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Ahwrrct-Connected dominating set (CDS) has been proposed as virtual 
backbone or spine of wireless ad hoc networks. Three distributed apprnxi- 
matinn algorithms have been proposed in the literature for minimum CDS. 
In this paper, we first reinvestigate their performances. None of these al- 
gorithms have constant approximation factors. Thus these algorithms can 
not guarantee to generate a CDS of small size. Their message complexities 
can he as high as 0 (n”) , and their time complexities may also he as large 
as 0 (n”) and 0 (n”). We then present our own distributed algorithm 
that outperforms the existing algorithms. This algorithm has an apprnxi- 
matinn factor of at most 8, 0 (n) time complexity and 0 (n log n) message 
complexity. By establishing the t2 (n log n) lower hound on the message 
complexity of any distributed algorithm for nontrivial CDS, our algorithm 
is thus message-optimal. 

1. INTRODUCTION 

Wireless ad hoc networks can be flexibly and quickly de- 
ployed for many applications such as automated battlefield, 
search and rescue, and disaster relief. Unlike wired networks 
or cellular networks, no physical backbone infrastructure is in- 
stalled in wireless ad hoc networks. A communication session 
is achieved either through a single-hop radio transmission if the 
communication parties are close enough, or through relaying by 
intermediate nodes otherwise. In this paper, we assume that all 
nodes in a wireless ad hoc network are distributed in a two- 
dimensional plane and have an equal maximum transmission 
range of one unit. The topology of such wireless ad hoc net- 
work can be modeled as a unit-disk graph [ 6 1, a geometric graph 
in which there is an edge between two nodes if and only if their 
distance is at most one (see Figure 1). 

Frg. I. Model the topology of wmle\\ ad hoc network\ by unit dl\k graph\. 

Although a wireless ad hoc network has no physical backbone 
infrastructure, a virtual backbone can be formed by nodes in a 
connected dominating set of the corresponding unit-disk graph 
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[ 1][7] [ 101. Such virtual backbone, also referred to as spine, 
plays a very important role in routing, broadcasting and con- 
nectivity management in wireless ad hoc networks [ 11. In gen- 
eral, a dominating set (DS) of a graph G = (V, E) is a subset 
V’ c V such that each node in V - V’ is adjacent to some node 
in V’, and a connected dominating set (CDS) is a dominating 
set which also induces a connected subgraph. A (connected) 
dominating set of a wireless ad hoc network is a (connected) 
dominating set of the corresponding unit-disk graph. To sim- 
plify the connectivity management, it is desirable to find a mini- 
mum connected dominating set (MCDS) of a given set of nodes. 
However, finding an MCDS in unit-disk graphs is NP-hard [ 61, 
and thus only distributed approximation algorithms in polyno- 
mial time are practical for wireless ad hoc networks. In this 
paper, we further show that any distributed algorithm for non- 
trivial CDS requires at least 0 (n log n) messages, where n is 
the number of nodes and the message length has the same order 
of the number of bits representing the node IDS. 

Since the networking nodes in wireless ad hoc networks are 
very limited in resources, a virtual backbone should not only 
be “thinner”, but should also be constructed with low commu- 
nication and computation costs. In addition, the communica- 
tion and computation costs should be scalable as the wireless ad 
hoc networks are typically deployed with large network size. In 
this paper, we first reinvestigate the performance of the three 
known distributed approximation algorithms for MCDS, pro- 
posed by Das et al. in [ 1][7][10], by Wu and Li in [ 121, and 
by Stojmenovic et al. in [ 111, respectively. While the first one 
has a logarithmic approximation factor, the other two both have 
linear approximation factors. Thus none of them can guaran- 
tee to generate a CDS of small size. The algorithms also have 
very high implementation cost in terms of message complexity 
and/or time complexity. We thus present our own distributed 
algorithm that always outputs a nontrivial CDS. This algorithm 
has an approximation factor of at most 8, 0 (n) time complexity 
and 0 (n log n) message complexity. As R (n log n) is a lower 
bound on the message complexity of any distributed algorithm 
for nontrivial CDS, our algorithm is thus a message-optimal dis- 
tributed algorithm for nontrivial CDS. 

A remark is that this paper focuses on the generation of a 
CDS. The maintenance of suboptimal (in terms of approxima- 
tion factor) CDS in a mobile environment is not presented in this 
paper. This is a topic of future study, and the results would be 
presented later. 

The remaining of this paper is organized as follows. In Sec- 
tion 11, we establish a R (n log n) lower bound on the message 
complexity of any distributed algorithm for nontrivial CDS. In 
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Section 111, Section IV and Section V, we analyzes the per- 
formances of the three existing algorithms by Das et al. in 
[ 1][7][10], by Wu and Li in [ 121, and by Stojmenovic et al. in 
[ 111, respectively. In Section VI, we present a better distributed 
algorithm and analyze its performance. Finally, we conclude 
this paper in Section VII. 

II. LOWERBOUNDONMESSAGECOMPLEXITY 

In this section, we establish the R (n log n) lower bound on 
the message complexity for distributed algorithms for leader 
election, spanning tree and nontrivial CDS in wireless ad hoc 
networks. The reduction is made from the following well- 
known bound on the message complexity of distributed leader 
election in asynchronous ring networks with point-to-point 
transmission. 

Theorem 1: 121 In asynchronous rings with point-to-point 
transmission, any distributed algorithm for leader election in 
sends at least R (n log n) messages. 

Theorem 2: In asynchronous wireless ad hoc networks whose 
unit-disk graph is a ring, any distributed algorithm for leader 
election sends at least R (n log n) messages. 

Proofi Let d be any distributed algorithm for leader elec- 
tion in wireless ad hoc networks whose unit-disk graph is a ring. 
Let A* be the algorithm by replacing each wireless transmission 
by two point-to-point transmissions. Then A* is a distributed 
algorithm for leader election in asynchronous rings with point- 
to-point transmission. Note that the algorithm A* sends twice 
messages of that sent by A. Thus from Theorem 1, A must also 
send at least R (n log n) messages. n 

Theorem 3: In asynchronous wireless ad hoc networks whose 
unit-disk graph is a ring, any distributed algorithm for spanning 
tree sends at least R (n log n) messages. 

Proofi Let A be any distributed algorithm for spanning 
tree in wireless ad hoc networks whose unit-disk graph is a ring. 
Note that any spanning tree of a ring consists of all edges in the 
ring except one. Thus it has exactly two leaves which are also 
neighbors. Thus after an spanning tree is completed, the two 
leaves can exchange a message to select the leader between them 
according to some symmetry-breaking criterion, for example by 
their IDS. After the leader is identified, it then notifies all other 
nodes in linear number of message. Thus from algorithm A, 
we can derive a distributed algorithm for leader election whose 
message complexity is 0 (n) more than the number of messages 
sent by A. From Theorem 2, the message complexity of A is at 
least R (n log n) n 

A distributed algorithm for leader election in wireless ad hoc 
networks has been proposed in [ 5 1. This algorithm has message 
complexity 0 (n log n) and therefore is message-efficient. Its 
actual implementation also constructs a spanning tree rooted at 
the leader. 

Theorem 4: In asynchronous wireless ad hoc networks whose 
unit-disk graph is a ring, any distributed algorithm for nontrivial 
CDS sends at least R (n log n) messages. 

Proofi Let A be any distributed algorithm for CDS in 
wireless ad hoc networks whose unit-disk graph is a ring. Note 
that for any nontrivial CDS of a ring consists of all nodes except 
either a unique node or two neighboring nodes. So after an non- 
trivial CDS is completed, the leader can be elected as follows. A 
dominatee declares itself as the leader if both its neighbors are 
dominators, or one of its neighbor is a dominatee but has larger 
ID. The leader then notifies all other nodes in linear number of 
message. Thus from algorithm A, we can derive a distributed al- 
gorithm for leader election whose message complexity is 0 (n) 
more than the number of messages sent by A. From Theorem 2, 
the message complexity of A is at least R (n log n) . n 

III. DAS ET AL.'S ALGORITHM 

The centralized version of the distributed algortthm proposed 
by Das et al. consists of three stages. The first stage finds an 
approximation to Minimum Dominating Set, which is essen- 
tially the well-studied Set Cover problem. Not surprisingly, the 
heuristic proposed by das et al. in [ 1 I[ 7][10] is a translation of 
Chvatal’s greedy algorithm [ 41 for Set Cover, and thus guaran- 
tees an approximation factor of H (a), where a is the maxi- 
mum degree and H is the harmonic function. Let U denote the 
dominating set output in this stage. The second stage constructs 
a spanning forest F. Each tree component in F is a union of 
stars centered at the nodes in U. The stars are generated by let- 
ting each dominatee node pick up an arbitrary neighbor in U. 
The third stage expands the spanning forest F to a spanning tree 
T All internal nodes in T form a CDS. It is easy to show that 
the CDS generated in this way contains at most 3 IU 1 nodes, and 
therefore is a 3H (a)-approximation of MCDS. 

Figure 2 shows a family of instances for which the size of the 
solution computed by the above greedy algorithm is larger than 
the optimum solution by a logarithm factor. All points lie in a 
rectangle whose horizontal side has length one and whose ver- 

tical side has length 2/w. The two nodes ur and 
uk are the centers of the left and right vertical sides respectively. 
The Ic - 2 nodes va,vs,... , uk-1 are evenly distributed within 
the line segment between vrand ZIP from left to right. The two 
nodes ur and ua are the centers of the two sub-rectangles above 
and below the segment between vrand ZIP respectively. The rest 
points lie in the two horizontal sides. In each horizontal side, 
2’ = 1 node lies to the left of (and excluding) the perpendicular 
bisector of 211212, 2k-1 nodes lie to the right of (and excluding) 
the perpendicular bisector of u~~~IJ~, and 2iP1 nodes lie be- 
tween (and excluding) the perpendicular bisector of zli-1~ and 
the perpendicular bisector of zljzli+r. Thus, the total number of 
nodes is 

n = k + 2 + 2 5 22-l = Ic + p+1. 
a=1 
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Fig. 2. In\tmce for which the \,ze of the dutmn output by Da\ et al.‘\ dgo 
nthm, {ulr TQ,. , Q}, L\ larger than the optmum \olutlon, (~1, uz}, by 
a logmthm factor. 

Note that ~1 is adjacent to all nodes lying in the top sub- 
rectangle, u2 is adjacent to all nodes lying in the bottom sub- 
rectangle, and they are adjacent to each other. Thus, (~1, uz} 
forms an MCDS. On the other hand, the above greedy algorithm 
would add vk, vk-1, . . . , ~1 sequentially to the dominating set 
in the first stage and output the set (~1, ~2, . . , uk} as the CDS 
at the end of the second stage. This can be proven by induction 
as follows. 

Initially, the degree of node vi is 

2. 2i-1 + (k - 1) + 2 = 2i + Ic + 1; 

the degrees of the node u1 and u2 are both 

k 
c 2i-1 + k + 1 = 2,+ + k; 
i=l 

and the degree of any other node is 

i: 2iP1 - 1+ 1 + 1 = 2k. 
i=l 

So IJ~ is the first node to be selected. Now we assume that the 
nodes uk, uk-1, . . . , u3 have been added to the dominating set. 
For any node vi with i < j, the number of its neighbors that 
have not been dominated yet is 2 2’-’ = 2i; for the node u1 
or ~2, the number of its neighbors that have not been dominated 
yet is 

j-1 
y2i-1 = 2j-1 - 1; 
Y 
a=1 

and for any other rest node, the number of its neighbors that 
have not been dominated yet is 

3-l c 22-l - 1 = 23-l - 2. 
a=1 

So the node u~j-1 is then added to the dominating set. Therefore, 
by induction, the nodes uk, IJ~-1, . , IJ~ are added sequentially 
to the dominating set. Note that (~1,212, . . . , ok} is a CDS. The 
first stage will stop after u1 is added, and the second stage would 
add no more nodes. 

Since n = Ic + 2’+l and a = 2’ + Ic + 1, we have Ic > 
logn - 2 and Ic > log a - 1. Therefore, the instance shown in 
Figure 2 implies the lower bounds !XJZ - 1 and y - i on 
the approximation factor of the greed ilgorithm. 

The distributed implementation of the above greedy algorithm 
proposed in [ 1 ][ 7][ 101 has very high time complexity and mes- 
sage complexity. Indeed, both time complexity and message 
complexity can be as high as 0 (n”) We also notice that such 
distributed implementation is technically incomplete. For exam- 
ple, the distributed implementation consists of multiple stages, 
but the implementation lacks lack mechanisms to bridge two 
consecutive stages. Thus, individual nodes have no way to tell 
when the next stage should begin. While these technical incom- 
pleteness are possibly to be fixed, we will not take such effort 
here as the approximation factor of the greedy algorithm is in- 
trinsically poor. 

In summary, we have the following performance results of the 
distributed algorithm in [ 1 ] [ 7 ] [ lo]. 

Theorem 5: The approximation factor of the distributed algo- 
rithm proposed by Das et al. in [ 1 I[ 7][10] is between y - i 
and 3H (a). Both its message complexity and time complexity 
are 0 (n”). 

IV. Wu AND LI’S ALGORITHM 

While the algorithm proposed by Das et al. first finds a DS 
and then grow this DS into a CDS, the algorithm proposed by 
Wu and Li in [ 121 takes an opposite approach. The algorithm 
in [ 12 ] first finds a CDS and then prune certain redundant nodes 
from the CDS. The initial CDS U consists of all nodes which 
have at least two non-adjacent neighbors. A node u in U is con- 
sidered as locally redundant if it has either a neighbor in U with 
larger ID which dominates all other neighbors of u, or two ad- 
jacent neighbors with larger IDS which together dominates all 
other neighbors of u. The algorithm then removes all locally re- 
dundant nodes from U. This algorithm applies only to wireless 
ad hoc networks whose unit-disk graph is not a complete graph. 
As indicated in [ 121, the approximation factor of this algorithm 
remains unspecified. Obviously, the MCDS of any wireless ad 
hoc network whose unit-disk graph is not complete graph con- 
sists of at least two nodes. On the other hand, any CDS contains 
at most n nodes. Thus, the approximation factor of the above 
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algorithm is at most ; where n is the number of nodes. Next, 
we show that the approximation factor of the above algorithm 
is exactly :. This means that the above algorithm does perform 
extremely poorly over certain instances. 

When n is even, we consider the instance illustrated in Figure 
3(a). These nodes are evenly distributed over the two horizon- 
tal sides of a unit-square. Each node has exactly m neighbors, 
one in the opposite horizontal side and the rest in the same hor- 
izontal side. Any MCDS consists of a pair of nodes lying in a 
vertical segment. However, the CDS output by the algorithm in 
[ 121 consists of all nodes. Indeed, for each node u, the unique 
neighbor lying in the opposite horizontal side is not adjacent to 
all other neighbors of U. Thus, the initial CDS U consists of all 
nodes. In addition, no single neighbor of a node u can dominate 
all other neighbors of U. Furthermore, if a pair of neighbors of 
u are adjacent, they must lie in the same horizontal side as U, 
and therefore neither of them is adjacent to the unique neigh- 
bor of u lying in the opposite horizontal side. So no node is 
locally redundant. Consequently the output CDS still consists 
of all nodes. 

Y Y Y Y Y 
I I I I I 
I I I I I 
I I I I I 
I I I I I 
I I I I I 
I I I I I 
I I I I I 
I I I I I 
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I I I I I 
I I I I I 
I I I I I 
I I I I I 
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(h) 
Fig. 3. In\tance for which the CDS output by Wu and LI’\ algorithm con\l\t\ of 

aII node\ but the MCDS con\l\t\ of only two node\. 

When n is odd, we consider the instance illustrated in Figure 
3(b). The node with the largest ID, denoted by u*, is the center 
of the left vertical side of a unit-square, and all other n - 1 
nodes are evenly distributed over the two horizontal sides of the 
unit-square. The two nodes at the left two corners of the unit- 
square forms an MCDS. On the other hand, the CDS output by 
the algorithm in [ 121 also consists of all nodes. In fact, following 
the same argument as in the even case, all nodes other than U* 
are in the initial CDS U. The node U* is also in the initial CDS 
U as well. Since U* is not adjacent to the two nodes at the right 
corners of the unit-square, all nodes other than U* are not locally 
redundant. The U* itself is also not locally redundant as it has 
the maximum ID. Therefore, the output CDS still consists of all 
nodes. 

The distributed implementation of the above algorithm given 
in [ 121 runs in two phases. In the first phase, each node first 
broadcasts to its neighbors the entire set of its neighbors, and 
after receiving this adjacency information from all neighbors it 
declares itself as dominator if and only if it has two nonadjacent 

neighbors. These dominators form the initial CDS. In the second 
phase, a dominator declares itself as a dominatee if it is locally 
redundant. Note a dominator can find whether it is locally re- 
dundant from the adjacency information of all its neighbors. It is 
claimed in [ 121 that the total message complexity is 0 (nA) and 
the time complexity at each node is 0 (a’). A more accurate 
message complexity is 0 (m) where m is the number of edges 
in the unit-disk graph, as each edge contributes two messages 
in the first phase. The 0 (aa) ttme complexity, however, is not 
correct. In fact, in order to decide whether it is locally redun- 
dant in the second phase, a node u in the initial CDS may have 
to examine as many as 0 (aa) pairs of neighbors, and for each 
pair of neighbors, as much as 0 (a) time may be taken to find 
out whether such pair of neighbors together dominates all other 
neighbors of U. Therefore, the time complexity at each node 
may be as high as 0 (as), instead of 0 (a’). Note that m and 
a can be as many as 0 (n”) and 0 (n) respectively. Thus, the 
message complexity and the time complexity of the distributed 
algorithm in [ 121 are 0 (n”) and 0 (n”) respectively. The in- 
stances shown in Figure 3 do require such complexities. 

In summary, we have the following performance results of the 
distributed algorithm in [ 12 1. 

Theorem 6: The approximation factor of the distributed algo- 
rithm proposed by Wu and Li in [ 121 is exactly ;. Its message 
complexity is 0 (m) and its time complexity is 0 (as). 

V STOJMENOVIC ETAL.'S ALGORITHM 

In the context of clustering and broadcasting, Stojmenovic et 
al. [ 111 presented three synchronized distributed constructions 
of CDS. In each of the three constructions, the CDS consists 
of two types of nodes: the cluster-heads and the border-nodes. 
The cluster-heads form a maximal independent set (MIS), i.e., a 
dominating set in which any pair nodes are non-adjacent. A 
node is a border-node if it is not a cluster-head and there at 
least two cluster-heads within its 2-hop neighborhood. The set 
of cluster-heads is induced by a ranking of nodes which give 
rise to a total ordering of all nodes. Three rankings are used: 
the ID only [ 8 I[ 91, an ordered pair of degree and ID [ 3 1, and 
an order pair of degree and location [ 111. The selection of the 
cluster-heads is given by a synchronized distributed algorithm, 
which can be generalized to the following framework. Initially 
all nodes are colored white. In each stage of the synchronized 
distributed algorithm, all white nodes which have the lowest 
rank among all white neighbors are colored black; then all white 
nodes adjacent to the these black nodes are colored gray; finally 
the ranks of the remaining white nodes are updated. The algo- 
rithm ends when all nodes are colored either black or gray. All 
black nodes then form the cluster-heads. 

Regardless of the choice of the ranking, the algorithms in [ 111 
have a 0 (n)approximation factor. Such inefficiency stems from 
the non-selective inclusion of all border-nodes. In fact, if the 
rank is ID only, Figure 4 shows a family of instances which 
would imply the approximation factor to be exactly n, the worst 
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possible. In these instances, the node with the largest ID is lo- 
cated at the center of a unit-disk and all other nodes are evenly 
distributed in the boundary of the unit-disk. After the cluster- 
heads are selected, all other nodes become border-nodes. Thus 
the CDS would consist of all nodes. On the other hand, the node 
at the center dominates all other nodes. If the rank is an ordered 
pair of degree and ID or an order pair of degree and location, 
the instances shown in Figure 3 imply that their approximation 
factors are at least 7. 

which can be constructed by the distributed leader-election al- 
gorithm in [ 5 1 with 0 (n) time complexity and 0 (n log n) mes- 
sage complexity. Given a rooted spanning tree T, the (tree) level 
of a node is the number of hops in T between itself and the root 
of T. (Thus the level of the root is 0.) The rank of a node is then 
given by the ordered pair of its level and its ID. Such ranking 
gives rise to a total ordering of the nodes in the lexicographic 
order. The following distributed process enables each node to 
calculate its own rank and the number of lower-ranked neigh- 
bors. 

Fig. 4. In\tance for which the CDS output by ?dOJ,TNKW et al.‘\ algorithm 
con\l\t\ of all node\ but the MCDS con\l\t\ of only one node. 

All algorithms in [ 111 have 0 (n”) message complexity and 
R (n) time complexity. This can be illustrated in the following 
instance: All n nodes are evenly distributed in an interval of 
length n - 1 with two nodes being the endpoints of the interval. 
The ith node from the left endpoint of interval has ID i (i.e., the 
IDS increase from left to right). 

In summary, we have the following performance results of the 
distributed algorithm in [ 111. 

Theorem 7: The distributed algorithms proposed by Stoj- 
menovic et al. in [ 111 have an approximation factor of 7 or 
n, 0 (n”) message complexity, and R (n) time complexity. 

VI. ABETTERDISTRIBUTEDALGORITHM 

Our distributed algorithm for CDS consists of two phases. 
These two phases construct a maximal independent set (MIS), 
and a dominating tree, respectively. They are described and an- 
alyzed in the next three subsections. 

A. MIS Construction 

By definition, any pair of nodes in an MIS are separated by at 
least at two hops. However, a subset of nodes in an MIS may be 
three hops away from the subset of the rest nodes in this MIS. 
The MIS constructed in this section guarantees that the distance 
between any pair of its complementary subsets is exactly two 
hops. Our construction uses a carefully chosen rank definition. 
The ranking is induced by an arbitrary rooted spanning tree T, 

Each node maintains two local metering variables ~1 and x2. 
The variable x1 counts the number of neighbors whose levels 
have not yet been identified and is thus initialized to the num- 
ber of neighbors. The variable x2 counts the number of children 
who have not yet reported the completion and is thus initialized 
to the number of children. Each node also maintains a levelList 
that records the levels of its neighbors and is initially empty, 
and a local variable y which stores the number of lower-ranked 
neighbors. After the rooted spanning tree T is constructed, the 
root announces its level 0 by broadcasting a LEVEL message. 
Upon receiving a LEVEL message, a node appends an entry 
consisting of the sender’s ID and level to levelList and then 
decrements x1 by 1. If the sender is its parent in T, it sets its 
own level to one plus the sender’s level, and then announce this 
level by broadcasting a LEVEL message. If x1 = 0, it sets y 
to the number of lower-ranked neighbors which can be calcu- 
lated from levellist. If it is a leaf in T (i.e. x2 = 0 initially) 
and its own level has been determined, it transmits a LEVEL- 
COMPLETE message to its parent. Upon receiving a LEVEL- 
COMPLETE message towards itself, a node decrements 22 by 
1; if x2 = 0 after the update and it is not the root, a node 
transmits a LEVEL-COMPLETE message to its parent and then 
resets x2 to the number of children. When the local variable 
x2 = 0 at the root, the root simply resets x2 to the number of 
children. By this time, all nodes knows the ranks of its own and 
all its neighbors and thus the root will move on the construction 
of the MIS by a color-marking process. 

All nodes are initially marked with white color and will be 
marked with either gray or black eventually. Each node also 
maintains a blackList which records the IDS of its black neigh- 
bors. Note that the blackList can contain at most five black 
nodes. The root first marks itself black and broadcasts a BLACK 
message. Upon receiving a BLACK message, a node adds the 
sender’s ID to blacklist, and if its color is still white, it marks 
itself gray and broadcasts a GRAY message which contains its 
level. Upon receiving a GRAY message, if the rank of the sender 
is lower than its own, a white node decrements y by 1; if y = 0 
after the update, it marks itself black and broadcasts a BLACK 
message. When a leaf node is marked with either gray or black, 
it transmits a MARK-COMPLETE message to its parent. Upon 
receiving a MARK-COMPLETE message towards itself, a node 
decrements x2 by 1; if x2 = 0 after the update and it is not the 
root, a node transmits a MARK-COMPLETE message to its par- 
ent. By the time when the local variable x2 = 0 at the root, all 
nodes have been marked with either gray of black and thus the 
root will move on the construction of the CDS. 
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Fig. 5. An example of the MIS construction (a)-(g) and dominating tree con 
struction (h)-(k). 

Figure 5 illustrates the algorithm for color marking in this 
phase. In the graph, the IDS of the nodes are labelled beside 
the nodes, and node 0 is the leader elected in the first phase. 
The solid lines represent the edges in the rooted spanning tree 
T, and the dashed lines represents other edges in the unit-disk 
graph. The ordering of the nodes by rank is given by O,4, 12,2, 
5, 8, 10, 3,6,9, 11, 1,7. A possible execution scenario is shown 
in Figure 5(a)-(g). The nodes 0, 5, 3, and 7 are the black nodes 
and form a CDS. 

The construction of the CDS in the next phase relies on the 
following property of the black nodes. 

Theorem 8: All black nodes form an MIS and any pair of 
complementary black subsets are separate by exactly two hops. 

Proof? Let U = {ui : 1 < i < Ic} where ui is the ith node 
which is marked black. From the construction, any pair of black 
nodes are not adjacent to each other and thus U is an MIS. For 
any 1 < j < Ic, let Hj be the graph over {ui : 1 < i < j} in 
which a pair of nodes is connected by an edge if and only if 
their graph distance in G is two. We prove by induction on j 
that in Hj is connected. Since HI consists of a single vertex, it 
is connected trivially. Assume that Hj+1 is connected for some 
j > 2. When the node uj is marked black, its parent in T 
must be already marked gray. Thus, there is some node ui with 
1 < i < j which is adjacent to uj’s parent in T. So (ui, uj) is an 
edge in Hj. As Hj+1 is connected, so must be Hj. Therefore, 
Hj is connected for any 1 < j < Ic. The connectedness of 

HI, then implies that any pair of complementary subsets of U is 
exactly two. n 

B. Dominating Tree Construction 

The second phase constructs a dominating tree T* whose in- 
ternal nodes would become a CDS. Each node maintains a local 
boolean variable z which is initialized to 0 and set to 1 after 
the node joins the tree T*. Each node also maintains a local 
variable parent which stores the ID of its parent in T* and is 
initially empty, and a chidrenList which records the IDS of its 
children in T* and is initially empty. The root of T* is a (gray) 
neighbor of the root of T which has the largest number of black 
neighbors. To select the root for T*, the root of T also maintains 
a variable root and a variable degree which is initialized to 0. 

The root of T first resets the local variable ~1 to the num- 
ber of its neighbors and then broadcasts a QUERY message. 
Upon receiving a QUERY message, a (gray) node transmits to 
the sender a REPORT message which contains the number of its 
black neighbors. Upon receiving a REPORT message towards 
itself, the root of T decrements ~1 by one, and if the number 
of the black neighbors of the sender is greater than the value of 
degree, it resets degree to the number of the black neighbors 
of the sender and also resets the variable root to the ID of the 
sender. If ~1 = 0 after the update, the root of T transmits a 
ROOT message to the node whose ID is stored in the local vari- 
able root. Upon receiving the ROOT message towards itself, a 
node becomes the root of T*. It sets x = 1 and then broad- 
casts an INVITE2 message. All other nodes joins the tree T* 
according to the following principle. 
. Upon receiving an INVITE2 message, a black node with x = 
0 sets z = 1 and parent to the ID of the sender, transmits a JOIN 
message towards the sender, and then broadcasts an INVITE1 
message. 
. Upon receiving an INVITE1 message, a gray node with z = 0 
sets x = 1 and parent to the ID of the sender, transmits a JOIN 
message towards the sender, and then broadcasts an INVITE2 
message. 
. Upon receiving a JOIN message towards itself, a node adds 
the ID of the sender to chidrenlist. 

Theorem 8 guarantees that whenever there is any black node 
outside the current T*, at least one black node would join T*. 
Thus eventually all black nodes will join T*. Consequently, all 
gray nodes will join T* eventually. The internal nodes of T*. 

Figure 5 (h)-(k) illustrates a possible scenario of the dominat- 
ing tree. The thick links are edges in the dominating tree. The 
internal nodes 12,O, 5, 7,2, 3 form a CDS. 

We first analyze the message complexity and time complexity 
of our distributed algorithm. After the rooted spanning tree T is 
constructed, the MIS construction in the first phase additionally 
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uses linear messages and takes at most linear time. The con- 
struction of the dominating tree T* also uses linear messages 
and takes at most linear time. Thus besides the construction of 
the tree T, our algorithm uses 0 (n) messages and takes 0 (n) 
time. Since the algorithm in [ 5 1 used for the construction of T 
has 0 (n log n) message complexity and 0 (n) time complexity, 
our algorithm has 0 (n log n) message complexity and 0 (n) 
time complexity in overall. Note that the message complexity 
of our algorithm is dominated by the construction of a rooted 
spanning tree. 

Next we analyze the size of the out CDS, which is the number 
of internal nodes in T*. Let OPT be any minimum CDS and 
let opt denote the size of OPT. We begin with the following 
property of the independent sets. 

Lemma 9: The size of any independent set in a unit-disk 
graph G = (V, E) is at most 4opt + 1. 

Proof? Let U be any independent set of V, and let T’ 
be any spanning tree of OPT. Consider an arbitrary preorder 
traversal of T’ given by ~1,212, . . . , uopt. Let Ur be the set of 
nodes in U that are adjacent to ~1. For any 2 < i < opt, let 
Ui be the set of nodes in U that are adjacent to vi but none of 
v1,7J2;.. , vi-r. Then Ul, Uz, . . . , U,,, form a partition of U. 
As ~1 can be adjacent to at most five independent nodes, 1 UlI < 
5. For any 2 < i < opt, at least one node in ul, v2,. . . , uiPl 
is adjacent to zli. Thus Ui lie in a sector of at most 240 degree 
within the coverage range of node vi (see Figure 6). This implies 
that IUil < 4. Therefore, 

Proof? If there is a black node in OPT, then following the 
similar proof to Lemma 9 we can show that the total number of 
black nodes is at most 

1 + 4 (opt - 1) = 4opt - 3. 

Since each internal gray node in T* has at least one black child, 
the total number of internal gray nodes in T* is no more than the 
number of black nodes. Thus the total number of internal nodes 
in T* is at most 

2 (40pt - 3) = Bopt - 6. 

Now we assume that no black node is in OPT. Let K be the 
number of black nodes adjacent to the root of T*. Then Ic < 5, 
and following the similar proof to Lemma 9 we can show that 
the total number of black nodes is at most K + 4 (opt - 1). Note 
that the root of T* has exactly Ic black children and any internal 
gray node other than the root of T* has at least one black child. 
Thus the total number of internal gray nodes in T* other than 
the root of T* is at most 4 (opt - 1). So the number of internal 
nodes in T* is at most 

4 (opt - 1) + Ic + 1 + 4 (opt - 1) 
= Bopt - 7 + k < Bopt - 7 + 5 = Bopt - 2. 

Thus the lemma is true in either case. n 

In summary, we have the following performance results of our 
distributed algorithm. 

Theorem 11: Our distributed algorithm has an approximation 
factor of at most 8, 0 (n) time complexity, and 0 (n log n) mes- 
sage complexity. 

This completes the proof. n VII. CONCLUSION 

Fig. 6. Ui lie in a sector of at most 240 degree within the coverage range of 
node ‘ui 

In this paper, we have established a fl (n log n) lower bound 
on message complexity of any distributed algorithm for non- 
trivial CDS. We then reinvestigated three known distributed ap- 
proximation algorithms for MCDS. After that we presented our 
own algorithm. The performance comparison of these four al- 
gorithms is listed in Table I. From this table, we can conclude 
that our algorithm outperforms the existing algorithms. 

TABLE I 
PERFORMANCECOMPARISON 

Lemma 9 and its proof implies the following upper-bound on 
the size of the CDS generated by our algorithm. 

Lemma 10: The number of internal nodes in T* is at most 
Bopt - 2. 
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