"Maximal Lifetime Scheduling in Sensor Surveillance Networks
Hai Liu', Pengjun Wan®, Chih-Wei Yi’, Xiaohua Jia', Sam Makki® and Niki Pissinou *

Dept of Computer Science

'City University of Hong Kong

linois Institute of Technology

Dept of Electrical Engineering & Computer Science

*University of Toledo

Telecommunications & Information Technology Institute

*Florida International University

Email: {liuhaif@es.citvu.edu hk, wan@es.iit.edu, jia@es.cityu.edu.hk, Kmakki@eng.utoledo.edu, pissinou@fiu.edu}

Abstract--This paper addresses the maximal lifetime
scheduling problem in sensor surveillance networks,
Given a set of sensors and targets in a Euclidean plane, a
sensor can watch only one target at a time, our task is to
schedule sensors to watch targets, such that the lifetime of
the surveillance system is maximized, where the lifetime
is the duration that all targets are watched, We propose
an optimal selution to find the target watching schedule
for sensors that achieves the maximal lifetime. Our
solution consists of three steps: 1) computing the maximal
lifetime of the surveillance system and a workload matrix
by using linear programming techniques; 2) decomposing
the workload matrix into a sequence of schedule matrices
that can achieve the maximal lifetime; 3) obtaining a
target watching timetzble for each sensor based on the
schedule matrices. Simulations have been conducted fo
studv the complexity of our proposed method and to
compare with the performance of a greedy method.

Keywords-- Energy efficiency, lifetime, scheduling,
sensor network, surveillance system.

1. INTRODUCTIONS

A wireless sensor network consists of many low-cost and
low-powered sensor devices (called sensor nodes) that
collaborate with each other to gather, process, and

communicate information using wireless communications [4].

Applications of sensor networks include military sensing,
raffic swrveillance, environment monitoring, building
structures monitoring, and so on. One important
characteristic of sensor networks is the stringent power
budget of wireless sensor nodes, becanse those nodes are
usually powered by batteries and it may not be possible to
recharge or replace the batteries after they are deployed in
hostile or hazardous environments [15]. The surveillance
nature of sensor networks requires a long lifetime. Therefore,

it is an important research issue to prolong the lifetime of
sensor networks in surveillance services.

In this paper, we discuss a scheduling problem in sensor
surveillance networks. Given a set of targets and sensors in
an area, the sensors are used to watch (or monitor) the targets.
A sensor can waich targets that are within its surveillance
range, and a larget can be inside several sensors’ watching
range. Suppose each sensor has a given energy reserve (in
terms of the length of time it can operate correctly) and each
sensor can watch at most one target at a time. The problem is
to find a schedule for sensors to watch the targets, such that
all targets should be watched by sensors at anvtime and the
lifetime of the surveillance is maximized. The lifetime is the
duration up to the time when there exists one target that
cannot be watched by anv sensors due to the depletion of
energy of the sensor nodes. By using this schedule, a sensor
can switch oftf to save energy when it is not its turn to watch
a target. We assume the positions of targets and sensors are
given and are static, This information can be obtained via a
distributed monitoring mechanism [I10] or the scanning
method {11].

Extensive research has been done on extending the
lifetime of sensor networks. Authors in [12] studied the upper
bounds on the lifetime of sensor networks used in data
gathering in various scenarios. Both analytical results and
extensive simulations showed that the derived upper bounds
are tight for some scenarios and near-tight (about 95%) for
the rest. The authors further proposed a technique to find the
bounds of lifetime by partitioning the problem into the sub-
problems for which the bounds are either already known or
easy to derive. A differentiated surveillance service for
various target areas in sensor networks was discussed in [15].
The proposed protocol was based on an energy-efficient
sensing coverage protocol that makes full coverage to a
cerfain geographic area. It is also guaranteed to achieve a
certain degree of coverage for fault tolerance. Simulations

! This work is supported in part by Hong Kong Research Grant Council under grant No. CityU 1079/02E, NSF CCR-0311174, NSF 0123950,
and NSF 9988336,

0-7803-8968-9/05/$20.00 (C)2005 [EEE)

Authorized licensed use limited to: CityU. Downloaded on May 22,2010 at 06:56:37 UTC from IEEE Xplore. Restrictions apply.

http://iit.edu
mailto:Kmakki@eng.utoledo.edu
mailto:pissinou@fiu.edu

showed that a much longer network lifetime and a small
communication overhead could be achieved.

Another important technique used to prolong the lifetime
of sensor networks is the introduction of switch on/off modes
for sensor nodes. Recent works on energy efficiency in three
aspects, namely area coverage, request spreading and data
aggregation, were surveved in [8]. It pointed out that the best
method for conserving energy 1S to tumn off as many sensors
as possible, at the same time, however, the system must
maimain its functionality, A node scheduling scheme was
developed m [3}. This scheme schedules the nedes to turn on
or off without affecting the overall service provided. A node
decides to turn off when it discovers that its neighbors can
help it to monitor its monitering area. The scheduling scheme
works in a localized fashion where nodes make decisions
based on its local information. Similar to [3], the work in [9}
defined a criterion for sensor nodes to turn themselves off in
surveillance systems. A node can turn itself off if its
momnitoring area is the smallest among all its neighbors and
its neighbors will become responsible for that area. This
process continues until the surveillance area of a node is
smaller than a given threshold. A deplovment of a wireless
sensor network in the reai world for habitat monitoring was
discussed in {13]. A network consisting of 32 nodes was
deploved on a small island to monitor the habitat
environment. Several energy conservation methods were
adopted, including the use of sleep mode, energy efficient
communication protocols, and heterogeneous transmission
power for different types of nodes.

The rest of the paper is organized as follows. Section 2 is
the problem definition. Section 3 presents owr solution that
consists of three parts. Section 3.1 gives a linear
programming formulation that is used to compute the
maximal lifetime of the surveillance system. In section 3.2,
we show that the maximal lifetime is achievable, and detailed
algorithms for finding the schedule are presented. Section 3.3
discusses the final schedule timetable for sensors. Section 4
presents a numeric example solved by using our method and
simulation results. We conclude our work in section 5.

2. SYSTEM MODEL AND PROBLEM STATEMENT

We consider a set of targets and a set of sensors that are
used to watch targets and collect information. We first
introduce the following notations:

§ = the set of sensors.

T = the set of 1argets.

#=|S} the number of sensors. .
m=|T] the number of targets. ° B&on
Sy = the set of sensors that are able to watch target 7,
J=l..

= the set of targets that are within the surveillance range
of sensor i, i=1,..., n

E;= initial energy reserve of sensor i, i=1,... n.

Notice that 5(7) may overlap with S(/) for i#f, and T(i)
may overlap with 7(7) for i#j. There are two requirements for
sensors watching targets:

2483

1) Each sensor can watch at most one target at a time.
2) Each target should be watched by one sensor at anvtime.
The problem of cur concern is, tor given 8 and 7, to find
a schedule that meets the above two requirements for sensors
watching targets, such that the lifetime of surveillance is
maximized. The lifetime of surveillance is defined as the
length of time until there exists a target j such that all sensors
in 8{) man out their energy.

3. OUR SOLUTIONS

We tackle the problem in three steps. First, we compute
the upper bound on the maximal lifetime of the system and a
workload matrix of sensors. Second, we successtully
decompose the workload matrix into a sequence of schedule
matrices. Finally, we obtain a target watching timetable for
each sensor.

3.1 Find Maximal Lifetime

We use linear programming (LP) technique to find the
maximum lifetime of the system. Let /. denote the lifetime of
the surveillance system, and x; be the variable denoting the
total time sensor / watching target j, where ieS, jeT. The
problem of finding the maximum lifetime for sensors
watching targets can be formulated as the following:
Objective: Max L

st. 3 x, =L VjeT (1
ieS(j)
D xy <MiniLE,} YieS. 2
JeT(D)

Equation (1) specifies that for each target s in 7, the total
time that sensors watch it is equal to the lifetime of the
system. That is, each target should be watched throughout the
lifetime.

Inequality (2) implies that for each sensor i in S, the total
working time neither exceeds the lifetime of the system, nor
exceeds its battery’s lifetime.

The above formulation is a typical LP formulation, where
x,, 15sn and 1<7<m, are real number variables and the
objective is to maximize L. The optimal results of x; and L
can be computed in polynomial time.

However, L, obtained from computing the above LP
formation, is the upper bound on the lifetime, and each x,
specifies only the total time that sensor ; should watch tarpet
j in order to achieve this upper bound L. Now we have two
questions:

1) Is this upper bound of lifetime I. achigvable? If yes, then
2) How to schedule sensors to watch targets, such that each
value of x;;, 15i<n and 15Sm, can be actually met?

In answering question 2), we need to find a schedule for
each sensor that specifies from what time up to what time
that this sensor should watch which target.

The values of x;, 1</<r and 1 <f<m, obtained from the LP,
can be represented as a matrix:

Authorized licensed use limited to: CityU. Downloaded on May 22,2010 at 06:56:37 UTC from IEEE Xplore. Restrictions apply.

12 Fim
r | X X3 Xpp,
orm 2

Xl ¥ 52X p nem

We call matrix ;. , workload matrix, for it specifies the total
length of time that a sensor should watch a target. There are
two important features about this workload matrix:
1) the sum of all ¢lements in each column is equal to L (from
eq. (1) in the LP formulation).
2) the sum of all elements in each row is less than or equal to
L (from ineq. (2) in the LP formulation).
In the next step, we need to find the detailed schedule tor
sensors to watch targets based on the workload matnix.

3.2 Decompose Workload Matrix

The lifetime of the surveillance system can be divided
into of a sequence of sessions. In each session, a set of
sensors are scheduled to watch their corresponding targets;
and in the next session, another set of sensors are scheduled
to work (some sensors may work continuously for multiple
sessions). Suppose a sensor will not switch to watch another
target within a session. Thus, the schedule of sensors during a
session can be represented as a matrix. In this matrix, there is
only one positive number in each column, representing each
target should be watched by one sensor at a time; and at most
one positive number in each row, representing each sensor
can watch at most one target at a time and there is no
switching to watch other targets in a session. Furthermore, all
the non-zero elements in this matrix have the same value,
which is the time duration of this session. Now, our task
becomes to decompose the workload matrix into a sequence
of session schedule matrices, represented as:

X11X)2 0 F 02100 22000 OOO:,
X35 X900 Xz =|£00..0, (000.z; |~ 1000.0
Xt X 002,..0] |0,0..0 0z,0..0

where z;, i=1,2,....1, is the length of time of session i, and 7
the total number of sessions. We call this sequence of session
schedule matrices the schedule matrices. Considering the
schedule matrix of session /, all elements in it are either “0”
or z; each column has exactly one non-zero element, and
gach row has at most one non-zero element (it could be all
“0”, indicating the sensor is idle in this session).

The next, we discuss how to decompose the workload
matrix into a sequence of schedule matrices. We first
consider a simple special case of »=m, ie., the number of
targets 1s equal to the number of sensors in the sysiem. Then,
we extend the result to the general case of n>m.

3.2.1 A Special Case n=m

We consider the case n=m. Let R; and C, denote the sum
of tow 7 and the sum of column j in the workload matrix,
respectively. According to eq. (1) and ineq. (2) of the LP
formation, we have:

C=L,7=12,...m 3

Ri<Li=12...n &)

2484

L4 m
Furthermore, since ZR,— = ZCJ' = mxL and n=m, we
i=1 J=1

have:

n
3R =nxL. (5)

i=l

Combining (4) and (3), we have:

Ri=L,i=12,. .. n ©)

(3) and (6) imply that for the workload matrix the sum of
each column is the same as the sum of each row, all equal to
L.

We divide the workload matrix .\,,.,, by L and denote the
new matrix by ¥,.,,. That is, v; = x;/L, for ij=1,2,...n. For
matrix ¥,.,, we have:

vy20andY p =Y yo =1 forij=12.n. (7
i=1 =1

From (7), we know matrix ¥,., i1s a Doubly Stochastic
Martrix [1, 2].

Theorem 1. Matrix F,,., can be decomposed as:
Ypa=aP\rey+..tolP, 8
where each P;, 1<i<y, is a permutation matrix’; and ¢, ¢a,...,

¢,, are posttive real numbers and: ¢;+c,+... te~=1.
"(Permutation matrix is a square matrix that has only “0” and
“1” elements, and each row and each column has exactly one
“1” element.)
Proof. It is proved by following the Theorem 5.4 in [1].
O
Theorem 2. The number of permutation matrices
decomposed in (8) is bounded by r<(n-1)"+1.
Proof. The proof can be done by following the Theorem 3 in
[14]. 0
Therefore, when n=m, workload matrix X,., can be
decomposed into a sequence of schedule matrices:
Xpom=L X Y, = e LXP+c LX Py +e, LXP, 9)
Furthermore, the total number of sessions decomposed is
bounded. Therefore, the optimal lifetime L 15 achievable m
the case of »=m. We will give an efficient decomposition
algorithm in section 3.2.3.

3.2.2 General Case n>m

When n>m, mattix X, ., is no longer a square matrix. The
idea of our method is to “fill” matrix X~ With some dummy
columns to make it a doubly stochastic matrix of order a.

Let Zyupmy be the dummy matrix, which has (n-m)
columns. By appending the columns of the dummy matrix to
the right hand side of X,,.,, the resulting matrix, denoted by
W, .. 1 10 the form as:

%2-Xm ZnZize-Zipem

W =|*2n1%22-%m ZnZn-Zin-m
Xm¥n2-Xmm ZaZn2--Z an-m nxn

To make matrix W), having the feature of (3) and (6),

i.e., the sum of each column is equal te the sum of cach row,

the dummy matrix Z,.p.. should satisfy the following

conditions:

Authorized licensed use limited to: CityU. Downloaded on May 22,2010 at 06:56:37 UTC from IEEE Xplore. Restrictions apply.

n-m

DR =) zy=L-R, for ¥i=12,..n. (10)
=
, "

2) ¢ :Zz,;,- =L for Vj=12...n—m. (11

i=1
We propose a simple algorithm to compute the dummy
Mairix Z ... The algorithm starts to assign values to the

elements of Z,.(,.n, from its top-left corner. Let R and C;
record the sum of the remaining undetermined elements of
row i and column j, respectively, for i=12,..n and
7712, n-m. Inmtially, Ry —(L-R;) and C; «—L, where R,
and L are computed from matrix .\},.,, The strategy of the
algonithm is to assign the remaining sum of the row (or
column), as much as possible, to an element without
violating conditions (10) and (11), and assign the rest
elements of the row (or column) to 0. Then, we move down
to the next undetermined element from the top-left of the

matrix. For example, we start with z,. Now R is (I-FR;)
and C is L, i.e, Ry <Cy . Thus, we can assign R| 1o z);,
and assign O to the rest of elements of row 1 (so condition
(10) is met). Then, C; should be updated to (Cy —zy1).
because the remaining sum of column 1 now becomes
{C| —z;;) and this value is used to ensure that condition (11)

will be met during the process. Suppose we now come to
element z; (ie, elements of 2z for =1, j-1 and

I=1,... j-1, are already determined so far). We compare R;
with C; . There are three cases:
Iy C7 >R : it means z; can use up the remaining value the

sum of row i, i.e, Ry . Thus, z— Ry and the rest
clements of this row should be assigned to 0. So, all
elements of row i have been assigned and condition (10)
1s met for row i,

2) Ry >C} it means z; can use up the remaining value the

sum of column j, ie., C;-. Thus, zy— C; and the rest

elements of this column should be assigned to 0, ie.,
2,=0, k=2.3,... 0. By doing so0, all elements of column

have been assigned and condition (11) is met for column J,

3)R;=C; : we can determine elements in both row / and

columny by z,~— R; and setting the rest elements in row
and in column f to 0. Tt is easy to see that conditton (10)
is met for row i and condition (11) is met for column .
After determining each row {or column), we need to
update C; (or R;), before moving io the next row (or
column), Each step, we can determine the elements in one
row (or column). This process is repeated until all elements

in Z,.qnm are determined. The details of the algorithm are
given below.

2485

FillMatrix Algorithm
Input: workload matrix .\, .
Output; dummy matrix Z,,. g.m.
Begin
Ry/=L-R.fori=1tom
C =L, forj=110n—nr
=1 =l
while (i<n) && (j<n—m) do
if C; >R, then
//determine elements in row 7,
z; =R,
2y =0, for k= j+1 to n-m;
/ set the rest of row 7 to 0.
C 7 = iz
i=it],

i

i}
elseif D 2y =z =Cy =C>C;
i=]
fidetermine elements in column;.
z;=C51
zz=0,tork=i+lton
/f set the rest of columnj to 0.

Ry =R; -z
L
else
/fdetermine elements in both row 7 and /column
7.
Zy =Ry,

2y =0, for k = j+1 to n-ni;
zz=0,fork=i+l ton
=it1; =+

endwhile

End

Theorem 3. For a given workload matrix X,,.,,, FillMatrix

Algorithm can compute Z,..m), such that the square matrix

[Xoem Znntnml/L is & doubly stochastic matrix of order #.

Proof. At the beginming of the FiliMatrix Algorithm, tow

sums and ¢olumn sums of the dummy matrix are initialized,

and then the dummy matrix is worked out step by step to
satisfy conditions (10) and (11). So we can prove a general
case: given row sums R; and column sums C; of a matrix

Zems =020, j=1,2,... m, the proposed algorithm can

compute all elements z; that satisfy conditions (10} and (11).

We use the induction method to prove the theorem.

1) When r=1, m=1, according to the FillMatrix algorithm,
since C; =Ry, we have z,= R =C; =R, =C| . The
conditions (10} and (11) are both met.

2) We assume when nsp—1, m<g-1, the proposed algorithm
can compute Z,.,,, such that the conditions {10} and (11)
are both met.

Authorized licensed use limited to: CityU. Downloaded on May 22,2010 at 06:56:37 UTC from IEEE Xplore. Restrictions apply.

3) When n=p, m=¢q, according the algorithm, we first
compare C; with Ry, there are three cases.

a) If O =Ry, thenset z;,=R, ., z;4=0, k=2,3,....m and 2,4 =0,
k=23,.. ,n. For the row 1 and column 1 where z; have

m
been determined, we have Zzl j =2 =Ry =R, and
j=1
1
D 2y =2, =C{ =C,. So the conditions (10) and (11)
i
are both met in row | and column 1. The remaining
undetermined elements z,, i=2.3,....,n, j=2,3,.. m, are in
the matrix Zy,. 1)« According to assumption 2), the
remaining matrix Z;,.jy.¢.1; can be correctly worked out.
b) If C7 = Ry, then set z;= R, z;=0, k=23,...,m and

Cy =Cy - Ry . For the row 1 where z; have been
"

determined, we have ZZI ;=21 =R =R, conditien
i=

(10) is met. For the column 1 which is updated, we have

C| tzy= C]' , it does not violate condition (11). The

remaining undetermined elements z; =23, ..n,

J=1,2.3.....m, are in the matrix Z.p.,. We continue run

the algorithm to compute the remaining elements in Z,

1)=¢ (hat satisfies the conditions (10) and (11). Note that

C, monotonously decreases after each round of

L m
assignment and ZR,.' -_*ZC; >y . There must exist
i=2 1
R = C , 2u=0,
k=i1,0+2,...n and Ry =R, —C] . Then the remaining

matrix 15 Zg.pey-e-1y- According 1o assumption 2), the
remaining matrixX Zg, 1)« .1y can be correctly worked out.

in round I, we set zp= C]

¢} If Ry =Cy , similar to b), we can prove this case.
4) The proot of cases n=p, m=g—1 and n=p-1 m=q are

sunilar to 3).

Combining 1), 23, 3) with 4), the proposed algorithm can
correctly compute all elements in the matrix Z,.,, such that
the conditions (10) and (11) are both met.

Theorem 3 is proved.] O
Theorem 4. The time complexity of the FillMatrix
Algorithm is O(*).

Proof. It is not difficult to see that the time complexity of the
proposed algorithm is O(nz). Theorem proved. D

Given a workload matrix X,., using the proposed
algorithm, we can fill the matrix to make 1t a square matrix
W,.,and /¥, satisfies conditions (3) and (6). According to
the theorems discussed in section 3.2.1, W,., can be
decomposed as (9):

Woin =\ LX Prredl X Pot, Ao X Py

We simply denote ¢;l. as ¢;, i=1,2,... .1, because they are
constants anyway. Thus,

2486

Whw= 1 XPrey X Pyt .+, X Py, (12)

Let P denote the matrix which contains the first m
columns in P; (i.e., the information for the m valid targets by
dropping the #—m dummy columns), /=1,2,....,7. We have

X, x B +cax Pyt _+e, %P . (13)
Since P, is a permutation matrix and P, contains the first m
columns of P,, there is exactlv one positive number in each
column and at most one positive number in each row inP, .
That is, the matrices e, X P,

matrices. In session /, sensors are scheduled to watch their
respective targets according to the position of “1” elements in

i=1,2,...t, are the schedule

H

P,' for the period of ¢; time. By following this schedule, the

optimal lifetime L of the surveillance system can be achieved.

The above discussions conclude that a workload matrix is
decomposable to a sequence of schedule matrices such that
the optimal lifetime can be achieved. In the next section, we
propose an efficient algorithm that decomposes the workload
matrix.

3.2.3. Algorithm for Decomposing Workload Matrix

In this section, we study the details of decomposing
workload matrix. The basic idea of the algorithm is to
represent the filled workload matrix as a bipartite graph
where one side are sensors and the other are targets, and thus
the problem of decomposing the filled workload matrix is
transformed into the problem of finding perfect matchings in
a bipartite graph.

Notice that the workload matrix is already filled with
dummy columns as discussed in section 3.2.2. The bipartite
graph consists of two set of nodes S=(s,, 52, ..., S, and T=(¢,,
fa, ..., by), n=m Tepresenting sensors and targets respectively.
For each non-zero element x;; in the workload matrix, there is
an edge from s, 10 #; and the weight of the edge is x; The
decomposing process 15 as follows. We compute a perfect
matching in the bipartite graph, which has exactly n edges.
Let ¢, be the smallest weight of the » edges. Deduct ¢, from
the weight of the » edges in the perfect matching and remove
the edge whose weight becomes zero. This operation is
repeated until there is no perfect matching can be found in
the bipartite graph.

Notice that each perfect matching corresponds to a
decomposed schedule matrix P, in (12), where all elements of
this matrix is either O or ¢; (the weight found in round #) and
there is only one non-zero elements in each column and each
row. By removing the (n-m) dummy columns in P, it
becomes a valid schedule matrix.

Because we try to decompose the matrix by using the
technique of finding perfect matchings, the questions we
have now are:

1) Does it guarantee that there exists a perfect matching in
every round of the decomposition process?

2) Can this perfect matching method exactly decompose the
workload matrix? That is, is it possibie that the last round

Authorized licensed use limited to: CityU. Downloaded on May 22,2010 at 06:56:37 UTC from IEEE Xplore. Restrictions apply.

of the perfect matching will exactly remove all the

remaining edges in the bipartite graph?

Theorem 5 and theorem 6 (will appear later) give answers
to the above questions, respectively.

Theorem 5. For any square matrix /7 of nonnegative real
numbers, if all row sums and column sums are same, there
exists a perlect matching on the comesponding bipartite
graph.

Proof. Let L be the sum of all elements in B matrix, and A
denote matrix A=1/L x 7" It is obvious to se¢ that. 4 is a
doubly stochastic matrix. We prove the theorem by
contradictory.

If there does not exist perfect matching in the
comresponding bipartite graph of A, there does not exist »
positive entries with no two of the positive entries on a line
(column or row) in 4. According to the Kénig theorem [6, 7],
we could cover all of the positive entries in the matrix with e
rows and f columns, such that e + /< n. But, since all of the
Ime sums of A equal to 1, it follows n < e + f < n. This
contradicts to the assumption.

Theorem 5 is proved. 0

Sinee in each round i, we deduct ¢, from the weight of the
n edges in the perfect matching, it is equal to deduct schedule
matrix ¢;xP; from the workload matrix. That is, the row sums
still equal the column sums in the workload matrix after this
deduction. According to theorem 5, we can guarantee that
there exists a perfect matching in every round of the
decomposition process.

The next, we propose a simple recursive algorithm for
finding a perfect matching in a bipartite graph. Let Af denote
a set of edges of a perfect matching. We use (s, ;) to denote
an edge from S'to T and (¥;, s,) denote an edge from T to S
There is ne direction of edges in the graph, but this notation
helps to describe the algorithm. The algerithm starts from
any edge in the graph, Each time, it tries to find an Af-path
(called augment matching path). An M-path is a path in the
bipartite graph. It starts with an .S node that is not in Af and
end with a 7 node that is also not in M, and any edge in the
M-path from S to T should not be in Af and any edge from T
to S should be in A{. We can see that there are always one
more non M-edges than the M-edges in an M-path (an M-
edge is an edge in M). Thus, by replacing M-edges in the M-
path by the non M-edges, the number of edges in Af is
incremented by 1. We keep on finding this A-path and

increasing the size of M, until a perfect matching is found, -

For clarity of notation, in the algorithm, “s5;edf” simply
means s, is an end-node of an edge in Af and “s,¢M™ means s,
1s ot an end-node of an edge in M. The detailed algorithm is
given as follows.
PerfectMatching Algorithm
Input: a bipartite graph G=(§ UT, E).
Qutput: a perfect matching M.
Begin
Pick any edge from £ and add to Af;
while there exists a 5;€5 but 5;2M do
// pick up an unmatched node
M-path =,

2487

if Find-M-path(s;) then // an A{-path is found
Renove M-edges in M-path from A and add in
nont M-edges to M;
endwhile
Output the perfect matching A,
End
Find-AM-path(s,) {
fhrecursive procedure to find an M-path
for ;e 7(s,) and (s;, t,) €A do
try a non M-edge from Sto T
M-path = M-path + (s, 1),
i grow M-path from Sto T
if 1, then
return trug; // an Af-path is found
else
for s,e5(t) and (¢, s,)eM do
/ try an M-edge from Tto §
M-path = M-path + (1, 55,
/! grow M-path from T'to §
if Find-M-path(s;,) then
/f recursive call to find a Af-path
return true, // an M-path is found
endfor
return false;
endfor
return false;

H
Integrating together with FillAMatrix Algorithm and
PerfectMarching Algorithm, we have the algorithm of
decomposing the workload matrix as follows.
DecomposeMatrix Algorithm
Input: the workload matrix .X,.. .
Output: a sequence of schedule matrices.
Begin
if n>m then
Run FillMawix Algorithm to obtain a square
matnx B,.,.=X . m
Construct a bipartite graph G from F,.,;
while there exists edges in G do
Run PerfectMatehing Algorithm on G to find a
perfect matching M,
Record ¢, X P, // c; smallest weight in A and
/! P;: permutation matrix of M
Deduct ¢; from the weight of edges in M and
remove edges with weight 0;
endwhile
Output W,.,= ¢|P, + Py +.. .+ e,
End
The following theorem claims the correctness of the
DecomposeMatrix Algorithm.
Theorem 6. The workload matrix can be exactly
decomposed into a sequence of schedule matrix by the
DecomposeMatrix algorithm in O(!E|><n3) time, where JF| Is
the total number of non-zero elements in the filled workload
matrix.
Proof. Each time when a perfect matching is found,
supposing the corresponding schedule matrix is ¢, X P, the

Authorized licensed use limited to: CityU. Downloaded on May 22,2010 at 06:56:37 UTC from IEEE Xplore. Restrictions apply.

workload matrix 15 subtracted bv ¢; X P. The remaining
matrix still satisfies the conditions that its row sum is equal
to its column sum. According to theorem 35, a perfect
matching can still be found in the graph for the remaining
matrix. Therefore, the workload matrix can be decomposed
step by step, until finally there is a perfect matching that
makes elements in the remaining matrix all “0”, after the
schedule matrix of the matching is subtracted from the
remaining workload matnx. The workload matrix is thus,
exactly decomposed by the algorithm.

Furthermore, since each time of finding a perfect
matching, at least one edge in the bipartite graph is removed.
Therefore, it takes at most |£| number of runs of the perfect
matching algorithm, where |Ej is the total number of non-zero
elentents in the filled workload matrix. Since we use depth-
first search in the PerfectMarching Algorithm, according to
[3, 6], it takes O(#”) to find a perfect matching in each round.
Therefore, it totally costs O(|E[xr’) time to find all schedule
matrices.

Theorem 6 is proved. O

3.3. Obigin Schedule Timetable

We have obtained a sequence of schedule matrices by
decomposing the workload matrix. Each schedule matrix
specifies sensors watching targets for the same period of time
(called a session). In fact, there is no need for all sensors to
start watching their corresponding targets at the same time,
and switch synchronously to other targets (or switch off) at
the end of a session. Each sensor’s schedule can be
mdependent from the others. That is, sensors can swiich
on/off and switch to watch other targets asynchronously from
cach other. To come up with the target-watching timetable
for sensor i, we simply take the /-th row of all the schedule
matrices, and combine the time of the consecutive sessions
that it watches the same target (in this case there is no need
for sensor i to swilch). Finally, we have an independent
timetable for each sensor.

Since global clock synchronization is achievable in sensor
networks by using some localized method [16] or time
synchronization scheme (17], sensors can cooperate correctly
according to the timetable to achieve the maximal network
lifetime.

4, EXPERIMENTS AND SIMULATIONS

4.1. A Numeric Example

We randomly place 6 sensors (in clear color in Fig. 2) and
3 targets (in grey in Fig. 1) in a 50x 350 two-dimensional
free-space region. For simplicity, the surveillance range of alt
sensors is set to 20 (our solution can work for any system
with non-uniform surveillance range). Fig. 1 shows the
surveillance relationship between sensors and targets, with an
edge between a sensor and a target if and only if the target is
within the surveiltance range of the sensor. The initial energy
reserves of sensors, in terms of hours, are random number
generated in the range of [0, 50] with the mean at 25, as
shown in Tab. 1.

2488

Fig. 1. An example system with 6 sensors and 3 targets.
Tab. 1. The initial energy of 6 sensors (hr.).

Sensors 1 2 3

E; 15.6926 34.2627 24,8717
Sensors 4 5 6

E; 21.7847 46,6865 34.5310

We foliow the three steps in our method to find the
timetables for the sensors,

First, we use the linear programming, deseribed in section
3.1, to compute the maximum lifetime /. and the workload
matrix that achieves L.

L=405643 hr,
15.6926 0 O
0 10.2454 18.719%
X .= 24 8717 0 0
@8 = 0 17.9125 0
012.4064 21.8444
0 0 0

In the workload matrix, we can se¢ target 1 is only
watched by sensors 1 and 3 for 15.6926 hr., 24.8717 hr,
respectively. The total time for target 1 to be watched is
40.5643 hr_, which is the lifetime of the surveillance system.

Second, we run the FillMarrix Algorithm, proposed in
section 3.2.2, to append a dummy matrix to the workload
matrix to make it a square matrix H'.s, where the sum of
each column and the sum of each row are all equal to L:

Wee =

15.6926 0 0 248717 0 0
0 10.2454 18.7199 11.5990 0 0

248717 0 0 4.093611.5990 0l.
0179125 0 0 22.6518 0
012.4064 21.8444 0 63135 0
0 0 0 0 0 40.5643

Then we run the DecomposeMatrix Algorithm, proposed
in section 3.2.3, to decompose Wi into a sequence of
schedule matrices ¢; X P, ¢; X Py, ..., and ¢s X Ps (i.e., the
decomposition terminates at round 3), such that

Wsus= ¢ P + c2Pr+. .+ ¢5Ps.

By removing the dummy columns of the schedule

matrices, we have:

Authorized licensed use limited to: CityU. Downloaded on May 22,2010 at 06:56:37 UTC from IEEE Xplore. Restrictions apply.

4.0936 0 0 0 0 0 11.5990 0 0
0 4.0936 0 061518 0 0 0 0| -
Voo 0 0 01, 6.1518 0 0 T 0 0 0
HEY 0 0 0 0 0 0 011.5990 ol
0 0 40936 0 06.1518 0 011.599
0 0 0 0 0 0 0 0 0
0 I 0 0 0 0 Finally, we obtain target watch timetables for sensors
0 (0 6.3135 0 012.406 based on the above schedule matrix. The timetable for the 6
4| 63133 0 01],]12.4064 0 0 sensors is shown in Tab. 2.
0 63135 0 0 0 (]
0 0 0 012.4064 0
0 0 0 0 0 0
Tab. 2. The schedule timetable for 6 sensors
Sensors Watching Duty (time duration and watching targels)
| 0~4.0936 4.0936~28.9653 28.8953~40.5643
Target 1 Turn off Target |
5 0~10.2454 10.2454~28.9653 28.8953~40.5643
Target 2 Target 3 Turn off
3 0~4.0936 4.0936~28.9653 28.8953~40.5643
Turn off Target 1 Tumn off
0~10.2454 10.2454~16.5589 16.5589~28.8953 28.8953~40.5643
3 Turn off Target 2 Tum off Target 2
5 (~10.2454 10.2434~16.5589 16.5585~28.8953 28.8953~40.5643
Target 3 Turn off Target 2 Target 3
6 0~40.5643
Turn off

It is easy to see (hat the timetable in Tab. 2 satisfies the
surveillance conditions that each sensor can watch at most
one target at a ime and each target is watched by a sensor at
anytime.

.2 Simulations

We conduct some simulations to study the complexity of
our proposed solution and compare its performance with a
greedy method.

The simulations are conducted in a 50x50 two-dimensional
free-space region. Sensors and targets are randomly
distributed inside the region. Again, the surveillance range of
all sensors is set 20 (except the simulations for Fig. 3(a)).
The initial energy reserves of sensors are the random
numbers in the range of [0, 50], with the mean value of 25
hours. The results presented in the figures are the means of
100 separate runs.

A. Growth of decomposition steps is linear

According to Theorem 2, we know the number of steps for
decomposing the workload matrix, denoted by ¢, is bounded
by t<(n—1)"+1. In the simulations, we found that 7 is linear to
the size of system.

Fig. 2(a) and Fig. 2(b) show the increase of ¢ versus the
change of N (number of sensors) and M (number of targets),
respectively, when one of the two varniables is fixed. From the
figures, we can see a strong linear relationship between ¢ and
N (or A). This result teils us that the actual number of steps

2489

for decomposing the matrix is linear to the size of system in
real runs.

s J—

330 4——

310

200 oo

270 o

o0 [EOEE——

230

210 f-

180
50 60

steps (1)

Then number of decomposing

' i r

70 80 90 100

The number of sensors (N}

Fig. 2(a). rversus N when A7=10.

Authorized licensed use limited to: CityU. Downloaded on May 22,2010 at 06:56:37 UTC from IEEE Xplore. Restrictions apply.

900
800 +
700
600
0 ——
400
300 +
200
100) N - 2

5 10 15 20 25

The number of targets (M)

steps (t)

The number of decomposing

Fig. 2(b). ¢ versus Af when M=100.

B. Comparison with a greedy method

A greedy algorithm is proposed to compare the
performance with our optimal solution. The basic idea of the
greed method is to allocate sensors to targets in such a way
that each sensor is allocated to watch one target in its lifetime
and the total working time of the sensors allocated to targets
are balanced as much as possible. It first assigns the sensors
that have only one target in their surveillance range to their
respective tarpets. Then, the remaining sensors are assigned
to the targets such that the total time for targets being
watched is as balanced as possible among all targets.

We set N=100 and M=10. Fig. 3(a) shows the lifetime
versus the change of surveillance range of sensors. From Fig.
3(a), we can see that when the surveillance range is small,
two curves are very close. This is because with a small
surveillance range, sensors usually have got only one target
within its range. There is hardly any room that our
optimization method can take advantages. As the surveillance
range becomes larger, more sensors are able to cover
multiple targets, which gives our method more room to
schedule the sensors properly to achieve the maximum
lifetime. That is why the performance gap between the two
ntethods becomes more significant as the increase of the
surveillance ranges.

Fig. 3(b) shows the lifetime versus the number of sensors
placed in the same region. This simulation shows how the
lifetime is affected by the density of sensors. Fig. 3(b)
exhibits the similar trend as in Fig. 3(a). As more sensors
deployed in the same region, the density becomes higher. A
target can be watched by more sensors and there is a higher
chance for a target to be in the watching range of multiple
sensors. Thus, our optimal algorithm can take more
advantages by optimizing the schedule and the performance
becomes more significant than the greedy method in this kind
of situations.

From Fig. 3(a) and Fig. 3(b), we can conclude that our
optimal algorithm has significantly better performance in the
situation where sensors have larger coverage Tange or senses
are densely deployed.

2490

300

—&— Our optimal algorithm

250) e
- Greedy algorithm / !

100 +

The lifetime of surveillance system
(hr)
&
o

0 |. N . . | . 3
5 10 15 20 25

The surveillance range

Fig. 3(a). Lifetime versus surveillance range.

250 T

~—&— Our optimal algorithm
200 + —F— Greedy algorithm

150 |

100 +

system (hr)

50

The lifetime of surveillance

10 20 30 40 50 60 70 80 90 100

The number of sensors (N)

T

Fig. 3(b). Lifetime versus N when A/=10.

5. CONCLUSIONS

This paper addressed the maximal lifetime scheduling
problem in sensor surveillance networks.

Our solution consists of three steps: 1) compute the
maximum lifetime of the system and the worklead matrix by
using linear programming method, 2) decompose the
workload matrix into a sequence of schedule matrices by
using perfect matching method. This decomposition can
preserve the maximum lifetime; 3) obtain target watching
timetable for sensors. It is not difficult to see that our solution
is the optimum in the sense that it can find the schedules for
sensors watching targets that achieve the maximum lifetime.
Simulations have been conducted to show that the steps of
decomposition is linear to the size of system and our method
can take more advantages in the situation that senses are
densely deployed or sensors have larger coverage ranges.

ACKNOWLEDGMENT
We would like to thank Professor Dingzhu Du and

Professor Xiaotie Deng for pointing us towards relevant
results on decomposing of doubly stochastic matrices.

Authorized licensed use limited to: CityU. Downloaded on May 22,2010 at 06:56:37 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Herbert John Ryser, Combinational Mathematics, The
Mathematical Association of America, pp38-39, 1963,

[2] Richard A. Brualdi and Herbert I. Ryser, Combinatorial
Matrix Theory, Cambridge University Press, pp5-10,
1991

[3] D. Tian and N. D. Georganas, “A Coverage-Preserving
Node Scheduling Scheme for Large Wireless Sensor
Networks” In First ACM International Workshop on
Wireless Sensor Networks and Applications, pp32-41,
2002

[4] C.-Y. Chong and S. P. Kumar, “Sensor Networks:
Evelution, Opportunities, and Challenges”, Proc. of the
IEEE, pp1247-1256, Vol 91, No. 8, Aug. 2003.

{5] Renald Gould, Graph Theory, The Benjamin/Cummings
Publishing Company, INC, pp198-209, 1988.

[6] Douglas B, West, Imfroduction te Graph Theory,
Prentice Hall, INC, pp109-111, 1996.

[7] S. Axler, F. W. Gehlring and K. A. Ribet, Graph Theorv,
Second Edition, Springer, 2000.

[8] Jean Carle and David Simplot-Ryl. “Energy-Efficient
Area Monitoring for Sensor Networks™, IEEE Computer,
pp40-46, Vol. 37 No. 2, Feb. 2004.

[9] Linnver B. Ruiz, Luiz Filipe Menezes Vieira, Marcos
Augusto Menezes Vieira ef al, “Scheduling Nodes in
Wireless Sensor Networks: a Voronei Approach”,
Proceedings of 28th IEEE Conference on Local
Computer Networks (LCN2003), October 2003, pages
423-429, Bonn/Konigswinter, Germany.

[10] Chih-fan Hsin and Mingyan Liu, “A Distributed
Monitoring Mechanism for Wireless Sensor Networks”,
International Conference on Mobile Computing and
Networking Proceedings of the ACM Workshop on
Wireless Security, Atlanta, USA, pp57-66, 2002

[11} Y. Zhao, R. Govindan and ID. Estrin, “Residual Energy
Scans for Monitoring Wireless Sensor Networks”, IEEE
Wireless Communications and Networking Conference,
pP356-362, 2002.

[12] M. Bhardwaj, T. Garnett and A. Chandrakasan, “Upper
Bounds on the Lifetime of Sensor Networks”, In IEEE
International Conference on Communications, pp785-
790, 2001.

[13] Alan Mainwaring, Jeseph Polastre, Robert Szewczyk,
David Culler and John Anderson, “Wireless Sensor
Networks for Habitat Monitoring”, In Proceedings of the
Ist ACM International Workshop on Wireless Sensor
Networks and Applications, pp88-97, Atlanta, USA,
September 2002.

[14] T. Inukai, “An Efficient SS/TDMA Time Slot
Assignment Algorithm”, IEEE Trans. Commun., vol.
COM-27, ppl449-1455, 1979,

[15] Ting Yan, Tian He and John A. Stankovic,
“Differentiated Surveillance for Sensor Networks™,
Proceedings of the First International Conference on

2491

Embedded Networked Sensor Svstems, Los Angeles,
USA, pp51-62, 2003.

[16] Qun Li, Daniela Rus, “Global Clock Synchronization in
Sensor Networks”, IEEE INFOCOM 2004,

[17] K. Romer, “Time Synchronization in Ad Hoc Networks”,
in Proc. of 4CM Mobihoc, Long Beach, CA, 2001.

Authorized licensed use limited to: CityU. Downloaded on May 22,2010 at 06:56:37 UTC from IEEE Xplore. Restrictions apply.

