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Abstroct--This paper addresses the maximal lifetime 
scheduling problem in sensor surveillance networks, 
Given a set of sensors and targets in a Euclidean plane, a 
sensor can watch only one target at a time, our task is to 
schedule sensors to watch targets, such that the lifetime of 
the surveillance system is maximized, where the lifetime 
is the duration that all targets are watched, We propose 
an optimal solution to find the target watching schedule 
for sensors that achieves the maximal Lifetime. Our 
solution consists of three steps: 1) computing the maximal 
lifetime of the surveillance system and n workload matrix 
by using linear programming techniques; 2) decomposing 
the workload matrix into a sequence of schedule matrices 
that can achieve the maxima1 lifetime; 3) obtaining a 
target watching timetable for each sensor based on the 
schedule matrices. Simulations have been conducted to 
study the complexity of our proposed method and to 
compare with the performance of a greedy method. 

Keywords-- Enera efficiency, lifetime, scheduling, 
sensor network, surveillance system. 

1. INTRODUCTIONS 

A wireless sensor network consists of many low-cost and 
low-powered sensor devices (called sensor nodes) that 
collaborate with each other to gather, process, and 
communicate information using wireless communications [ 41. 
Applications of sensor networks include military sensmg, 
traffic surveillance, environment monitoring, building 
structures monitoring, and so on. One important 
characteristic of sensor networks is the stringent power 
budget of wireless sensor nodes, because those nodes are 
usually powered by batteries and it may not be possible to 
recharge or replace the batteries after they are deployed in 
hostile or hazardous environments [15]. The surveillance 
nature of sensor networks requires a long lifetime. Therefore, 

it is an important research issue to prolong the lifetime of 
sensor networks in surveillance services. 

In this paper, we discuss a scheduling problem in sensor 
surveillance networks. Given a set of targets and sensors in 
an area, the sensors are used to watch (or monitor) the targets 
A sensor can watch targets that are uithm its surveillance 
range, and a target can be inside several sensors' watching 
range. Suppose each sensor has a given energy resenle (in 
terms of the length of time it can operate correctly) and each 
sensor can watch at most one target at a time. The problem is 
to find a schedule for sensors to watch the targets, such that 
all targets should be watched by sensors at anytime and the 
lifetime of the surveillance is maximized. The lifetime is the 
duration up to the time when there exists one target that 
cannot be watched by any sensors due to the depletion of 
energy of the sensor nodes. By using thls schedule, a sensor 
can switch off to save energy when it is not its turn to watch 
a target. We assume the positions of targets and sensors are 
given and are static. This information can be obtained via a 
distributed monitoring mechanism [IO]  or the scanning 
method 1 11. 

Extensive research has been done on extending the 
lifetime of sensor networks. Authors in [12] studied the upper 
bounds on the lifetime of sensor networks used in data 
gathering in various scenarios. Both analytical results and 
extensive simulations showed that the derived upper bounds 
are tight for some scenarios and near-tight (about 95%) far 
the rest. The authors further proposed a technique to find the 
bounds of lifetime by partitioning the problem into the sub- 
problems for which the bounds are either already known or 
easy to derive. A differentiated surveillance service for 
various target areas in sensor networks was discussed in [ I5). 
The proposed protocol was based on an energy-efficient 
sensing coverage protocol that makes full coverage to a 
certain geographic area. It is also guaranteed to achieve a 
certain degree of coverage for fault tolerance. Simulations 
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showed that a much longer network lifetime and a sinall 
communication overhead could be achieved. 

Another important technique used to prolong the lifetime 
of sensor networks is the introduction of switch odoff modes 
for sensor nodes. Recent works on energy efficiency in three 
aspects, namely area coverage, request spreading and data 
agpegation, were surveyed in [SI. It pointed out that the best 
method for conserving energy is to tum off as many sensors 
as possible, at the same time, however, the system must 
maintain its functionality. A node scheduling scheme was 
developed in [3 ) .  This scheme schedules the n d e s  to turn on 
or off without affecting the overall service provided. A node 
decides to t u n  off when it discovers that its neighbors can 
help it to monitor its monitoring area. The scheduling scheme 
works in a localized fashion where nodes make decisions 
based on its local information. Similar to [3], the tvork in [9J 
defined a criterion for sensor nodes to turn themselves off in 
surveillance systems. A node can tum itself off if its 
monitoring area is the smallest among all its neighbors and 
its neighbors will become responsible for that area. T h i s  
process continues until the surveillance area of a node is 
smaller than a given threshold. A deployment of a wireless 
sensor network in the real world for habitat monitorq was 
discussed in [13]. A network consisting of 32 nodes was 
deployed on a small island to monitor the habitat 
environment. Several energy conservation methods were 
adopted, including the use of sleep mode, energy efficient 
communication protocols, and heterogeneous transmission 
power for different types of nodes. 

The rest of the paper is organized as follows. Section 2 is 
the problem d e f ~ t i o n .  Section 3 presents our solution that 
consists of three parts. Section 3.1 gives a linear 
programming formulation that is used to compute the 
maximal lifetime of the surveillance system. In section 3.2, 
we show that the maximal lifetime is achievable, and detailed 
algorithms for finding the schedule are presented. Section 3.3 
discusses the final schedule timetable For sensors. Section 4 
presents a numeric example solved by using our method and 
simulation results. We conclude our work in section 5. 

2. SYSTEM MODEL AND PROBLEM STATEMENT 

We consider a set of targets and a set of sensors that are 
used to watch targets and collect information. We first 
introduce the following notations: 
S = the set of sensors. 
T =  the set of targets. 
n=ISl the number of sensors. 

S(i) = the set of sensors that are able to watch target j, 
j=l :... ,m. 
T(i> = the set of targets that are withm the surveillance range 
of sensor i, i=l,, , , , n. 
Ei = initial energy reserve of sensor i, i=l,. . . ,n. 

Notice that S(i) inay overlap with S(i) for i#j, and T(i) 
may overlap with T(j) for if j .  There are two requirements for 
sensors watching targets: 

. .  . .  
.~ . m=lg the number of targets. ..:,.. 

1)  Each sensor can watch at most one target at a time. 
2) Each target should bc watched by one sensor at anytime. 

The problem of our concern is, for given S and T, to find 
a schedule that meets the above two requirements for Sensors 
watching targets, such that the lifetimc of surveillance is 
maximized. The lifetime of surveillance is defined as the 
length of time until there exists a target j such that all sensors 
in Sk) run out their energy. 

3. OUR SOLUTIONS 

We tackle the problem in three steps. First, we compute 
the upper bound on the maximal lifetime of the system and a 
workload matrix of sensors. Second, we successfully 
decompose the workload matrix into a sequence of schedule 
matrices. Finally, we obtain a target watchng timetable fur 
each sensor. 

3.1 Find Maximal Lifetime 
We use linear programming (LP) technique to find the 

masimum lifetime of the system Let L denote the lifetime of 
the surveillance system, and xu be the variable denoting the 
total time sensor i watching target j, where i d ,   ET. The 
problem of finding the maximum lifetime for sensors 
watching targets can be formulated as the following: 
Objective: Max L 

Exii I M ~ ~ ~ L , E ~ I  vies.  (2) 
j t T ( 7 )  

Equation (1) specifies that for each targetj in T,  the total 
time that sensors watch i t  is equal to the lifetime of the 
system. That is, each target should be watched throughout the 
lifetime. 

Inequality (2) implies that for each sensor i in S; the total 
working time neither exceeds the lifetime of the system, nor 
exceeds its battery’s lifetime. 

The above formulation is a typical LP formulation, where 
xg, 14’41 and 1 3 3 ,  are real number variables and the 
objective is to maximize L .  The optimal results of xiJ and L 
can be computed in polynomial time. 

However, L, obtained from computing the above LP 
formation, is the upper bound on the lifetime, and each xu 
specifies only the total time that sensor i should watch target 
j in order to acheve this upper bound L. Now we have two 
questions: 
1) Is t h i s  upper bound of lifetime L achievable? If yes, then 
2) How to schedule sensors to watch targets, such that each 

value ofx,, 14% and 193, can be actually met? 
In answering question 21, we need to find a schedule for 

each sensor that specifies from what time up to what time 
that this sensor should watch which target. 

The values of x ~ ,  l l i 9  and 1 5 3 ,  obtained from the LP, 
can be represented as a matrix: 
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We call matrix ~cwliload matris;, for it specifies the total 
length of time that a sensor should watch a target. There are 
two important features about h s  workload matrix: 
1 )  the sun1 of all elements in each column is equal to L (from 

2) the sum of all elements in each row is less than or equal to 

In the next step, we need to find the detailed schedule for 

eq. ( I )  in the LP formulation). 

L [from ineq. (2) in the LP formulation). 

sensors to watch targets based on the workload matrix. 

3.2 Decompose Worklmd fi4atri.v 
The lifetime of the surveillance system can be divided 

into of a sequence of sessions. In each session, a set of 
sensors are scheduled to watch their corresponding targets; 
and in the next session, another set of sensors are scheduled 
to work (some sensors may work continuously for multiple 
sessions). Suppose a sensor will not switch to watch another 
target within a session. Thus, the schedule of sensors during a 
session can be represented as a matrix In this matrix, there is 
only one positive number in each column, representing each 
target should be watched by one sensor at a time; and at most 
one positive number in each row, representing each sensor 
can watch at most one target at a time and there is no 
switchng to watch other targets in a session. Furthermore, all 
the non-zero elements in this matrix have the same value, 
which is the time duration of this session. Now, our task 
becomes to decompose the workload matrix into a sequence 
of session schedule matrices, represented as: 

where zi, i=1,2 ,..., f ,  is the length of time of session i ,  and r 
the total number of sessions. We call this sequence of session 
schedule mauices the schedule matrices. Considering the 
schedule matrix of session i, all elements in it are either “0” 
or zi. each column has exactly one non-zero element, and 
each row has at most one non-zero element (it could be all 
“ O ’ ,  indicating the Sensor is idle in this session). 

The next, w e  discuss how to decompose the workload 
matrix into a sequence of schedule matrices. We first 
consider a simpIe special case of n=m, i.e., the number of 
targets is equal to the number of sensors in the system. Then, 
we ex$end the result to the general case of n>m. 

3.2. I A Special Case n-m 
We consider the case n=m. Let Ri and C’ denote the sum 

of row i and the sum of columnj  in the workload matrix, 
respectively. According to eq. (1) and ineq. (2) of the LP 
formation, we have: 

(3) C . = L  J >J-I>z>. . . f l .  .- 

RiI t , i=1 ,2  ,..., n. (4) 

n m 

Furthermore, since C R i  = c C j  = mxL and n=m, U% 
j - 1  j 4  

have : 

1=1 

Combining (4) and (5), we have: 

(3)  and (6) imply that for the workload matrix the swi of 
each column is the same as the SUIII of each row, all equal to 
L. 

by L and denote the 
new- matrix by That is, y g  = x,,4L: for iJ=l12> ..., 12. For 
matns Y,, 9n, we have: 

R, = L: +1,2 ,... , n ~  (6) 

We divide the workload matrix 

,=1 j=1 

From (7), we know matrix I’n8n is a Dorib@ Stochastic 
hfawix [ 1,2]. 
Theorem 1. Matrix Y,,, can be decomposed as: 

where each Pi,  l g i t ,  is a permutation matrix‘; and cI, cz,. . , , 
f,, are positive real numbers and: cI+c2+ ... +c,=l. 
(Permutation matrix is a square matrix that has only “0” and 

“1 ” elements, and each row and each column has esactly one 
‘‘ 1 ” element.) 
Proof. It is proved by following the Theorem 5.4 in [I]. 

Theorem 2. The number of permutation matrices 
decomposed in (8) is bounded by wn-1)*+1. 
Proof. The proof can be done by following the Theorem 3 in 

Therefore, when n=m, workload matrix Xi,,,, can be 

Ynxn = ClP, + C?P* +...+ cp,, (8) 

0 

~ 4 1 .  0 

decomposed into a sequence of schedule mavices: 
x“.,=Lx I,*,= C , L X  P 1 + C 2  L x P2-k. .+e, L X P , .  

Furhermore, the total number of sessions decomposed is 
bounded. Therefore, the optimal lifetime L i s  achievable in 
the case of n=m. We will give an efficient decomposition 
algorithm in section 3.2.3. 

(9) 

3.2.2 Generul Case n>m 
When n>m, matrix X,  *,,, is no longer a square matrix. The 

idea of our method i s  to “fill” matrix/i,,,,, with some dummy 
columns to make it a doubly stochastic matrix of order n 

Let Zn+,, be the dummy matrix, which has (n-m) 
columns. BV appending the columns of the dummy matris to 
the right hand side OfX,,,,,; the resulting matrix, denoted by 
WfiXn7 is in the form as. 

! XI 1 xi2 ...Xlm w = X21X22 ,..“~m 
211 Z l 2 . . . Z l n - m  

...... ....I t 
nxn [ 

X n ~ x n : , . . . ~ , n  Znlzn2 . . . znn-m nxn 

To make matrix E’,,,, having the feature of (3) and (6), 
i.e., the sum of each column is equal to the sum of each row, 
the dummy matrix Z,,x(m.m) should satisfy the foHowing 
conditions: 
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J'1 

n 

2 )  c', = C z v  =t, for ~ j : l ~ ~ . . . : n - w .  (11) 
I=1 

We propose a simple algorithm to compute the dummy 
matris ZnAi,,-m). The algorithm starts to assign values to the 
elements of Z,lr(,,.m) from its top-left comer. Let RI- and C I  

record the sum of the remaining undetermined elements of 
row i and column j ,  respectively, for i=1,2,..,n and 
j=1,2,. . . ,n-m. Initially, I?; -(L-R,) and Cy t L ,  where R, 
and L are computed from matrix zYoa,o, The strategy of the 
algorithm is to assign the remaining sum of the row (or 
column), as much as possible, to an element without 
violating conditions (10) and i l l ) ,  and assign the rest 
elenients of the row (or column) to 0. Then, we move down 
to the next undetermined element from the top-left of the 
matrix. For esainple, we start with zl,. Now R; is (L-RI) 
and C; is L, i.e.; R; <C;. Thus, we can assign R; to zll: 
and assign 0 to the rest of elements of row 1 (so condition 
(10) is met). Then, C; should be updated to (C, -zll): 

because the remaining sum of column 1 now becomes 
(C; -zlI> and this value is used to emure that condition (1 1) 
will be met during the process. Suppose we now come to 
ejment zii, (i.e., elements of zkl, for k l ,  ___, i-1 and 
k1,. . . j-1, are already determined so far). We compare RI: 

with C I  . There are three cases: 

I )  C i  > R I - :  it means zv can use up the remaining value the 

sum of row i, i.e., R,: . Thus, zv+ RI: and the rest 
elements of tixs row should be assigned to 0. So, all 
elements of row i have been assigned and condition (1 0) 
is met for row i. 

2) Rl->Cj ; it means zil can use up the remaining value the 

sum of column j, i.e., CJ . Thus, z,,*C, and the rest 
elements of this column should be issigned to 0, i.e., 
zk,--o, k 2 , 3 , .  . . p. By doing so, all elements of columnj 
have been assigned and condition (1 1) is met for columnj. 

3)R1-=C; : we can determine elements in both row i and 

column j by z,,- RI: and setting the rest elements in row i 
and in column j to 0. It is easv to see that condition ( 1  0) 
is met for row i and condition (1 I )  is met for column j .  
After determining each row (or column), we need to 

update C i  (or RI- ), before moving to the next row (or 
column). Each step, we can determine the elements in one 
row (or column). This process is repeated until all elements 
in Zfl.~,+,,,~ are determined. The details of the algorithm are 
given below. 

FiIlMatrir Algorithm 
Input: workload matrix.I;,.,. 
Output: dummy matrix Z,,, 
Begin 

RI- = L-R,, for i = 1 to n; 

C-  = L, for; = 1 to n-mi 

i= 1 ;-j= I 1 
while ('Sa) && 0.41-m) do 

if Cy > R2- then 

J 

ildetenine elenients in row i .  
z.. = R I .  g 1 )  

zik = 0, for h- = j+ 1 to n-m; 
/I set the rest of row i to 0.  
CJ =c; - Zd; 
i=i+ 1 ; 

n 
e l s e i f C z j l  = z l l  =c; =c;~c;  

i=l 

//determine elements in columnj. 

zb = 0, for k = i+l to n; 
// set the rest of column; to 0. 

2. 
9 J '  

RJ = R17 - 2.: 
V' 

j=j+ 1 ; 

//determine elements in both row i and //column 

2. = R - .  

zik = 0, for h- = j+ 1 to n-m; 
zn, = 0, for l- = i+l to n; 
i=i+ 1 ; j=j+ 1 ; 

else 

i. 
y 1 1  

endwhile 
End 
Theorem 3. For a given workload matrix X,,,,, FiZlh.lafriir 
Algorithm can compute Z,,Icn.m). such that the square mahix 

Znx(,,.,,,l]/L is B doubly stochastic matrix of order n. 
Proof. At the beginning of the Fi//hfah?.x Algorithm, TOW 

sums and column sums of the dummy matnx are initialized, 
and then the dummy matrix is worked out step by step to 
satisfy conditions (lo) and (1 1). So we can prove a general 
case: given'row sums Ri and column sums C;. of a matris 
Z,,,,, i=l,Z,~..3, j=1,2 ,..., m, the proposed algorithm can 
compute all elements zo that satisfy conditions (I 0) and (1 1 ). 
We use the induction method to prove the theorem. 
1) When n=l, m=l ,  according to the FilLbfatrix algorithm, 

since C, = R; , we have ZI I =  R; = Cy = R; = C; . The 
conditions (1 0 )  and (1 1 )  are both met. 

2) We assume when n+1, m%-l, the proposed algorithm 
can compute Z,,,,,, such that the conditions (10) and (1 1 )  
are both met. 
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When n=p, m=g, according the algorithm, we first 
compare Cy with R; , there are three cases 

If C; = R[ , then set 11 I =  R, , zlk=O. l=2,3,. . . ,m and zkl=O, 
k2 ,3 , .  , . ,H. For the row 1 and column 1 where zo have 

been detemiined, we have zl = z, = R; = R; and 
m 

]=I 

;=I 

are both met in row 1 and column 1. The remaining 
undetermined elements zI, i=2,3 ,... ,n, j=2 ,3  ;... p, are in 
the matrix Z~-1).lg.~). According to assumption 2), the 
remaining "is Zip.l)yig-l) cm be correctly worked out. 
If C; > R; , then set z l l=  R; , zlk=O, k 2 , 3  _..., m and 

C, = C; - RI- . For the row 1 where zq have been 

determined, we have zli = z l l  = R; = R; , condition 

(10) is met. For the column 1 whch is updated, w e  have 
C; +zlI= C, , it does not violate condition (1 1). The 
remaining undetermined elements 4, i=2,3,. . . ,n, 
j=1,2,3: ..., m, are in the matrix Z,.,,,,. We continue run 
the algorithm to compute the remaining elements in 2,. 
I ) . q  that satisfies the conditions (10) and (1 1). Note that 
C; monotonously decreases after each round of 

m 

j=l 

n m 

assignment and R; = X C ?  > C; . There must exist 
i=2 j - l  

R; 2 cl- in round I ,  we set zll= C; , zkl=O; 

k=1+1,1+2, ... ,n and R; = R,  - C; . Then the remaining 
matrix is Zrp.,p-l+l).(g-~). According to assumption Z), the 
remaining matrix Z(p./pNl)x(q.l) can be correctly worked out. 
If R; > C; , similar to b), we can prove this case. 
The proof of cases n=p; m=q-1 and n=p-l, m=q are 
similar to 3). 
Combining l), 2.1, 3) with 4), the proposed algorithm can 

correctly compute all elements in the matrix Z,.,, such that 
the conditions (101 and (1 1) are both met. 

Theorem 4. The time complexity of the FiIMutrix 
~ g o r i t h m  is 0(n2). 
Proof. It is not difficult to see that the time complexity of the 
proposed algorithm is O(n2). Theorem proved. 

Given a workload matrix 2YHA,,,, using the proposed 
algorithm, we can fill the matrix to make it a square matrix 
W,,,n and WnXn satisfies conditions (3) and (6). According to 
the theorems discussed in section 3.2.1, Hrnx ,  can be 
decomposed as (9): 

Theorem 3 is proved. 

0 

rvnx = CI L x PI +c& x P2+. , . + c L  x Pt. 
We simply denote c,L as cil i= 1,2,. . . ,f, because they are 

canstants anyway. Thus, 

(12) wHxn = Cl XPI+C? x P?+. . . +c*X Pt.  
Let 4' denote the matns whch contains the first m 

columns in P,  (i.e., the information for the m valid targets by 
dropping the n-m d u " v  colu~lmns), i=l,2,. . . , I .  We have 

Since P, is a permutation matrix and PI' contains the first m 
columns of P,, there is exactlv one positive number in each 
column and at most one positive number in each row inP, . 
That is, the matnces c,  X P, , i=1,2 ,..., 1, are the schedule 
matrices. In session i, sensors are scheduled to watch their 
respective targets according to the position of "1" elements in 
P,' for the period of ci time. By following thls schedule, the 
optimal lifetime L ofthe surveillance system can be achieved. 

The above discussions conclude that a workload matris is 
decomposable to a sequence of schedule matrices such that 
the optimal lifetime can be acheved. In the nest section, we 
propose an efficient algorithm that decomposes the workload 
matrix. 

s,,,= c,  x P,' + c 2  x P; -+ ... + ct x P; . (13) 

3.2.3. Aigvrin'thm for Decomposing Workload Matrix 
In thrs section, we shldy the details of decomposing 

workload makis. The basic idea of the algorithm i s  to 
represent the filled workload matnx as a bipartite graph 
where one side are sensors and the other are targets, and thus 
the problem of decomposing the illled workload matrix is 
transformed into the problem of fiiding perfect matchmgs in 
a bipartite graph. 

Notice that the workload matrix is already filled with 
dummy columns as discussed in section 3.2.2. The bipartite 
graph consists of two set of nodes +(SI, s?, . . I, sn) and T y t , ,  
t2, . . . , tm), n=M,  representing sensors and targets respectively. 
For each non-zero element xb in the workload matrix, there is 
an edge from si to ?, and the weight of the edge is  xg. The 
decomposing process is as follows. We compute a perfect 
m a t c h g  in the bipartite graph, which has exactly n edges. 
Let c,  be the smallest weight of the n edges. Deduct c, from 
the weight of the n edges in the perfect matching and remove 
the edge whose weight becomes zero. This operation is 
repeated until there is no perfect m a t c h g  can be found in 
the bipartite graph. 

Notice that each perfect matching corresponds to a 
decomposed schedule matrix P, in ( U ) ,  where all elements of 
this matrix is either 0 or ci (the weight found in round i) and 
there is only one non-zero elements in each column and each 
row. By removing the (n-m) dummy columns in Pi, it 
becomes a valid schedule matrix. 

Because we try to decompose the matrix by using the 
technique of finding perfect matchings, the questions we 
have now are : 
I )  Dces it guarantee that there exists a perfect matching in 

every round of the decomposition process? 
2) Can this perfect matching method exuctllv decompose the 

workload matrix? That is, is it possible that the last round 
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of the perfect matching will exactly remove all the 
remaining edges in the bipartite graph? 
Theorem 5 and theorem 6 (will appear later) give answers 

to the above que’stions, respectively. 
Theorem 5. For any square matrix W of nonnegative real 
numbers, if all row sums and column sunis are same, there 
exists a perrect matchng on the corresponding bipartite 
graph. 
Proof. Let L be the sum of all elements in II: matrix, and A 
denote matrix A=IILx W. It is obvious to see that A is a 
doubly stochastic matris. We prove the theorem by 
contradictory. 

If there does not exist perfect matching in the 
corresponding bipartite graph of A: there does not exist n 
positive entries with no two of the positive entries on a line 
(column or row) in.4. According to the Konig theorem [6, 71, 
we could cover all of the positive entries in the matrix with e 
rows andfcolumns, such that e +f< n. But, since all of the 
line sums of A equal to 1, it follows n 5 e + f < 17. This 
contradicts to the assumption. 

Theorem 5 is proved. 0 
Since in each round i, we deduct c, from the weight of the 

n edges in the perfect mstchmg, it is equal to deduct schedule 
matrix cixPi from the workload matrix. That is, the row sums 
still equal the column sums in the workload matrix after this 
deduction. According to theorem 5 ,  we can guarantee that 
there exists a perfect matchrng in every round of the 
decomposition process. 

The next, we propose a simple recursive aIgorithm for 
finding a perfect matching in a bipartite graph. Let A4 denote 
a set of edges of a perfect matchmg. We use (si, $1 to denote 
an edge from S to T and it,, s,) denote an edge from T to S. 
There is no direction of edges in the graph, but this notation 
helps to describe the algorithm. The algorithm starts from 
any edge in the graph. Each time, it tries to find an M-puth 
(called augment matchng path). An Ad-path is a path in the 
bipartite graph. It starts with an S node that is not in Ad and 
end with a T node that i s  also not in M, and any edge in the 
M-path from S to T should not be iri A4 and any edge from T 
to S should be in M. We can see that there are always one 
more non M-edges than the M-edges in an M-parh (an M- 
edge is an edge in W .  Thus, by replacing M-edges in the M- 
path by the non M-edges, the number of edges in M is 
incremented by I .  We keep on fiding this M-path and 
increasing the size of M ,  until a perfect matchng is fourid. . *  

For clarity of notation, in the algorithm, “siEh.P simply 
means si is an end-node of an edge inA4 and “s,&P” means s, 
is not an end-node of an edge inM. The detailed algorithm is 
given as follows. 
PerfectMatching Algorithm 
Input: a bipartite graph C=(s UT, E). 
Output: a perfect matchmg 124. 
Begin 

Pick any edge from E and add toA4; 
while there exists a S,ES but s,& do 

/ I  pick up an unmatched node 
Al-path = 0; 

if FInd-M-pa~h(s,) then /I an M-path is found 
Remove M-edges in A4-path from hJ and add in 
non M-edges to M; 

endwhile 
Output the perfect matchng .fill 

End 
Find-M-parh(s,) { 

/Irecursive procedure to find an 114-path 
for ~ J E T [ S ~ )  and (si, $)&U do 

// try a non M-edge from S to T 
M-path =Al-path + (s,, 5); 
I/ growhf-parh from S to T 
if then 

else 
return true; /I anA4-path is found 

for ~ k ~ S ( f j )  and (5 ,  s J d 4  do 
11 try an M-edge from T to S 

li grow A4-purh from Tto S 
if Find-A4-puth(sk) then 
I/ recursive call to find a M-poth 

M-path = M-path + ((I, Sk); 

return true; ll an hd-path is found 
endfor 
return false; 

endfor 
return false; 

1 
Integating together with FillhluWk Algorithm and 

Peufectniiatching Algorithm, we have the algorithm of 
decomposing the workload matrix as follows. 
DecomposeMatrir Algorithm 
Input: the workload matrix-l~-,,,,,. 
Output: a sequence of schedule matrices. 
Begin 

if n>m then 
Run FilMdrix. Algorithm to obtain a square 
matrix It; ,,, ; 

Construct a biparhte graph G from FVm=,,; 
while there exists edges in G do 

Run PerJectMutching Algorithm on G to find a 
perfect matching M, 
Record c, x Pi;  If ci: smallest weight in Ad and 

li P,: permutation matrix ofM 
Deduct ci froin the weight of edges in M and 
remove edges with weight 0; 

. . .  

en dw h ile 
Output Cz;,,,= C , P l +  c*P* +. . , + cp,; 

End 
The following theorem claims the correctness of the 

DecomposeA4atrix Algorithm. 
Theorem 6. The workload matrix can be exactly 
decomposed into a sequence of schedule matrix by the 
DecomposeMui’rix. algorithm in O(vlxn3) time, where is 
the total number of non-zero elements in the filled workload 
matrix. 
Proof. Each time when a perfect matching is found, 
supposing the corresponding schedule matrix is c, x Pi, the 
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workload matrix is subtracted by ci x Pi .  The remaining 
matrix still satisfies the conditions that its row s u m  is equal 
to its column sum. According to theorem 5, a perfect 
matching can still be found in the graph for the remaining 
matrix. Therefore, the workload matrix can be decomposed 
step by step, until finally there is a perfect matching that 
makes elements in the remaining matrix all “O”, after the 
schedule matrix of the matching is subtracted from the 
remaining workload matns. The workload matrix i s  thus, 
exactly decomposed by the algorithm. 

Furthermore, since each time of finding a perfect 
matching, at least one edge in the bipartite graph is removed. 
Therefore, it takes at most El number of tuns of the perfect 
matching algorithm, where is the total number of non-zero 
elements in the filled workload matrix. Since we use depth- 
first search in the Petfecectkfutching Algorithm, according to 
[5 ,  61, it takes O(n3) to find a perfect matchmg in each round. 
Therefore, it totally costs O<Elxn3) time to find all schedule 
matrices. 

Theorem 6 is proved, 0 
Sensors 

El 
Sensors 

E. 

3.3. Obtain Schedde Timetable 
We have obtained a sequence of schedule matrices by 

decomposing the workload matrix. Each schedule matrix 
specifies sensors watching targets for the same period of time 
(called a session). In fact, there is no need for all sensors to 
start watching their corresponding targets at the same time, 
and switch synchronously to other targets (or switch off) at 
the end of a session. Each sensor’s schedule can be 
independent fiom the others. That is, sensors can switch 
odoff and switch to watch other targets asynchronously from 
each other. To come up with the target-watching timetable 
for sensor i, w e  simply take the i-th row of all the schedde 
matrices, and combine the time of the consecutive sessions 
that it watches the same target (in this case there is no need 
for Sensor i to switch). Finally, we have an independent 
timetable for each sensor. 

Since global clock synchronization is achievable in sensor 
networks by using some localized method [16] or time 
synchronization scheme (171, sensors can cooperate correctIy 
according to the timetable to achieve the maximal network 
lifetime. 

1 2 3 
15.6926 34.2627 24.8717 

4 5 6 
21.7847 46 6865 34.5310 

4. EXPERIMENTS AND SIMULATIONS 

x6x3 = 

4.1. A Numeric Esample 
We randomly place 6 sensors (in clear color in Fig. 2) and 

3 targets (in grey in Fig. 1) in a 50 x 50 two-dimensional 
free-space region For simplicity, the surveillance range of all 
sensors is set to 20 (our solution can work for any system 
with non-uniform surveillance range). Fig. 1 shows the 
surveillance relationshp between sensors and targets, with an 
edge between a sensor and a target if and only if the target is 
within the sunleilhnce range of the sensor. The initial energy 
reserves of sensors, in terms of hours, are random number 
generated in the range of [0, 501 with the mean at 25, as 
shown in Tab. 1.  

- - 
15.6926 0 0 

0 10.2454 18.7199 
24.87 17 0 0 

0 17.9125 0 ’  
0 12.4064 21.8444 
0 0 0 - - 

15.6926 0 0 24.8717 0 
0 10.2454 18.7199 11.5990 0 

24.871 7 0 0 4.0936 11.5990 
0 17.9125 0 0 22.6518 
0 12.4064 21.8444 0 6.3135 
0 0 0 0 
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+ 

+ O  0 

0 0 11.599 
0 011’5990 0 1 0 

0 0  

0 0 0  
0 06.1538 
0 0 0 

0 0 0  0 

6.3135 0 
0 6.3135 
0 0 0  

0 

L > 

Finally, we obtain target watch timetables for sensors 
based on the above schedule matris. The timetable for the 6 
sensors is shown in Tab. 2. 

Tab. 2. The schedule timetable for 6 sensors 

It is easy to see that the timetable in Tab. 2 satisfies the 
surveillance conditions that each sensor can watch at most 
one target at a t” and each target is watched by a sensor at 
anytime. 

4.3 Sim ularions 
We conduct some simulations to studv the complexity of 

our proposed solution and compare its performance with a 
greedy method. 

The simulations are conducted in a 50x50 two-dimensional 
free-space region. Sensors and targets are randomly 
distributed inside the region. Again, the surveillance range of 
all sensors is set 20 (except the simulations for Fig. 3(a)). 
The initial energy reserves of sensors are the random 
numbers in the range of 10, S O ] ,  with the mean value of 25 
hours. The results presented in the figures are the means of 
100 separate runs. 

A. Growth qfdecomposifion steps is linear 
According to Theorem 2, we know the number of steps for 
decomposing the workload matrix, denoted by t ,  is bounded 
by t_Yn-I)*+l. In the simulations, we found that t is linear to 
the size of system. 

Fig. ,?(a) and Fig. 2(b) show the increase of r versus the 
change of AT (number of sensors) and A4 (number of targets), 
respectively, when one of the hvo variables is fixed. From the 
figures, we can see a strong linear relationship between t and 
N (or M). This result tells us that the actual number of steps 

for decomposing the matrix: is linear to the size of system in 
real runs 

p 350 
E 330 

310 
0 290 
E 270 

250 
$ 2 230 

210 n 

170 
f 150 

.- 

z 190 

50 60 70 80 90 100 

The number of sensors (N) 

Fig. ,?(a). tversus Nwhenh4=lO. 
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B. Comparison with a greedy method 
A greedy algorithm is proposed to compare the 

perfonnance with our optimal solution. The basic idea of the 
greed method is to allocate sensors to targets in such a way 
that each sensor is allocated to watch one target in Its lifetime 
and the total working time of the sensors allocated to targets 
are balanced as much as possible. It first assigns the sensors 
that have only one target in their sunvillance range to their 
respective targets. Then, the remaining sensors are assigned 
to the targets such that the total time for targets being 
watched is as balanced as possible among all targets. 

We set N=100 and M=l@ Fig. 3(a) shows the lifetime 
versus the change of sun~eillance range of sensors. From Fig. 
3[a), we can see that when the surveillance range is small, 
two curves are very close. T h s  is because with a small 
surveillance range, sensors usually have got only one target 
within its range. There is hardly any room that our 
optimization method can take advantages. As the surveillance 
range becomes larger, more sensors are able to cover 
multiple targets, which gives our method more room to 
schedule the sensors properly to achieve the maximum 
lifetime. That is why the perfonnance gap between the two 
niethods becomes more significant as the increase of the 
surveillance ranges. 

Fig. 3(b) shows the Lifetime versus the number of sensors 
placed in the Same region. This simulation shows how the 
lifetime is affected by the density of sensors. Fig. 3 0 )  
exhibits the similar trend as in Fig. 3(a). As more sensors 
deployed in the same region, the density becomes higher. A 
target can be watched by more sensors and there is a higher 
chance for a &get to be in the watching range of multiple 
sensors. Thus, our optimal algorithm can take more 
advantages by optimizing the schedule and the performance 
becomes more significant than the greedy method in this kind 
of situations. 

From Fig. 3(a) and Fig. 3(b): we can conclude that our 
optimal algorithm has significantly better performance in the 
situation where sensors have larger coverage 'range or senses 
are densely deployed. 

+Our optimal algorithm 

5 10 15 20 25 

The surveillance range 

Fig. 3(a). Lifetime versus surveillance range. 
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5. CONCLUSiONS 

This paper addressed the maximal lifetime scheduling 
problem in sensor surveillance networks. 

Our solution consists of three steps: I )  compute the 
maximum lifetime of the system and the workload matrix by 
using linear programming method; 2) decompose the 
workload matrix into a sequence of schedule matrices by 
using perfect matchmg method. This decomposition can 
preserve the maximum lifetime; 3) obtain target watchng 
timetable for sensors. It is not difficult to see that our solution 
is  the optimum in the sense that it can find the schedules for 
sensors watchng targets that acheve the maximum lifetime. 
Simulations have been conducted to show that the steps of 
decomposition is linear to the size of system and our method 
can take more advantages in the situation that senses are 
densely deployed or sensors have larger coverage ranges. 
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