
Power Assignment for k-Connectivity in Wireless 
Ad Hoc Networks 

Xiaohua Jia' Dongsoo Kimt Sam Makki+ Peng-Jun Wad  Chih-Wei Yis 

Abstrmf-The prohlem Min-Power k-Connectivity 
seeks a power assignment to the nodes in a given wireless 
ad hoc network such that the produced network topology 
is k-connected and the total power is the lowest, In this 
paper, we present several approximation algorithms for 
this problem. Specifically, we propose a Yk-approximatiun 
algorithm for any k 2 3, a (k -t E H  (k))-approximation 
algorithm for k (2k - 1) 5 TI where n is the network 
size, a (k + 2 [(k i- 1) /21)-approximatiun algorithm for 
2 5 k 5 7, a &approximation algorithm for k = 3, and a 
9-approximation algorithm fur k = 4. 

index Terms- I;-connectivity, power assignment, wire- 
less ad hoc sensor networks 

I .  INTRODUCTION 

One of the major concerns in ad hoc wireless networks 
is reducing node power consumption. In fact, nodes 
are usually powered by batteries of limited capacity. 
Once the nodes are deployed, it is very difficult or 
even impossible to recharge or replace their batteries 
in many application scenarios. Hence, reducing, power 
consumption is often the only way to extend network 
lifetime, For the purpose of energy conservation, each 
node can (possibly dynamically) adjust its transmitting 
power between zero and its maximal transmission power. 
Throughout this paper, we use V to denote the set 
of networking nodes and p(v) to denote the maximal 
transmission power of node 'II. In addition, we use c ( U V )  

to represent the power requirement for both node U and 
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node 'U LO establish a bidirectional link between U. and 'U. 

Then the wireless ad hoc network can be represented by 
a weighted graph G = (V: E:  c)  with edges uv whenever 
c (UV) 5 min ( p  ( U )  , p ( U ) ) ,  A power assignment to IT is 
a function p : V + R such that 0 I y(v) 5 p(v) for 
each v E 17. The network topology produced by a power 
assignment is a spanning subgraph of G with edges UN 
whenever c (w) 5 min ( p  ( U )  , p (TI)). 

Two or more paths in a (di)graph are iridepeiiderzt 
if none of them contains an inner vertex of another. 
A (di)graph is k-connected if it  contains at least k 
independent paths between any pair of distinct vertices. 
By the well-known Menger's theorem, a (di)graph I;- 
connected if and only if the deletion of any set of 
less than k nodes leaves a connected (di)graph. The 
connectivity of (di)graph is defined to be the maximum 
k for which it is k-connected. In this paper, we study 
the following Min-Power k-Connectivity problem: Find 
a power assignment with minimal total power to a given 
set of network nodes which produces a I;-connected 
topology. An alternative description of this problem is 
as follows: For any subgraph H of G? define p~ ( U )  = 
m a x U v E ~ c ( u v )  for each II E 17 ( H )  and p ( N )  = xVEV(H) p~ (w); we call p ( H )  the power (or power 
cost) of U .  Since assigning p ( U )  2 pel. (U )  is necessary 
to produce the subgraph H and p ( v )  > p~ ( U )  is just 
wasting power, the Min-Power Wonnat iv i ty  problem 
is equivalent to finding a k-connected spanning subgraph 
H of G with minimum p (Hi). 

For k = 1 or 2, the Min-Power le-Connectivity 
problem is NP-hard even with nodes located in a two- 
dimensional Euclidean plane (see [2] for k = 1 and 
[41 k = 2). Thus, only polynomial-time approximation 
algorithms would be expected. It is strongly believed that 
for any positive integer I;, the problem min-power for 
E-connectivity is NP-hard as well. Various appraxima- 
tion algorithms have been proposed for Min-Power k- 
Connectivity with different values of IC.  Table I summa- 
rizes the best-known approximation ratios published in 
the literature and the new approximation ratios obtained 
in this paper. More related works can be found from the 
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TABLE r 
BEST-KiVOWN APPROXIMATION RATIOS A N D  THE APPROXIMATION 

RATTIOS OBTAINED IN THIS PAPER. H ( k )  IS THE k-TH HARMONIC 

NUMBER. 

The 
lows. 
tions. 
power 

remaining of this paper is organized as fol- 
Section I1 defines relevant terms and nota- 
Section 111 presents several properties of the 
cost. Section 4 gives a generic approach to ap- 

proximation algorithms for Min-Power k-Connectivity, 
which leads to a 3k-approximation algorithm for any 
k 2 3, a ( k +  12H(k))-approximation algorithm 
for k ( 2 k  - 1) 5 n, and a ( k + Z  [(k + 2) /2 l ) -  
approximation algorithm for 2 5 k 5 7. Section 7 
presents a 6-approximation algorithm for Min-Power 
Xonnectivity. Section 8 presents a 9-approximation 
algorithm for Min -Power 4-Connectivi ty. 

11. DEFINITIONS AND NOTATIONS 

Throughout this paper, we use G = (l7: E,c)  to 
represent the wireless ad hoc network and assume that 
G is k-connected. We denote by OPT a min-power 
k-connected spanning subgraph of G, and by opt the 
power cost of OPT. For any H C G, we define 

We use H to represent the weighted graph obtained from 
H be replacing every edge u'u of G with two oppositely 
oriented arcs UZI  and vu with the same weiight as the 
edge ULV in H .  We also use c ( H )  to denote the weight 
of H .  

+ 
For any D C G, we define p~ (U) = max,,ED c (uu) 

for each U f V (D) and p ( D )  = r?LEV(D) P D J  (U); we 
call p ( D )  h e  power of D. We also define c ( D )  = 
CeEE(D) c ( e ) ;  we call c (D) the weighr of D. The 
out-degree of a node 0 in D is denoted by degD(v). 
The maximum out-degree of D, i.e. maxVEI/ degjj (v}, 
is denoted by A- (D). D is called an in-brunch if 

A- (0) = 1. An in-branch is called an in-arborescence 
if exactly one node, referred to as root, has zero out- 
degree. We use to represent the undirected graph 
obtained from D by ignoring the orientations of the links 
and then removing multiple edges between any pair of 
nodes. 

For any 1 5 i 5 k ,  Iet be the i-nearest-neighbor 
subgraph of C: is a spanning subgraph of G, denoted 
by G,, in which there is an edge between two nodes 
'U and ?I if and only if either II is one of the i nearest 
neighbor of v in G,or vice versa. 

A (di)_eraph is said to be b-irzconnected to a node T 

if it contains H independent paths to T from any other 
vertex. Let r be an arbitrary vertex of D. A min-weight 
spanning subdigraph of R which is k-inconnected to r ,  
if there is any, can be found in polynomial time by an 
algorithm of Frank and Tardos [8]. Gabow 191 has given 
an implementation of the Frank-Tardos algorithm that 
runs in time 0 (k2n2m) where n, and m are the number 
of vertices and number of arcs respectively of D. A min- 
weight spanning subdigraph of D which is k-inconnected 
to s and in which the in-degree of T is exactly k ,  if there 
is any, can also be found in polynomial time by applying 
Lhe Frank-Tardos algorithm to an auxiliary graph [l]. 

The problem Min-Weight k-Connectivity problem 
takes as input a k-connected weighted graph G and seek 
a k-connected spanning subgaph of G with minimum 
weight. It is NP-hard for any fixed k 2 2. A k -  
approximation algorithm was given in [ll],  For 2 5 
le 5 7 ,  191 -approximation aigorithms were developed 
in [l] for k = 2,3,  in 171 for k = 4,5, and in 
[ l l ]  for k = 6,7. For the case n 2 k ( 2 k  - l)', 
a 6H (k)-approximation algorithm was devised in 161, 
where H ( k )  is the 6-th harmonic number. 

Let H be a subgraph of a k-connected graph G. A 
subgraph P of G is called a k-connectivio augmentation 
to H if HU F is a k-connected spanning subgraph of G. 
The problem Min-Weight I;-Connectivity Augmentation 
takes as input a k-connected weighted graph G and a 
subgraph N of G, and seeks a k-connectivity augmen- 
tation to H in G with minimum weight. We remark 
that any p-approximation algorithm A for Min-Weight 
k-Connectivity problem is dso a p-approximation al- 
gorithm for Min-Weight k-Connectivity Augmentation 
problem. Indeed, for finding a k-connectivity augmen- 
tation to subgraph H of G = (V, E , c ) ,  we define a 

'In the paper [6], 7t is requlred to be at least 6k2. The bound 
n 2 k (2k - 1) is given by a recent work [14]. 
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new edge-weight function c' by c' (e) = 0 for any edge 
e of H and ~ ' ( e )  = c(e) for any other edge e of G. 
Then we apply A to the graph (V, E: e') to obtain a I;- 
connected spanning subgraph H'. Then the graph H'\N 
is a k-connectivity augmentation to N and c (H' \ H) = 
c' (N' \ N) is at most p times of the minimum weight 
of a 6-connectivity augmentation to H .  

For any graph H and any 5' C V ( H ) ,  S is said to 
he k-carinectecl in H if H contains k independent paths 
between every pair of distinct vertices of S .  Any graph 
with at least five vertices with minimal degree at least 
I ;  2 2 contains a b-connected subset S of four vertices 
[13]. In particular, Gd contains a 4-connected subsets S 
of four vertices. 

111. BASIC PROPERTIES OF POWER COST 

In this section, we present some basic properties of 
power cost. The next lemma presents a relation between 
the power and the weight of a directed graph. 

LemnzaI: For any D 2 2, p ( D )  5 c ( D )  5 
A- (m ' Y ( D ) .  

Proof Since 

u E V ( D )  u2>EE(D) e W D )  

the first inequality hoids. Since 

c ( D ) =  c ( e > =  c(uu> 
eEE(D) u E V ( D )  uwEE(D) 

The inequalities in Lemma 1 are tight. Indeed, if D 
is an in-branch, then p (D) = c ( D ) ;  if D is a uniform- 
weighted out-star, then c ( D )  = A- (D) . p ( D ) .  

The next lemma presents a relation between the power 
and the weight of an undirected graph. 

Lemrraa 2: For any I1 C G. p (If) 5 2c ( H ) .  If H is 
a forest, then p ( H )  > c (H). 

Pruufl Since 

the first inequality holds. 
For the second inequality, we first prove that for any 

tree T, c (7') < p (T) .  Let 'U be an arbitrary verlex of T .  
Orient T to an in-arborescence B rooted at U .  Then 

c(T)  = c ( B )  = p ( B )  < p ( T ) .  

Now let '7'1 ~ T2: . . ' ~ & be the tree components of H. 
Then 

E 1 

c ( H )  = c UT; = &(Ti) < &(TJ = p ( H ) .  

(4) 

c1 1 2=1 2=1 

Clearly, for any H C G, p (2) = p (B)  and 

c H = 2c ( H ) .  The next lemma presents the relations 
between the weights (respectively, powers) of a directed 
graph D and its undirected version B. 

Lemma 3: For any D 2 2, 
c(D) 5 c (a> 5 2 c ( D )  ~ 

P ( D )  5 P p )  I (A- ( D )  + I ) p ( D ) .  

Proof: Clearly, c ( D )  5 c (D) 5 2c ( D )  and 
p (D) I p (D). In the next, we prove that p (B) 5 
(A-(D) + l ) p ( D ) ,  For each node 'U, let v' be it.. 
farthest incoming neighbor. Then, 

m = " (YO ( U )  > c (vv') } 
I " { P D  ('U) 1 P D  ('U') 1 
I PU (4 f Y D  (U') . 

In order to bound p (a), we introduce the following 
chuging mechanism: each node 'U imposes a charge of 
p D  (d) on d. Then p (D) is at most p ( D )  plus the total 
charges imposed by all nodes. Since the out-degree of 
D is A- (D), each node receives charges from at most 
A- (D) other nodes. Thus the total charge imposed on 
a node U is at most A- ( D )  p o  ( U ) .  So the total charges 
imposed by all nodes is at most h-(D)p(D). This 

The inequalities in Lemma 1 are tight. Indeed, if D is 
a uniform-weighted directed cycle. then c ( D )  = c p) 
and p (D) = p (n); if D is a uniform-weighted out-star, 
then p p) = (A- ( D )  + 1) . p ( D ) ;  if for *my pair of 
point 'U. and 'U, either both u,v and vu are in D ,  or neither 
of them is in D,  then c 0 = 2c (D). 

implies that p (D) 5 (A- ( D )  + 1) p (D). 
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IV.  CONNECTIVITY 

Let A be any approximation algorithm for Min-Weight 
Xs-Connectivity. We propose the following two-phased 
approximation algorithm for Min-Power k-Connectivity : 
Phase 1 constructs the ( k  - 1)-nearest-neighbor graph 
Gx- -~ .  Phase 2 applies A to find a k-connectivity 
augmentation F to Gk-1 and outputs Gk-1  U F. Its 
approximation ratio is given by the following theorem. 

Theorem 4: Let A be any p-approximation algorithm 
for Min-Weight k-Connectivity , Let F be the k- 
connectivity augmentation to Gk-l produced by the 
algorithm A. Then Gk-1 U F is k-connected and 
p (Gk-1 U F )  5 ( k  + 2p) opt. 

The proof of Theorem 4 shall be based on the two 
Iemma below, The first lemma gives an upper hound on 
the power cost of the i-nearest-neighbor graph Gi. 

Leiiirna 5: For any 1 5 I: 5 k ,  p (Gi) I (4 + 1) opt. 

ProoJ Let Di be the digraph in whtch there is an 
arc from U to ‘U if and onty if 2: is one of the i nearest 
neighbors of U.  Then the maximum out-degree of D is 
exactly i and Gi = E. Since the minimum degree of 
OPT is at feast k,  for every node ‘U, PO, ( U )  I p o p r  (U) 
for every node ‘U. Thus, p (0%) 5 p (OPT)  = opt. By 
Lemma 3, 

p (Gi) I (i + 1) p (oil I (2 + 1) opt. 

H 

The second lemma gives an upper bound on the weight 
of a minimum-weighted le-connectivity augmentation to 
a graph with minimum degree at least IC - 1. 

Lemma 6: Let H be a spanning subgraph of G with 
minimum degree at least k- I. Then the minimum weight 
of a k-connectivity augmentation to H is less than opt. 

Prooj Since OPT is Ic-connected, it contains a 
k-connected augmentation to H. Let F c OPT be a 
minimum-weighted k-connectivity augmentation to H .  
We first claim that F is a forest. Assume that F is not a 
forest. Then F contains a cycle C. Since F has minimum 
weight, every edge e of F is critical in H U F with 
respect to k-connectivity, in other words, (H U F) \ e 
is not b-connected. By Mader’s theorem on “cycle of 
critical edges” [12 ] ,  C contains a node of degree k in 
H U F .  On the other hand, every node of C is incident 
CO two edges of C and to at least IC - 1 edges of H .  This 

means that the degree of every node of C is at least K i -  1, 
which is a contradiction. Therefore, F must be a forest. 
By Lemma 2, 

c ( F )  < p ( F )  5 p (OPT) = opt. 

So, the lemma follows. U 

Now we ready to prove Theorem 4. The k-connectivity 
of Gk-1 U F is trivial since F since I;-connectivity 
augmentation to Gk-1 .  By Lemma 6, c ( F )  < p . opt, 
which implies that p ( F )  < 2p . opt. By Lemma 5, 
p (Gk-1) 5 k . opt. Therefore 

p (Gk-1 U F )  I P (Gk-1) + Y ( F )  -=c ( k  + 2 ~ )  o ~ t .  

By choosing the algorithm by Kortsarz and Nutov [ 111 
as A, we obtain a 3kapproximation algorithm. For n. 2 
k (2k - I), by choosing the approximation algorithm by 
Cheriyan et al. [6] as A. we obtain a approximation ratio 
is (A: + 12 In b)-approximation algorithm. For 3 5 k I 
7, by choosing the algorithms in [I], [7] ,  [ I  11 as A, we 
get ( IC + 2 )-approximation dgorithms. However, 
for k = 3 and 4, even better approximation algorithms 
are possible, we are presented in the next two sections. 

v. 3-CONNECTIVITY 

In this section, we present a 6-approximation algo- 
rithm for Min-Power 3-Connectivity. It is motivated by 
the following theorem. 

Theorem 7: Let D be the min-weighted 3- 
inconnected spanning subdigraph of G in which 
the in-degree of the (unique) node without outgoing 
links is exactly 3. Then, D is 3-connected and 

- 
p (TI < 6 .  opt. 

Proufi The 3-connectivity of D follows Corollary 
3.2 in [ 11. Next, prove that p (E)  < 6.  opt. Two or mote 
rooted spanning trees of a graph G having the same root 
r’ are said indeperzdenr if for each vertex li of G the 
[unique) paths between v and T along these spanning 
trees are independent. I1 was proved independently by 
Cheriyan and Maheshwari [ 5 ]  and Zehavi and Itai [15] 
that any $connected graph contains three independent 
spanning trees rooted at any common vertex. Let Ti, 1 5 
i 5 3, be three independent spanning trees of OPT 
rooted at a common vertex r .  For 1 5 i 5 3, let Bi 
be the in-branching obtained by orienting Ti toward r.  

2209 

Authorized licensed use limited to: CityU. Downloaded on May 22,2010 at 07:03:48 UTC from IEEE Xplore.  Restrictions apply. 



Then U:=., Bi is a 3-inconnected digraph in which the 
in-degree of r is exactIy 3. Therefore, 

to Gd, and H denote the graph G4 U F U { rs  ; s E S}.  
Then by Lemma 6. c ( F )  < apt. Since Gq U F is 4- 

3 3 connected, H is a 4-co~nected spanning subgraph of 
G+, and consequently, H is a 4-inconnected spanning 
subdigraph of G+ rooted at T .  Thus, 

= C P ( B 1 )  < 3.opt. 
i= 1 

c+ ( D )  5 c+ H = 2c' ( H )  = 2c(F) < 2opt. (3 By Lemma 2 and Lemnla 3, 

p (D) 5 2c(D) 5 2C{U) < 6 ' opt. 
Hence. 

c ((D - T )  \ G4) = C+ (E)  5 C+ ( D )  < k p t .  
Based on Theorem 7, we propose the following ap- 

proximation algorithm for Min-Power 3-Connectivity: 
First apply the algorithm given in 111 to produce a g n -  
weighted 3-inconnected spanning subdigraph D of G in 
which the in-degree of the root is exactly 3, and then 
output the graph D. By Theorem 7, its approximation 
ratio is at most 6. 

By Lemma 2, we have 

(p - T> \ G ~ )  5 zC ( ( D  - r )  \ G ~ )  < dopt. 

BY Lemma 5-  Y jG4) 5 5Wt-  so, 

P (Gq U (D - r)) I y(G;ls)+p ( ( E  - T )  \ G4) < gopt. 

VI. 4-CONNECTIVITY 

In this section. we present a 9-approximation al- 
I eorithm for Min-Power 4-Connectivity. The following 
auxiliary graph Gf will be used by the algorithm. Let 
S be a set of four vertices in V which is 4-connected in 
G4. whose existence is ensured by [13]. Then, G+ is the 
graph (V+ ,  E+, e+> in which Ti+ = I/ U ( T }  for some 
verkx 6 IT, E+ = E U { T S  : s f S} ,  and 

if e E E (G4) U (TS  : s E S }  ; 
c+ (e} = { ::e), otherwise. 

A minimz-weighted 4-inconnected spanning subdi- 
graph of G+ rooted aL T has the following property. 

Theorerri8: Let D be a min imum-wgted  4- 
inconnected spanning subdigraph of G' rooted 
at T. Then, G4 U @- r )  is 4-connected and 
p (GQ U [D- T ) )  I 9 f opt. 

Proof: We first prove the 4-connectivity of G4 U 

p- r ) .  Let C be any subset of I/ with at most three 
vertices. Since JSJ = 4, S \ C is nonempty, and since 
S is 4-connected in G4, S \ C is connected in Gq - C. 
Now let 'L: be any vei-tex in V \ (C'U S). Since is 4- 
inconnected to r ,  there are four independent paths from 
'U to in D, and all these four paths must path through 
a distinct vertex of S .  Thus, there is still one at least 
one path in - r )  - G from U to some node in S \ C. 
Hence, (Gq U (B - T ) )  - C remains connected. This 
implies that Gq U [D - r> is $-connected. 

- r ) )  5 9 .  opt. Let 
F be a minimum-weighted 4-connectivity augmentation 

Next we prove that p (G4 U 

Based on Theorem 8, we propose the following ap- 
proximation algorithm for Min-Power 4-Connectivity: 
First construct G4 and find a 4-connected subset S of 
four nodes by exhaustive search. Then construct the 
graph G+ and G+, and then apply Gabow's imple- 
mentation 191 of Frank and Tardos algorithm [g] to 
produce a minimum-weighted 4-inconnected spanning 
subdigraph D of G+ rooted at r. Finally. output the 
graph Gq U (D - r). By Theorem 8, he approximation 
ratio of this approximation algorithm is at most 9. 

* 

VII. CONCLUS~ON 

The problem Min-Power k-Connectivity seeks a power 
assignment to the nodes in a given wireless ad hoc 
network such that the produced network topology is 
k-connected and the total power is the Iowest. In this 
paper, we present several approximation algorihms for 
this problem. Specifically, we give a 3k-approximation 
algorithm for any I; 2 3, a ( k  + IZH {k))-approximation 
algorithm for k (2k  - 1) I n, where n is the network 
size, a (k + 2 [(k + 1) /21)-approximation algorithm for 
2 5 R 5 7 ,  a 6-approximation algorithm for k = 3, and a 
9-approximation algorithm for I; = 4. All these approx- 
imation results do not depend on the power attenuation 
characteristics affected by the deployment environment. 
It would be interesting to know if the geometric nature of 
the power attenuation can be exploited to develop better 
and/or simpler approximation algorithms for Min-Power 
b-Connectivity. 
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