, · · · , xk, and assume without loss of
generality that xk−1xk is an edge in this tree. Let zk−1, ρ,
and ω be the midpoint, half-length and the slope of xk−1xk

respectively. We root the tree at xk. For 1 ≤ i ≤ k − 2,
let zi be the midpoint of the edge between xi and its parent
in such rooted tree. Then, we replace x1, x2, · · · , xk by
z1, · · · , zk−1, ρ, ω. The Jacobian determinant of this change
is 4k−1ρ.

Fix a constant ξ and a sequence (ξn) with ξn = o (ln n)
and ξn → ∞. Let

rn = β

√
ln n + ξ

πn
,

Rn = β

√
ln n + ξn

πn
,

R′
n = 1.1β

√
ln n

πn
.
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Then, for sufficiently large n,we have rn < Rn < R′
n < 2rn.

Define

Ω =
{
(x1, x2) ∈ D

2 : rn < ‖x1x2‖ ≤ Rn

}
,

Ω′ =
{
(x1, x2) ∈ D

2 : Rn < ‖x1x2‖ ≤ R′
n

}
.

Lemma 5: The following are true:

n2

2

∫
Ω

e−nv(x1x2)dx1dx2 ∼ β2

2
e−ξ,

n2

2

∫
Ω′

e−nv(x1x2)dx1dx2 = o (1) .

Proof: Let ρ = ρ (x1, x2) be the half-length of x1x2,
and z = z (x1, x2) be the midpoint of x1x2. Let Ω1 be the
set of (x1, x2) ∈ Ω satisfying that z ∈ D√

3ρ (0), and let
Ω2 = Ω \ Ω1. First, we calculate the integration over Ω1. If
(x1, x2) ∈ Ω1, Lx1x2 is fully contained in D and v (x1x2) =
4
β0

πρ2. Changing the integration variable x1 and x2 by z, ρ,
and the slope of x1x2 yields

n2

2

∫
Ω1

e−nv(x1x2)dx1dx2

= 4πn2

∫ Rn
2

rn
2

e
− 4

β2 nπρ2

ρdρ

∫
D√

3ρ(0)

dz

∼ 4πn2

∫ Rn
2

rn
2

e
− 4

β2 nπρ2

ρdρ

= −β2

2
ne

− 4
β2 nπρ2

∣∣∣∣
Rn
2

rn
2

∼ β2

2
e−ξ.

Next, we calculate the integration over Ω2. Let t = t (z) be
the distance between z and ∂D. By Lemma 2, we have

v (x1x2) ≥
2
β2

πρ2 + ρt

and
ρθ (z, ρ) ≤ 2πt.

Changing the integration variable as above yields

n2

2

∫
Ω2

e−nv(x1x2)dx1dx2

≤ n2

2

∫
Ω2

e
−n

(
2

β2 πρ2+ρt
)
dx1dx2.

= 2n2

∫ Rn
2

rn
2

dρ

∫
D√

3ρ(1)\Dρ(2)

e
−n

(
2

β2 πρ2+ρt
)
ρθ (z, ρ) dz

= 2n2

∫ Rn
2

rn
2

dρ

∫
D√

3ρ(1)\Dρ(2)

e
−n

(
2

β2 πρ2+ρt
)
ρθ (z, ρ) dz

≤ 4πn2e
− 1

2β2 nπr2
n

∫ Rn
2

rn
2

dρ

∫
D

e−nρttdz

= O (1) n1.5

∫ Rn
2

rn
2

dρ

∫ 1/
√

π

0

e−nρttdt

≤ O (1) n1.5

∫ Rn
2

rn
2

dρ

∫ ∞

0

e−nρttdt

= O (1)
1√
n

∫ Rn
2

rn
2

ρ−2dρ ≤ O (1)
1√
n

r−2
n Rn

= O (1)
1√
nrn

= O (1)
1√
ln n

= o (1) .

Therefore,

n2

2

∫
Ω

e−nvx1x2 dx1dx2 ∼ β2

2
e−ξ.

Note that Ω ∪ Ω′ consists of (x1, x2) ∈ D
2 satisfying that

rn < ‖x1x2‖ ≤ R′
n. Using the same argument as above, we

can show that

n2

2

∫
Ω∪Ω′

e−nv(x1x2)dx1dx2 ∼ β2

2
e−ξ.

Thus, the second asymptotic equality in the lemma holds.
A topology with numbered vertices is specified by a col-

lection of the pairs of the indices of the numbered vertices.
For any topology τ on m numbered vertices and a planar
set U of m numbered points, we denote by τ (U) the graph
on U with topology τ . Suppose that τ is a topology with m
numbered vertices and without isolated vertices. We denote by
Γ (τ) the set of x = (x1, · · · , xm) ∈ D

m satisfying that the
length of each edge in τ (x) is more than rn but at most Rn.
Note that for each x ∈ Γ (τ), the

√
3Rn-disk graph on the

midpoints of the edges in any connected component of τ (x)
is connected. Thus, the

√
3Rn-disk graph on the midpoints of

the edges in τ (x) has no more connected components than
τ (x) itself. For any positive integer l no more than the number
of connected components of τ , we denote by Γl (τ) the set of
x ∈ Γ (τ) such that the

√
3Rn-disk graph on the midpoints

of the edges in τ (x) has l connected components. For any
positive integer k, we denote by Ck the forest on 2k numbered
vertices v1, v2, · · · , v2k which consists of k edges v2i−1v2i for
1 ≤ i ≤ k. Then, Ck has k tree components, each consisting
of a single edge, and Γ (Ck) = Ωk.

Lemma 6: For any fixed integer k ≥ 2,(
n2

2

)k ∫
Γ1(Ck)

χ (Ck (x)) e−nν(Ck(x))dx = o (1) .

Proof: For each x = (x1, · · · , x2k) ∈ Γ1 (Ck), let zi and
ρi be the midpoint and half-length of x2i−1x2i respectively.
We denote by S the set of x = (x1, · · · , x2k) ∈ Γ1 (Ck)
satisfying that x1x2 is the outermost edge in Ck (x) and z2 is
the farthest from z1. It suffices to prove

n2k

∫
S

χ (Ck (x)) e−nν(Ck(x))dx = o (1) .

330332
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By Lemma 4, for any x = (x1, · · · , x2k) ∈ S with
χ (Ck (x)) = 1,

ν (Ck (x)) ≥ ν (x1x2) + cRn ‖z1z2‖

for some constant c. So, it is sufficient to show that

n2k

∫
S

e−n(ν(x1x2)+cRn‖z1z2‖)dx = o (1) .

For each 2 ≤ i ≤ k, we replace x2i−1 and x2i by zi, ρi

and the slope of x2i−1x2i. Note that for any 3 ≤ i ≤ k,
zi ∈ D (z1, ‖z2z1‖). Thus,

n2k

∫
S

e−n(ν(x1x2)+cRn‖z1z2‖)
2k∏
i=1

dxi

≤ O (1) n2k


∫

Ω

e−nν(x1x2)dx1dx2


(∫ Rn

2

rn
2

ρdρ

)k−1

·


∫

R2

e−ncRn‖z2z1‖dz2




 ∫

D(z1,‖z2z1‖)

dz




k−2

∼ O (1) n2k−2
(
R2

n − r2
n

)k−1

·
∫
R2

e−ncRn‖z2z1‖ ‖z2z1‖2(k−2)
dz2

≤ O (1) n2k−2
(
R2

n − r2
n

)k−1
∫ ∞

0

e−ncRntt2k−3dt

= O (1)
n2k−2

(
R2

n − r2
n

)k−1

(nRn)2(k−1)

= O (1)
(

nR2
n − nr2

n

nR2
n

)k−1

= O (1)
(

ξn − ξ

ln n

)k−1

= o (1) ,

where the second asymptotic equality follows from Lemma 5,
and the last equality is based on ξn = o (ln n).

Lemma 7: For any fixed integers 2 ≤ l < k.(
n2

2

)k ∫
Γl(Ck)

χ (Ck (x)) e−nν(Ck(x))dx = o (1) .

Proof: For any nontrivial l-partition Π =
{P1, P2, · · · , Pl} of {1, 2, · · · , k}, let S (Π) denote the
set of x = (x1, · · · , x2k) ∈ Γl (Ck) such that for each
1 ≤ j ≤ l, the set {zi : i ∈ Pj} is a connected components
of the

√
3Rn-disk graph on z1, z2, · · · , zk. Then Γl (Ck)

is the union of S (Π) over all nontrivial l-partitions Π
of {1, 2, · · · , k}. So, it is sufficient to show that for any
l-partition Π of {1, 2, · · · , k},

n2k

∫
S(Π)

χ (Ck (x)) e−nν(Ck(x))dx = o (1) .

Now fix an l-partition Π = {P1, P2, · · · , Pl} of {1, 2, · · · , k},
and let pj = |Pj | for 1 ≤ j ≤ l. Then,

S (Π) ⊆
l∏

j=1

Γ1 (Cj) .

For any x = (x1, x2, · · · , x2k) ∈ S (Π), let x(j) denote the
subsequence of (x2i−1, x2i) with i ∈ Pj for 1 ≤ j ≤ l. Then,

ν (Ck (x)) =
l∑

j=1

ν
(
Cj

(
x(j)

))

χ (Ck (x)) ≤
l∏

j=1

χ
(
Cj

(
x(j)

))
.

Thus,

n2k

∫
S(Π)

χ (Ck (x)) e−nν(Ck(x))dx

≤ n2k

∫
S(Π)

l∏
j=1

χ
(
Cj

(
x(j)

))
e−nν(Cj(x(j)))dx

≤ n2k

∫
∏ l

j=1 Γ1(Cj)

l∏
j=1

χ
(
Cj

(
x(j)

))
e−nν(Cj(x(j)))dx

=
l∏

j=1


n2pj

∫
Γ1(Cj)

χ
(
Cj

(
x(j)

))
e−nν(Cj(x(j)))dx(j)




= o (1) ,

where the last equality follows from Lemma 6 and the fact
that at least one pj ≥ 2.

Lemma 8: For any fixed integer k ≥ 2,(
n2

2

)k ∫
Γk(Ck)

e−nν(Ck(x))dx ∼
(

β2

2
e−ξ

)k

.

Proof: For any x = (x1, · · · , x2k) ∈ Γk (Ck),

ν (Ck (x)) =
k∑

i=1

ν (x2i−1x2i) .

Thus, (
n2

2

)k ∫
Γk(Ck)

e−nν(Ck(x))dx

=
(

n2

2

)k ∫
Γk(Ck)

e−n
∑k

i=1 ν(x2i−1x2i)dx

=
(

n2

2

)k ∫
Γ(Ck)

e−n
∑k

i=1 ν(x2i−1x2i)dx

−
k−1∑
l=1

(
n2

2

)k ∫
Γl(Ck)

e−n
∑k

i=1 ν(x2i−1x2i)dx.
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We shall show that the first term is asymptotically equal to(
β2

2 e−ξ
)k

, and the second term is vanishing. Indeed,

(
n2

2

)k ∫
Γ(Ck)

e−n
∑k

i=1 ν(x2i−1x2i)dx

=
k∏

i=1


n2

2

∫
Ω

e−nν(x2i−1x2i)dx2i−1dx2i


 ∼

(
β2

2
e−ξ

)k

.

where the last equality follows from Lemma 5. For any x =
(x1, · · · , x2k) ∈ Γ1 (Ck), if x1x2 is the outermost edge in
Ck (x) and z2 is the farthest from z1, it can be proved that

k∑
i=1

ν (x2i−1x2i) ≥ ν (x1x2) + cRn ‖z1z2‖ .

Following the same argument in Lemma 6, we can show that(
n2

2

)k ∫
Γ1(Ck)

e−n
∑k

i=1 νx2i−1x2i dx = o (1) .

Then, following the same argument in Lemma 7, we can show
that for any 2 ≤ l ≤ k − 1,(

n2

2

)k ∫
Γl(Ck)

e−n
∑k

i=1 νx2i−1x2i dx = o (1) .

Thus, the lemma holds.
Lemma 9: Let F be a forest on m numbered vertices with

maximum degree at least two and minimum degree at least
one. Then,

nm

∫
Γ(F )

χ (F (x)) e−nν(F (x))dx = o (1) .

Proof: Let κ be the number of tree components of F .
Then, m ≥ κ + 2, and F has exactly m − κ edges denoted
by e1, · · · , em−κ. For any x = (x1, · · · , xm) ∈ Γ (F ), let zi

denote the middle point of ei in F (x) for each 1 ≤ i ≤ m−κ.
We first show that

nm

∫
Γ1(F )

χ (F (x)) e−nν(F (x))dx = o (1) .

For any pair of distinct integers p and q between 1 and m −
κ, let Spq denote the set of x = (x1, · · · , xm) ∈ Γ1 (F )
satisfying that ep is an outermost edge in F (x) and zq is the
farthest from zp among all z1, · · · , zm−κ. Then, it suffices to
prove for any such p and q,

nm

∫
Spq

χ (F (x)) e−nν(F (x))dx = o (1) .

Fix a pair of distinct integers p and q between 1 and m−κ. Let
p′ and p′′ be the indices of the two endpoints of the edges ep.
Then, for any x = (x1, · · · , xm) ∈ Spq with χ (F (x)) = 1,

ν (F (x)) ≥ v (xp′xp′′) + cRn ‖zpzq‖

for some constant c > 0. Thus, we only need to show that

nm

∫
Spq

e−n(v(xp′xp′′)+cRn‖zpzq‖)dx = o (1) .

We change the integral variables x1, · · · , xm as follows. For
the tree component containing ep, we replace the xi’s in this
tree by the midpoints of the edges in this tree except zp

and xp′ , xp′′ (both of which are kept). For any other tree
component, we use the method introduced at the beginning
of this section: pick an arbitrary edge as the rooted edge. We
replace xi’s in this tree by the midpoints of all the edges in
this tree together with the half-length and slope of the root
edge. Such change of integration variables yields

nm

∫
Spq

e−n(v(xp′xp′′)+cRn‖zpzq‖)dx

≤ O (1) nm


∫

Ω

e−nvv(xp′xp′′)dxp′dxp′′




·
(∫ Rn

2

rn
2

ρdρ

)κ−1

∫

R2

e−ncRn‖zpzq‖dzq




·


 ∫

D(zp,‖zpzq‖)

dz




m−κ−2

∼ O (1) nm−2
(
R2

n − r2
n

)κ−1

·
∫
R2

e−ncRn‖zpzq‖ ‖zpzq‖2(m−κ−2)
dzq

≤ O (1) nm−2
(
R2

n − r2
n

)κ−1

·
∫ ∞

0

e−ncRnµµ2(m−κ)−3dµ

= O (1)
nm−2

(
R2

n − r2
n

)κ−1

(nRn)2(m−κ−1)

= O (1)

(
nR2

n − nr2
n

)κ−1

(nR2
n)m−κ−1

= O (1)
(ξn − ξ)κ−1

lnm−κ−1 n
= o (1) ,

where the asymptotic equality follows from Lemma 5, and the
last equality follows from ξn = o (lnn) and m − κ − 1 ≥ 1.

Following the same decomposition argument as in the proof
of Lemma 7, we can show that for any 2 ≤ l ≤ κ,

nm

∫
Γl(F )

χ (F (x)) e−nν(F (x))dx = o (1) ..

Thus, the lemma holds.

IV. PROOF FOR THEOREM 1

We first give a brief overview on our approach to prove
Theorem 1. Let Mn denote the number of edges in RNG (Pn)
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longer than rn but not shorter than Rn, M ′
n denote the number

of edges in RNG (Pn) longer than Rn but not shorter than
R′

n, and M ′′
n denote the number of edges in RNG (Pn) longer

than R′
n. Then, λ (RNG (Pn)) ≤ rn if and only if Mn+M ′

n+
M ′′

n = 0. According the discussion in Section I, M ′′
n = 0

is a.a.s.. In Lemma 12, we will prove that E [M ′
n] = o (1),

which implies that M ′
n = 0 is a.a.s. by Markov’s inequality. In

Lemma 13, we will prove that Mn is asymptotically Poisson
with mean β2

2 e−ξ. Consequently,

lim
n→∞

Pr [λ (RNG (Pn)) ≤ rn]

= lim
n→∞

Pr [Mn + M ′
n + M ′′

n = 0]

= lim
n→∞

Pr [Mn = 0] = e−
β2

2 e−ξ

.

Two key techniques used in our proof are the Palm theory
for Poisson processes (see, e.g., Theorem 1.6 in [12]) and the
Brun’s sieve (see, e.g., Theorem 10 in [16]), which are stated
below.

Theorem 10: Suppose that h (U, V ) is a bounded measur-
able function defined on all pairs of the form (U, V ) with V
being a finite planar set and U being a subset of V . Then any
positive integer k,

E


 ∑

U⊆Pn,|U |=k

h (U,Pn)


 =

nk

k!
E [h (Xk,Xk∪Pn)] .

Theorem 11: Suppose that N is a non-negative integer
random variable, and B1, · · · , BN are N Bernoulli random
variables. If there is a constant µ such that for every fixed
positive integer k,

E


 ∑

I⊆{1,··· ,N},|I|=k

∏
i∈I

Bi


 ∼

1
k!

µk,

then
∑N

i=1 Bi is asymptotically Poisson with mean µ.
Now, we apply Palm theory to show that E [M ′

n] is vanish-
ing.

Lemma 12: E [M ′
n] = o (1).

Proof: For any edge e ∈ K (Pn), define B′ (e) to
be the Bernoulli random variable which equals to one if
and only if e ∈ RNG (Pn) and Rn < ‖e‖ ≤ R∗

n. Then
M ′

n =
∑

e∈K(Pn) B′ (e). Let X2 = {X1X2} and define B′
1 to

be the Bernoulli random variable which equals to one if and
only if X1X2 ∈ RNG (X2k ∪ Pn) and Rn < ‖X1X2‖ ≤ R∗

n.
By treating each edge of K (Pn) as a subset of two points in
Pn and with the application of Theorem 10, we have

E [M ′
n] = E


 ∑

e∈K(Pn)

B′ (e)


 =

n2

2
E [B′

1] .

By Lemma 5,

n2

2
E [B′

1] =
n2

2

∫
Ω′

Pr [B′
1 = 1 | X2 = x] dx

=
n2

2

∫
Ω′

e−nv(x1x2)dx1dx2 = o (1) .

Therefore, E [M ′
n] = o (1).

Next, we apply the Brun’s seive together with the Palm
theory to prove Mn is asymptotically Poisson.

Lemma 13: Mn is asymptotically Poisson with mean
β2

2 e−ξ.

Proof: For any edge e ∈ K (Pn), define B (e) to be
the Bernoulli random variable which equals to one if and
only if e ∈ RNG (Pn) and rn < ‖e‖ ≤ Rn. Then Mn =∑

e∈K(Pn) B (e). For any subgraph H of K (Pn), define
B (H) =

∏
e∈H B (e). Denote by Tm the set of topologies

on m numbered vertices in which there are exactly k edges
and no vertex is isolated. Denote by k∗ =

⌈
1+

√
1+4k2

2

⌉
. Then,

Tm = ∅ unless k∗ ≤ m ≤ 2k. For any topology τ on m
numbered vertices and a planar set U of m numbered points,
we denote by τ (U) the graph on U with topology τ . By
Theorem 11, we only need to prove that

E


 2k∑

m=k∗

∑
U⊂Pn,|U |=m

∑
τ∈Tm

B (τ (U))




∼
1
k!

(
β2

2
e−ξ

)k

. (2)

For each e ∈ K (Xm), define Bm (e) to be the Bernoulli
random variable which equals to one if and only if e ∈
RNG (X2k ∪ Pn) and rn < ‖e‖ ≤ Rn. For any subgraph
H of K (Xm), define Bm (H) =

∏
e∈H Bm (e). By Theorem

10,

E


 2k∑

m=k∗

∑
U⊂Pn,|U |=m

∑
τ∈Tm

B (τ (U))




=
2k∑

m=k∗

nm

m!
E

[ ∑
τ∈Tm

Bm (τ (Xm))

]
.

We will prove that

n2k

(2k)!
E

[ ∑
τ∈T2k

B2k (τ (X2k))

]
∼

1
k!

(
β2

2
e−ξ

)k

, (3)

and for each τ ∈ Tm with k∗ ≤ m < 2k

nmE [Bm (τ (Xm))] = o (1) . (4)

These asymptotic equalities imply the asymptotic equality (2)
immediately.

We first prove the asymptotic equality (3). Since

card (T2k) =
1
k!

(
2k

2, 2, · · · , 2

)
=

(2k)!
k!2k

,

and all topologies in T2k are isomorphic to each other, we
have

n2k

(2k)!
E

[ ∑
τ∈T2k

B2k (τ (X2k))

]

=
1
k!

(
n2

2

)k

E [B2k (Ck (X2k))] .
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It is sufficient to show that(
n2

2

)k

E [B2k (Ck (X2k))] ∼

(
β2

2
e−ξ

)k

. (5)

For k = 1, by Lemma 5 we have

n2

2
E [B2 (C1 (X2))]

=
n2

2

∫
Ω

Pr [B2 (C1 (X2)) = 1 | X2 = x] dx

=
n2

2

∫
Ω

e−nν(x1x2)dx1dx2 ∼
β2

2
e−ξ.

So, the asymptotic equality (5) is true for k = 1. Now, suppose
that k ≥ 2, we have(

n2

2

)k

E [B2k (Ck (X2k))]

=
(

n2

2

)k ∫
Γ(Ck)

Pr [B2k (Ck (X2k)) = 1 | X2k = x] dx

=
k∑

l=1

(
n2

2

)k ∫
Γl(Ck)

Pr [B2k (Ck (X2k)) = 1 | X2k = x] dx.

By Lemma 8,(
n2

2

)k ∫
Γk(Ck)

Pr [B2k (Ck (X2k)) = 1 | X2k = x] dx

=
(

n2

2

)k ∫
Γk(Ck)

e−nν(Ck(x))dx ∼
(

β2

2
e−ξ

)k

.

For any 1 ≤ l < k, by Lemma 6 and 7,(
n2

2

)k ∫
Γl(Ck)

Pr [B2k (Ck (X2k)) = 1 | X2k = x] dx

≤
(

n2

2

)k ∫
Γl(Ck)

χ (Ck (x)) e−nν(Ck(x))dx = o (1) .

Thus, the asymptotic equality (5) is true for any k ≥ 2.
Next, We prove the asymptotic equality (4) for any τ ∈ Tm

with k∗ ≤ m < 2k. Since such τ does not exist for k = 1,
we assume that k ≥ 2. Let F be any maximal spanning forest
of τ . Then, the maximum degree of F is at least two and the
minimum degree of F is at least one. By Lemma 9, we have

nmE [Bm (τ (Xm))] ≤ nmE [Bm (F (Xm))]

= nm

∫
Γ(F )

Pr [Bm (F (Xm)) = 1 | Xm = x] dx

≤ nm

∫
Γ(F )

χ (F (x)) e−nν(F (x))dx = o (1) .

So, the asymptotic equality ( (4) is true for any τ ∈ Tm with
k∗ ≤ m < 2k.
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