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 Abstract—Flooding is one of the most fundamental operations in 
mobile ad hoc networks. Traditional implementation of flooding 
suffers from the problems of excessive redundancy of messages, 
resource contention, and signal collision. This causes high 
protocol overhead and interference to the existing traffic in the 
networks. Some efficient flooding algorithms were proposed to 
avoid these problems. However, these algorithms either perform 
poorly in reducing redundant transmissions, or require each 
node to maintain 2-hop (or more) neighbors information. In the 
paper, we study the sufficient and necessary condition of 100% 
deliverability for flooding schemes that are based on only 1-hop 
neighbors information. We further propose an efficient flooding 
algorithm that achieves the local optimality in two senses: 1) the 
number of forwarding nodes in each step is the minimal; 2) the 
time complexity for computing forwarding nodes is the lowest, 
which is O(nlogn), where n is the number of neighbors of a node. 
Extensive simulations have been conducted and simulation 
results have shown that performance of our algorithm is 
significantly better than the existing message efficient flooding 
methods. 

Keywords-flooding, broadcasting, mobile ad hoc networks, 
wireless networks 

1. INTRODUCTIONS 

Flooding is one of the most fundamental operations in 
mobile ad hoc networks (MANET). Most of the major routing 
protocols, such as DSR [1], AODV [2], ZRP [3], LAR [4], etc., 
rely on flooding for disseminating route discovery, route 
maintenance, or topology update packets. Flooding is a very 
frequently invoked utility function in MANETs. Therefore, an 
efficient implementation of flooding scheme is crucial in 
reducing the overhead of routing protocols and improving the 
throughput of networks. 

Pure flooding, or called blind flooding, was first discussed 
in [5, 6], where every node in the network retransmits the 
flooding message when it is its first time to receive it. This 
simple scheme guarantees that a flooding message can reach all 
nodes if there is no collision and the network is connected. 
However, it generates excessive amount of redundant network 
traffic, because all nodes in the network transmit the flooding 
message. This will consume a lot of energy resource of mobile 
nodes and cause the congestion of the network. Furthermore, 
due to the broadcast nature of radio transmissions, there is a 
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very high probability of signal collisions when all nodes flood 
the message in the network at the same time, which would 
cause more re-transmissions or some nodes failing to receive 
the message. It is so called the broadcast storm problem [7]. 
Sinha et al claimed that “in moderately sparse graphs the 
expected number of nodes in the network that will receive a 
broadcast message was shown to be as low as 80%” in [8]. 

To solve the broadcast storm problem, several schemes 
have been proposed to reduce the redundancy in flooding 
operations. The most notable works are [9], [10], and [11]. 
However, these algorithms either perform poorly in reducing 
redundant transmissions, or require each node to maintain 2-
hop neighbor information. Maintaining 2-hop neighbor 
information for each node incurs extra overhead of the system 
and the information can be hardly accurate when the mobility 
of the system is high. In the paper, we propose an efficient 
flooding algorithm that is only based on 1-hop neighbors 
information, which makes the protocol easy to be implement 
and light-weight in overhead. Our proposed algorithm also 
achieves the local optimality in two senses: 1) the number of 
forwarding nodes is the minimal; 2) the time complexity is the 
lowest. Time complexity for computing the forwarding nodes 
in each step is O(nlogn), which is the lower bound (n is the 
number of neighbors of a node). 

Efficient flooding scheme is different from the broadcast 
mechanisms discussed in [12, 13]. The broadcast mechanism is 
used for transmission of large amount data or stream media 
data, which requires a broadcast routing to find an efficient 
route before the actual transmission of data, so that data can be 
transmitted efficiently along the pre-found route. In contrast, 
flooding is usually used for dissemination of control packets, 
which is a one-off operation. It does not need routing before 
hand. 

2.  RELATED WORK  

The existing efficient flooding schemes can be classified 
into three categories based on the information each node keeps: 
1) no need of neighbor information; 2) 1-hop neighbor 
information; 3) 2-hop or more neighbor information.  

Schemes in the first category do not need information of 
neighbors. Pure flooding scheme is a typical example in this 
category. Authors in [7, 14] showed the serious problem that 
pure flooding causes through analysis and simulations. A 
probabilistic-based scheme was further proposed to reduce 
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redundant rebroadcasts and differentiate timing of rebroadcasts 
to avoid collisions. Upon receiving a flooding message for the 
first time, a node will forward it with probability P. Clearly, 
when P = 1, this scheme is equivalent to pure flooding. The 
probabilistic scheme includes counter-based, distance-based, 
location-based and cluster-based flooding schemes. Simulation 
results showed different levels of improvement over pure 
flooding. This probabilistic scheme was further investigated in 
[15]. It showed that the success rate curve for probabilistic 
flooding tends to become linear for the network with low 
average node degree, and resembles a bell curve for the 
network with high average node degree. In these schemes, a 
non-redundant transmission might be dropped out, without 
being forwarded further. This will cause some nodes in the 
network failing to receive the flooding message (i.e., these 
nodes are not reached by the flooding). Besides this 
deliverability problem, another major concern of these 
techniques is the difficulties in setting the right threshold value 
(e.g., retransmission probability, etc.) in various network 
situations [16]. 

Schemes in the second category assume that each node 
keeps information of 1-hop neighbors. 1-hop neighbor 
information can be obtained by exchanging the HELLO 
message in MAC layer protocols. A major issue in the schemes 
that use 1-hop or 2-hop information is the selection of a subset 
of neighbors for forwarding the flooding message. There are 
two strategies for choosing forwarding nodes: sender-based, 
where each sender nominates a subset of its neighbors to be the 
next hop forwarding nodes, and receiver-based, where each 
receiver of a flooding message makes its own decision on 
whether it should forward the message. Several flooding 
schemes that use 1-hop information and guarantee 100% 
deliverability were discussed in [10]. This work also analyzed 
the performance of the two strategies for choosing forwarding 
nodes. To avoid transmission collision, it also proposed a 
simple transmission order for forwarding nodes: a farther 
neighbor waits for a shorter time to forward a message after it 
receives it. The flooding with self pruning (FSP) scheme 
proposed in [17] is a receiver-based scheme that uses 1-hop 
information. In this scheme, a sender forwards a flooding 
message by attaching all of its 1-hop neighbors to the message. 
A receiver compares its own 1-hop neighbors with the node list 
in the message. If all its 1-hop neighbors are already included 
in the list, it will not forward the message; otherwise it 
forwards the message as its sender. The work in [18] compared 
the performance of several flooding schemes. It showed that 
the improvement of FSP is very limited in most of network 
conditions. Another notable work of efficient flooding that uses 
1-hop neighbor information is Edge Forwarding [9]. For each 
node, its transmission coverage is partitioned into six equal-
size sectors. A node, upon receiving a flooding message, makes 
its own decision whether it should forward the message based 
on the availability of other forwarding nodes in the overlapped 
areas. Taking an example in Fig. 1, node a, whose coverage 
disk is partitioned into six sectors, floods a message that is 
received by its neighbor b. Node b dose not need to forward the 
message if and only if 1) there exist nodes in the small 

enclosed areas A, B and C; and 2) Any nodes in areas D and E 
can be reached by the nodes in A and C, respectively. This is 
because the coverage disk of b can be covered by either a or 
the nodes in areas A, B, and C. By doing so, it reduces the 
forwarding nodes in flooding. 

a

B
A

E

D

Cb

 
Fig. 1. Example of Edge Forwarding. 

Most existing flooding schemes that use neighborhood 
knowledge are based on information of 2-hop neighbors. To 
obtain the information about 2-hop neighbors, one solution is 
that each node attaches the list of its own neighbor 
information to the HELLO message for exchange. The 
schemes proposed in [17, 19, 20, 21] are sender-based, while 
schemes in [11, 22, 23, 24, 25, 26] are receiver-based. In the 
schemes that use 2-hop neighbor information, each node 
knows the network topology (connectivity) of 2-hop neighbors. 
To forward messages efficiently, the task for each node is to 
select the minimal subset of its 1-hop neighbors that can reach 
all its 2-hop neighbors. A multipoint relaying method was 
proposed in [19, 20], which tries to find the minimal number 
of forwarding nodes among the neighbors. Finding the 
minimal number of forwarding nodes was proved to be NP-
complete [20]. Authors proposed a heuristic algorithm that 
selects forwarding nodes at each step, such that the number of 
newly covered neighbors is maximized. The approximation 
ratio of this heuristic algorithm was proved to be at most logn, 
where n is the number of 2-hop neighbors. Notice that this 
performance ratio is only for each step (i.e., for 2-hop 
neighbors), not for the entire network. Another important 
technique is the use of connected dominating set (CDS) [11, 
27]. A dominating set (DS) is a subset of nodes such that 
every node in the graph is either in the set or is adjacent to a 
node in the set. A CDS is a connected DS. Any routing in 
MANETs can be done efficiently via CDS [11]. Although 
finding minimal CDS (MCDS) is NP-hard even in unit disk 
graph (UDG) [28], some distributed algorithms for computing 
MCDS with approximation ratio have been proposed in [27, 
29]. However, maintaining a CDS in the network is costly, 
which is not suitable for flooding operations in highly mobile 
situations. Generally, the schemes that use 2-hop neighbor 
information incur high protocol overhead in the network with 
high mobility and high node density, and they cannot be easily 
fitted into a network that does not support 2-hop neighbor 
information exchange.  

Our flooding scheme requires each node to keep only 1-
hop neighbor information. We prove that our flooding scheme 
not only guarantees 100% deliverability, but also achieves the 
local optimality in terms of number of forwarding nodes and 

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.

Authorized licensed use limited to: CityU. Downloaded on May 22,2010 at 06:42:15 UTC from IEEE Xplore.  Restrictions apply. 



 

computational complexity. In this paper, we will not discuss 
the scheduling of transmissions of forwarding nodes. 
Interested readers can refer to the related work in [30, 31]. 

The rest of the paper is organized as follows. We propose 
an efficient flooding scheme in section 3. Section 4 discusses 
the handling of mobility. In section 5, we discuss the 
simulation of our flooding scheme by using ns-2 test-bed and 
compare its performance with other flooding algorithms. 
Finally, we conclude the work in section 6. 

3.  EFFICIENT FLOODING SCHEME BASED ON 1-HOP 
INFORMATION 

3.1.  System Model and Overview of Method 

We assume all nodes in the network have the same 
transmission range R. Thus, the network can be represented as 
a unit disk graph G(V,E). We assume the network is connected. 
Each node v in V has a unique ID, denoted by id(v). Let N(v) 
denote the set of neighbor nodes of v. That is, nodes in N(v) 
are within the transmission range of v and can receive signals 
transmitted by v. Node v needs to know the information of its 
neighbors, including their IDs and their geographic locations. 
The 1-hop neighbor information can be easily obtained from 
the HELLO messages periodically broadcasted by each node. 
For the rest of the paper, we simply use neighbors to mean 1-
hop neighbors. 

The basic idea of our flooding scheme is as follows. When 
a node (called the source) has a message to be flooded out, it 
computes a subset of its neighbors as forwarding nodes and 
attaches the list of the forwarding nodes to the message. Then, 
it transmits (broadcasts) the message out. After that, every 
node in the network does the same as follows. Upon receiving 
a flooding message, if the message has been received before, it 
is discarded; otherwise the message is delivered to the 
application layer, and the receiver checks if itself is in the 
forwarding list. If yes, it computes the next hop forwarding 
nodes among its neighbors and transmits the message out in 
the same way as the source. The message will eventually reach 
all the nodes. 

We discuss our method in three parts: a) forwarding node 
selection, where a node selects a subset of its 1-hop neighbors 
to forward the flooding message; b) forwarding node 
optimization, which further reduces the size of forwarding 
nodes by removing the nodes that are already covered; c) 
mobility handling, where each node incrementally updates its 
forwarding set in response to topology changes. 

3.2. Theoretical Foundations of Minimal Forwarding 
Nodes 

We aim at designing a 1-hop flooding scheme. Flooding 
schemes in [9], [10] and [17] are all 1-hop flooding schemes 
that guarantee 100% deliverability of flooding messages. To 
achieve the optimal efficiency, we need to study the sufficient 
and necessary condition of 100% deliverability for flooding 

schemes that are based on 1-hop information. We introduce 
the following definitions. 

Def 1. Coverage disk of a node. The coverage disk of node s, 
denoted by d(s), is a disk that is centered at s and whose radius 
is the transmission range of s. 

Since all neighbors of node s should be covered by d(s), in this 
paper, we call “s covers u” or “u is covered by s” when u is a 
neighbor of s.  

Def 2. Coverage area of a node-set. The coverage area of a set 
of nodes A, denoted by C(A), is the union of coverage disks of 
nodes in A.  

We simply call “the area is covered by A” if the area is within 
C(A). 

Def 3. Neighbor’s coverage area. The neighbor’s coverage 
area of node s is the union of coverage disks of all s’s 
neighbors plus s itself, i.e., C(N(s)∪{s}). 

Def 4. Boundary of neighbor’s area. The boundary of 
neighbor’s area of node s is the boundary of the area of 
C(N(s)∪{s}). 

u

v

ws

 

Fig. 2. Neighbor’s area of node s. 

For simplicity, the neighbor’s coverage area is called 
neighbor’s area and the boundary of neighbor’s area called 
neighbor’s boundary for the rest of the paper. For example in 
Fig. 2, the set of neighbors of s N(s)={u, v, w}. Thus, the 
neighbor’s area of s is C({s, u, v, w}), i.e., whole shadow area. 
The neighbor’s boundary of s is the outside boundary of this 
shadow area. 

Def 5. Forwarding set. The set of forwarding nodes of s, 
denoted by F(s), is a subset of s’s neighbors that are selected 
for forwarding the flooding message (F(s) includes s itself). 

Def 6. Minimum forwarding set Fmin(s). The minimal 
forwarding set of s, denoted by Fmin(s), is the smallest F(s) that 
covers the neighbor’s area of s. 

Theorem 1. A 1-hop flooding scheme achieves 100% 
deliverability if and only if for each node s the neighbor’s area 
of s is covered by F(s). 

Proof. Sufficient condition (←). Suppose for each node s the 
neighbor’s area of s is covered by F(s). We need to prove that 
the flooding scheme achieves 100% deliverability.  

For each transmission node s, since all 2-hop neighbors of 
s are within the neighbor’s area of s, they are sure to be 
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covered by nodes in F(s). Thus, all nodes that are 2-hop away 
from the source s are sure to be covered by F(s). Notice that 
s’s 3-hop neighbors are neighbors of s’s 2-hop neighbors. 
There must exist some transmission nodes in F(s), such that 
s’s 3-hop neighbors are 2-hop neighbors of these transmission 
nodes. Thus, s’s 3-hop neighbors are sure to be covered by 
forwarding sets of these transmission nodes. Nodes that are 4-
hop and more from the source can be proved in the similar 
way. Therefore, the flooding message will be forwarded hop 
by hop throughout the whole network. 

Necessary condition (→). Suppose a flooding scheme A 
achieves 100% deliverability. Let FA(s) denote the set of 
forwarding nodes of s that is computed by A. We need to 
prove that for each node s the neighbor’s area of s is covered 
by FA(s). We prove it by contradiction. 

We consider a kind of networks where all nodes are within 
coverage disk of a central node, denoted by s. That is, any 
network in this category consists of a central node and its 
neighbors, shown in Fig. 3. Suppose scheme A does not 
guarantee that for each node s the neighbor’s area of s is 
covered by FA(s). There must exist such a network as shown in 
Fig. 3 and the neighbor’s area of s is not fully covered by 
FA(s). Since Fmin(s) is the smallest forwarding set that covers 
the neighbor’s area of s, we have Fmin(s)⊄FA(s). In other words, 
there exists node u∈Fmin(s) and u∉FA(s). Notice that coverage 
disks of all nodes in Fmin(s) are sure to contribute to the 
neighbor’s boundary of s (if not, it can be removed from 
Fmin(s)). We place node v on the boundary that is contributed 
only by u (dashed line in Fig. 3 is the neighbor’s boundary of 
s). Notice that s has information of only 1-hop neighbors. s 
does not know that v is a neighbor of u and u is the only node 
to reach v. So v can not be covered by any node in FA(s) since 
u∉FA(s). 

s
u

v

 

Fig. 3. Example of neighbor’s area of s.  

On the other hand, since there is no other nodes outside 
coverage disk of s, node v can neither be covered by 
forwarding set of other nodes. That is, node v will eventually 
miss the flooding message. It contradicts the assumption that 
flooding scheme A achieves 100% deliverability. Theorem 1 is 
proved.        

Theorem 1 tells us that the sufficient and necessary 
condition of 100% deliverability for any 1-hop flooding 
scheme is that for each node s, the neighbor’s area of s should 
be covered by F(s). Otherwise, some nodes in the network 

may miss the flooding message. Theorem 1 gives the 
theoretical guideline for computing F(s) in our flooding 
scheme. 

3.3.  Computing Minimal Forwarding Nodes 

Suppose s is a node that receives a flooding message for 
the first time and s appears in the forwarding list attached to 
the message (s could be the original source of the message). s 
is designated as a forwarding node and it computes the next 
hop forwarding nodes from its neighbors. Since s only has 1-
hop neighbor information, it does not know who are the 2-hop 
neighbors. To achieve 100% deliverability, according to 
Theorem 1, F(s) must cover the entire neighbor’s area of s. 
Our task can be formally defined as:  

Minimize F(s) such that 
( ) ( )

( ) ( )
v F s u N s

d v d u
∈ ∈

=U U . 

Taking the example in Fig. 2 again, s has three neighbors: 
u, v and w. Since d(u)∪d(v)∪d(s) makes up the neighbor’s 
area of s, it is enough to cover all s’s 2-hop neighbors if only u 
and v forward the message. In the other word, 
d(w)⊆d(u)∪d(v)∪d(s), there is no need for w to forward the 
message.  

To minimize F(s), every node in F(s) must contribute to 
the neighbor’s boundary of s; otherwise, this node can be 
removed from F(s) without affecting the coverage area of F(s). 
Therefore, computing the minimal F(s) is to find a subset of 
N(s) such that every node in the subset contributes to the 
neighbor’s boundary of s. 

We first give a simple O(n2) algorithm to compute F(s) as 
follows, where n=|N(s)|. Since the outside nodes of N(s), i.e., 
the nodes further away from s, are usually the nodes that 
contribute to the neighbor’s boundary of s, all nodes in N(s) 
are sorted in descending order into a list according to their 
Euclidean distance to s. The first node in the list (that is the 
farthest away from s) is included in F(s). Each time, the next 
node in the list is considered. If its coverage disk is not fully 
covered by the so far constructed F(s), it is added into F(s). 
This operation is repeated until all nodes in the list are 
considered. It is not difficult to see that F(s) is the minimum 
(i.e., every node in F(s) contributes to the neighbor’s boundary 
of s) and the time complexity is O(n2). 

The next we present an algorithm with time complexity 
O(nlogn). The strategy of this method is to compute the 
neighbor’s boundary of s, and thus the nodes that contribute to 
this boundary are the nodes in F(s). We use the pair-wise 
boundary merging method to compute the boundary efficiently. 
Initially, each node is arbitrarily paired with another node to 
merge their coverage boundaries. Then, the merged pair’s 
boundary is further merged with another pair’s boundary. This 
merge operation is repeated until eventually there is only one 
big merged boundary, which is the neighbor’s boundary of s. 
The minimal F(s) consists of the nodes that contribute to this 
boundary. 
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Fig. 4. Example of arcs.  

Before considering the procedure for merging boundaries, 
we introduce data structures to represent arcs and boundaries. 
A boundary consists of a sequence of arcs. If we use the 
location of s as the reference point, any arc in the neighbor’s 
boundary of s can be uniquely defined by a 3-tuple (θs, u, θe), 
where θs, u and θe are the starting angle, the centre and the 
ending angle of the arc, respectively. θs and θe are relative to 
the horizontal line going through s counting in anti-clock 
direction. For example in Fig. 4, line os is the horizontal line 
from s, which is used as the reference line in counting starting 
and ending angles of arcs. Arc ab  of disk u is represented by 
(∠osb, u, ∠osa), where ∠osb is the starting angle and ∠osa 
the ending angle of ab .  

A boundary consists of a sequence of arcs. Thus, a 
boundary is represented by an array of arcs, denoted by B[]. 
The ith element in B[], B[i]=( , ,s e

i i iuθ θ ), i=1,…,m, denotes the 
ith arc in the boundary. The arcs in B[] are sorted in non-
descending order according to their starting angles. That is, 

1 2[1]. [2]. ... [ ].s s s
mB B B mθ θ θ≤ ≤ ≤ . This sorted feature of arcs in 

B is critical to the efficient merging algorithm to be presented 
below. Because of this feature, the arcs in two boundaries can 
be merged in the same sequential order as the progress of their 
array indices without backtracking. To make the ending angle 
greater than the starting angle, any arc that crosses the 
horizontal line from s is split into two arcs. For the same 
example in Fig. 4, arc cd  is split into arcs od  and co  and 
they are represented by (0o, v, ∠osd), (∠osc, v, 360o), 
respectively. The neighbor’s boundary of s in Fig. 4 can be 
represented as B[]= { od , db , ba , ac , co } ={(0o, v, ∠osd), 
(∠osd, s, ∠osb), ( ∠ osb, u, ∠osa), (∠osa, s, ∠osc), (∠osc, v, 
360o)}. 

Considering merging two boundaries Bi and Bj into a new 
one B, we start from the first arcs in Bi and Bj, respectively, 
merge them and store the merged arc in B. Suppose now we 
are at the point of merging the kth arc of Bi (i.e., Bi[k]) with the 
lth arc of Bj (i.e., Bj[l]), and storing the merged arc in B[h]. 
Notice that two arcs intersect with each other at no more than 
two points (because any two different disks intersect with each 
other at no more than two points). There are three possible 
cases of the intersection: 1) no intersection; 2) only one 
intersecting point; 3) two intersecting points. We discuss the 
cases one by one. 

If arcs Bi[k] and Bj[l] have no intersection, it can be further 
divided in three sub-cases: 1.1) the sectors of two arcs are 
overlapped with each other, as in Fig. 5(a); 1.2) sector of one 
arc is contained by the other, as in Fig. 5(b); 1.3) There is no 
overlapping of the sectors of two arcs, in Fig. 5(c). For case 
1.1, arc Bi[k] contributes to the resulting boundary B. Thus, the 
resulting arc in B is Bi[k], i.e., B[h]=Bi[k]. Then, we move to 
next arc in Bi and compare Bi[k+1] with Bj[l]. For case 1.2, 
segment ab  of Bi[k] is for sure to contribute to B, but segment 
bc  may intersect with arc of Bj[l+1]. Therefore, B[h] is set to 
ab . Then, we move to next arc in Bj, i.e., Bj[l+1], to compare 

it with segment bc . For case 1.3, without losing generality, 
assuming Bi[k].θs<Bj[l].θs, arc Bi[k] is for sure to contribute to 
B, but Bj[l] may intersect with Bi[k+1]. We set B[h]=Bi[k], and 
move the next to compare Bi[k+1] with Bj[l]. Notice that in the 
above merging operation, we use the important feature that 
arcs in Bi and Bj are sorted according to their starting angles, 
and the merging operation can be done in sorted order. 

s

][kBi

][lBj

][kBi

][lBj

s

a

bc

 
(a) Case 1.1                     (b) Case 1.2 

][kBi

][lBj

s

][kBi

][lB j

s

a

b

c

 
(c) Case 1.3     (d) Case 2 

][kBi ][lB j s

ab

c d  
                  (e) Case 3 

Fig. 5. Relationship between two arcs. 

For the case where arcs Bi[k] and Bj[l] have only one 
intersecting point at b, as shown in Fig. 5(d), segment ab  of 
Bi[k] contributes to B and segment bc  of Bj[l] may intersect 
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with Bi[k+1]. Thus, we set B[h] = ab  and, then move to the 
next to compare Bi[k+1] with the segment bc  of Bj[l]. 

If arcs Bi[k] and Bj[l] have two intersecting points at b and 
c, as shown in Fig. 5(e), both segments ab  of Bj[l] and bc  of 
Bi[k] contribute to B. We set B[h]= ab  and B[h+1]= bc . Then, 
we move to compare Bi[k+1] with segment cd  of Bj[l]. 

Following the above discussion of merging the two arcs in 
Bi and Bj, and moving the pointer to the next arc for merging, 
this operation can be repeated until all arcs in Bi are merged 
with Bj into the new boundary B. The following is the detailed 
boundary merge algorithm. 

BoundaryMerge Algorithm 
Input: Bi and Bj. 
Output: B. 
Begin 

k=1; // pointer to the current arc in Bi. 
l=1; // pointer to the current arc in Bj. 
h=1; // pointer to the current arc in B. 
while (there is unmerged arc in both Bi and Bj) do 

 Merge Bi[k] and Bj[l] to B according to cases 1–3; 
Adjust k, l, and h accordingly; 

Return B. 
End 

Theorem 2. Time complexity of BoundaryMerge algorithm is 
O(n1+n2), where n1 and n2 are the numbers of arcs in Bi and Bj, 
respectively. 

Proof. Notice that in BoundaryMerge algorithm, we always 
move to the next arc of Bi or Bj after comparison and no 
backtracking is needed. So the total running time is O(n1+n2), 
where n1 and n2 are the number of arcs in Bi and Bj, 
respectively. Theorem proved.    

Now, we consider the forwarding node selection algorithm. 
Initially, for each node i, 1≤i≤ |N(s)|, its arc outside of the area 
of d(s) is represented by a boundary array Bi[]. Then, the arcs 
are merged in pair-wise by using the BoundaryMerge 
algorithm, until there becomes a single boundary of the 
coverage area of N(s). F(s) consists of the nodes that 
contribute to this boundary. 

FwdNodes Algorithm 
Input: s and N(s). 
Output: F(s). 
Begin 

j=n; // n=|N(s)|. 
while j>1 do 

 for (i=1; i<j; i=i+2) 
          B(i+1)/2[]=BoundaryMerge(Bi[], Bi+1[]); 
 j=j/2; 

Output F(s)={B[i].ui | i=1,2,…,k}; //B: the final boundary. 
End 

Notice that if n is odd in the above algorithm, we add a 
virtual arc whose starting angle and ending angle are both 0o. 
It does not affect correctness of the output. 

Theorem 3. Time complexity of FwdNodes algorithm is 
O(nlogn), where n=|N(s)|. 

Proof. In FwdNodes algorithm, each time we partition the 
current n boundaries into n/2 group, and run BoundaryMerge 
algorithm to merge two boundaries in each group. According 
to Theorem 2, it takes O(n) to complete boundary merge in all 
groups. Since each time the number of groups reduces half, it 
costs O(logn) to obtain the final one group, i.e., coverage’s 
boundary. So the total time complexity is O(nlogn). 

Theorem 3 is proved.     

FwdNodes algorithm requires that each node has 1-hop 
information. According to Theorem 1, it guarantees that all 
nodes can receive the flooding message. Based on these 
conditions, the following theorem states that our algorithm is 
optimal. 

Theorem 4. FwdNodes algorithm achieves local optimality in 
terms of: 1) the number of forwarding nodes is the minimal, 
i.e., F(s)=Fmin(s); 2) the time complexity is the lowest. 

Proof. In FwdNodes algorithm, each node only has 1-hop 
information. To cover 2-hop neighbors that are beyond its 
view, each node should select some 1-hop neighbors to relay 
the message, such that these selected neighbors can 
sufficiently cover the neighbor’s area of the node. Thus, all 2-
hop neighbors are guaranteed to be covered. In the algorithm, 
each node s selects the minimal set of nodes F(s) to forward 
the message by computing the neighbor’s boundary of s. 
Notice that any node in F(s) contributes to the final boundary. 
If a node in F(s) does not relay the message, other nodes can 
not take over its duty. It means that all nodes in F(s) should 
forward the message to guarantee 2-hop neighbors are covered. 
Thus, we have F(s)=Fmin(s). 

According to Theorem 3, time complexity of computing 
F(s) is O(nlogn), where n=|N(s)|. Notice that computing F(s) is 
equivalent to computing the neighbor’s boundary of s. We will 
prove that sorting problem can be induced to boundary 
computing problem. 

s
u

o

 

Fig. 6. Sorting problem is induced to boundary computing problem. 

Given n real numbers to be sorted, we first scale them to 
the numbers in [0, 2π]. For each scaled number a∈[0, 2π], 
point u is placed on the border of a small circle, such that 
∠uso=a (See Fig. 6, centre of the small circle is s, line os is 
parallel to X-axis and angles are counted in anti-clock 
direction). Notice that these nodes are in N(s) and the distance 
from s are the same. So each disk of node contributes to the 
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neighbor’s boundary of s. After running FwdNodes algorithm, 
starting angles [ ]. s

iB i θ , i=1,2,..n, of final boundary are in non-
descending order. It is equivalent to sort the given n nodes. 
That is, sorting problem can be induced to boundary 
computing problem. We know that the fastest sorting 
algorithm costs O(nlogn) time. So FwdNodes algorithm is the 
fastest algorithm to compute the neighbor’s boundary of s. 
Theorem 4 is proved.     

After computing F(s) by FwdNodes algorithm, s attaches 
IDs of nodes in F(s) to the flooding message and broadcasts it 
out. When receiving this message, a neighbor node of s checks 
if its own ID is in the forwarding list attached to the message. 
If yes, it will call the FwdNodes algorithm and forward the 
message out, the same as s does. In this way, the message is 
forwarded hop by hop until all the nodes in the network 
receive it. 

3.4. Forwarding Node Optimization 

The F(s) computed above is only locally optimal based on 
the 1-hop information of s. When a node u receives the 
flooding message from s (we call s the parent of u) and u is a 
forwarding node nominated by s (i.e., u∈F(s)), the computing 
of F(u) can be further optimized based on the information of 
F(s), which is attached to the flooding message from s. This is 
because some nodes in F(u) may be already covered by node s 
or node-set F(s), and thus F(u) could be further reduced by 
removing out those nodes.   

Consider the example given in Fig. 7, where nodes u and 
v are neighbors of s and F(s)={u,v}. The coverage area d(u) 
overlaps with d(s) and d(v) (notice node v is also in F(s)). The 
nodes in the overlapped area of d(u) with d(s) were already 
considered by s when computing F(s). Thus, these nodes can 
be removed from F(u). For the overlapped area of d(u) with 
other nodes in F(s), for example node v in Fig. 7, we use node 
ID as the priority for forwarding messages. That is, the node 
with the smaller ID has to forward the message if its coverage 
disk overlaps with another node. Therefore, the nodes of F(u) 
that fall into the coverage area of the following node-set can 
be removed from F(u): 

{s}∪{v| v∈(F(s)∩N(u)) and id(v)≤ id(u)}. (1) 

Notice that in node-set (1), we only consider set F(s)∩
N(u). That is, nodes in the node-set (1) are all neighbors of 
node u. Thus, u knows the geographic locations of nodes in 
the above node-set. This location information is necessary 
when u checks whether nodes in F(u) fall into the coverage 
area of the node-set (1). We can see this optimization is still 
based on 1-hop information of a node. 

Taking the example in Fig. 7 again, suppose id(v)≤ id(u) 
and F(u)={1,2,3,4,5}. Since nodes 1 and 2 are in N(s), they are 
already covered by s and can be removed from F(u). Node 3 is 
covered by v, and v is also a forwarding node and id(v)≤id(u). 
Thus, node 3 can also be removed from F(u). Finally, 
F(u)={4,5}. That is, node u only needs to nominate the nodes 
of F(u) in clear area. 

s u

v

1

2

3

4

5
6

 
Fig. 7. An example of optimizing F(u). 

The significance of this optimization is that it prevents the 
flooding message from going backwards. The message is 
always propagated forward towards the uncovered area, which 
reduces the redundant transmissions greatly.  

The following is the optimized forwarding node selection 
algorithm. It is executed whenever a node receives a flooding 
message. 

OptFwdNodes Algorithm 
Input: message m from s. 
Begin 

if m was received before, then discard m; 
else  
 Deliver m to upper layer; 

if this node, say u, is in forward-list in m 
Compute F(u); 
Remove from F(u) the nodes that are covered by 
node-set (1); 
Attach F(u) to m and transmit m out. 

End 

According to Theorem 4, we know that FwdNodes 
algorithm can guarantee that all nodes receive flooding 
message. After optimization in the OptFwdNodes algorithm, 
the 100% deliverability feature is still preserved. The 
following theorem states this feature. 

Theorem 5. The OptFwdNodes algorithm guarantees that all 
nodes can receive flooding message. 

Proof. According to Theorem 4, if all forwarding nodes run 
FwdNodes algorithm, 100% deliverability is guaranteed. So, 
to prove theorem 5, we need to prove that removing nodes 
from F(u) in OptFwdNodes algorithm does not affect 100% 
deliverability of our scheme. 

We suppose {u, v}⊆F(s) and id(v)≤ id(u). If some nodes in 
F(u) are neighbors of s and v, the coverage disks of these 
nodes are sure to be within the coverage area of F(s) and F(v). 
So there is no need to let these nodes forward the message. 
Thus, removing these nodes from F(u) does not affect 100% 
deliverability of our scheme. Theorem is proved.  

Time complexity of OptFwdNodes algorithm is given 
bellow. 

Theorem 6. Time complexity of OptFwdNodes algorithm is 
O(nlogn), where n=|N(s)|. 
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Proof. It is not difficult to see the time complexity of 
OptFwdNodes algorithm is the same as that of FwdNodes 
algorithm. Theorem 6 is proved.     

Source node first floods a message by running FwdNodes 
algorithm. Each forwarding node forwards the message by 
running OptFwdNodes algorithm. Finally, all nodes in the 
network can receive the message and the redundant 
transmission can be significantly reduced.   

4.  MOBILITY HANDLING 

In MANETs, nodes may be mobile, which causes 
dynamic changes of the network topology. For the flooding 
scheme, each node, say s, maintains its neighbor information 
and computes F(s). To cope with the dynamic topology 
changes, there are two strategies to maintain the flooding 
scheme: a) No update. Each node re-computes its forwarding 
node set for each flooding request; or b) Incremental update. 
Each node incrementally updates its forwarding node set upon 
each topology change. For strategy (a), we do not need to do 
anything. In this section, we propose an efficient algorithm 
that can incrementally update the forwarding node set as the 
topology changes. By using this method, nodes do not need to 
re-compute the forwarding node set when it needs to flood a 
message. The forwarding node set is maintained at each node 
and is always ready for use. 

For each node u, there are three cases that require updating 
F(u): 1) a neighbor of u moves but still in N(u); 2) a neighbor 
of u moves out of N(u); 3) a node moves in and becomes the 
new neighbor of u. We assume that only one update is handled 
at a time. We concentrate on updating F(u) for these three 
cases, and discuss them case by case. 

Case 1. We consider the first case that the location of a 
neighbor v changes but v is still in N(u). There are two sub-
cases. 

Case 1.1. If v∉F(u), we need to check whether the 
coverage disk of v exceeds the neighbor’s boundary of u. If it 
happens, disk of v will contribute to the final boundary B and 
F(u) will be updated. We first compute how many arcs in B 
are affected by the movement of v. It is can be done by 
locating the starting angle and ending angle of current location 
of disk v in B by binary search. Suppose that k arcs in B are 
affected by the arc of disk v. It means that the sectors of these 
arcs overlap with the sector of disk v. Notice that these k arcs 
form a continuous segment of B in non-decreasing order 
according to their starting angles. Then, we run 
BoundaryMerge algorithm to merge this segment and the arc 
of disk v to update the new boundary B and F(u). 

Case 1.2. If v∈F(u), the final boundary B not only may be 
affected by the current location of v, but also may be affected 
by the former location of v. Notice that v∈F(u) and location of 
v changes. Some nodes in N(u)–F(u) may contribute to B 
because v leaves its former place. On the other hand, some 
nodes in F(u) may become invalid because v moves to the 
current place. So it has two steps update. We first compute 

how many arcs in N(u) may contribute to the new boundary 
because of leaving of v. Since there is no order in N(u), we 
find k arcs that may contribute to B one by one. We compute 
the new boundary of these k arcs. Second, similar to case 1.1, 
we still need to compute how many arcs in B are affected by 
the new location of v. Suppose l continuous arcs in B are 
affected. We update B and F(u) again by merging these l 
continuous arcs and the arc of disk v in current place. 

Case 2. We consider the case that v is a neighbor of u , and 
v moves out of N(u). If v∉F(u), there is no need to update. If 
v∈F(u), some nodes in N(u)–F(u) may contribute to B due to 
the leaving of v. This is similar to the first step of case 1.2. We 
can update F(u) for this case. 

Case 3. We consider the case that a node v moves into 
coverage disk of u, and becomes the new neighbor of u. 
Similar to case 1.1. We can update F(u) for this case. 

Detailed algorithm is given bellow. 

TopologyUpdate Algorithm 
Input: v that changes its location to u. 
Output: updated F(u). 
Begin 

if v∉F(u) and v is now in N(u) //case 1.1 or case 3. 
Find arcs in B that are affected by disk v; 
//suppose k arcs B[i], B[i+1],…,B[i+k-1] are affected. 
BoundaryMerge({B[i], B[i+1],…,B[i+k-1]}, d(v)); 

if v∈F(u) //case 1.2 or case 2. 
Find arcs in N(u) that are affected by v’s leaving; 
// suppose k arcs are affected. 
Compute the boundary of the affected k arcs; 
Find arcs in B that are affected by v’s current place; 
// suppose l arcs B[i], B[i+1],…,B[i+l-1] are affected. 
BoundaryMerge({B[i], B[i+1],…,B[i+l-1]}, d(v)); 

Update F(u) based on the new boundary B. 
End 

Theorem 7. Time complexity of update for case 1.1, case 3 
and case 1.2, case 2 are O(k+logn) and O(n+klogk), 
respectively, where n=|N(s)| and k is the number of nodes that 
are affected by topology change. 

Proof. For case 1.1 and case 3, it costs O(logn) to locate the 
arc of disk v in B by binary search. It further costs O(k) to 
merge {B[i], B[i+1],…,B[i+k-1]} and disk v by 
BoundaryMerge algorithm. So the total time cost of update for 
case 1.1 and case 3 is O(k+logn). 

For case 1.2 and case 2, it costs O(n) to find k disks of 
nodes in N(u) that are affected by movement of v. Similar to 
boundary computing in FwdNodes algorithm, computing new 
boundary of these k disks costs O(klogk). It further costs 
O(l+logn) to compute the new boundary of l disks in the 
second step. So the total time cost of update for case 1.2 and 
case 2 is O(n+klogk). Theorem 7 is proved.   

From Theorem 7, we can see that update for case 1.1 and 
case 3 is very efficient comparing to re-computing F(u). 
Update for case 1.2 and case 2 is also efficient when k is not 
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large. If k=Θ(n), time complexity of TopologyUpdate 
algorithm is the same as that of FwdNodes algorithm. 

5. SIMULATION 

To analyze the performance of our flooding scheme, we 
compare it with three deliverability-guaranteed schemes: Pure 
flooding, Edge Forwarding (it requires 1-hop information [9]), 
and CDS-based flooding [11] (it requires 2-hop information). 
In CDS-based scheme, a node marks itself belonging to the 
CDS if there exist two unconnected neighbors. A marked node 
can quit the CDS later if its neighbors are covered by two 
CDS neighbors and they have greater IDs. It was proved that 
the marked nodes form a CDS [11]. Notice that all forwarding 
nodes in a flooding operation form a CDS in the network. It 
means that the number of forwarding nodes is no less than the 
number of MCDS (Minimum CDS) in the network. So the 
number of MCDS is the lower bound of the number of 
forwarding nodes. Although computing MCDS is NP-hard, 
there exists a ratio-8 approximation algorithm [29]. This lower 
bound is computed and is used as a benchmark for comparison 
with the simulated flooding schemes.  

We study the performance of flooding schemes against 
two parameters: number of nodes, transmission range. We run 
simulations under the ns-2 test bed with the CMU wireless 
extension. The simulator parameters are listed in Tab. 1. The 
popular two-ray ground reflection model is adopted as the 
radio propagation model. The MAC layer scheme follows the 
IEEE 802.11 MAC specification. We use the broadcast mode 
with no RTS/CTS/ACK mechanisms for all message 
transmissions. Each data packet with attached information has 
a constant length of 256 bytes. The bandwidth of a wireless 
channel is set to 2M b/s as default. Some of the schemes 
require nodes to send HELLO message to their 1-hop 
neighbors periodically. This cost of HELLO message is 
ignored in our performance study. 

TAB. 1. SIMULATION PARAMETERS. 

Parameter Value 
Simulator ns-2 (version 2.28) 

MAC Layer IEEE 802.11 
Data Packet Size 256 bytes 

Bandwidth 2 Mb/s 
Transmission Range 100~300 meter 

Number of Node 200~1000 
Size of Square Area 200,000~1,000,000 meter2 

Number of Trails 100 

The main objective of those efficient flooding schemes is 
to reduce the number of forwarding nodes as much as 
possible, such that the redundant transmission is minimized. 
So we use the metric ratio of forwarding nodes to evaluate the 
efficiency of flooding schemes. The ratio of forwarding nodes 
is defined to be the ratio of total number of nodes involved in 
the packet forwarding in a flooding operation over the total 
number of nodes in the network, such as: 

ratio of forwarding nodes=
nodes totalofnumber  the

nodes forwarding ofnumber  the . 

Reducing the forwarding nodes in flooding would 
effectively reduce the signal collision in the network. The 
MAC layer of IEEE 802.11 in ns-2 can check the occurrence 
of collisions. If the number of collisions is high, it would 
result in more packet loss or more retransmissions. We also 
use the metric, number of collisions, to evaluate the efficiency 
of flooding schemes. The number of collisions is defined to be 
the sum of collisions that each node experiences before it 
receives the flooding message correctly. 

Signal collisions will eventually affect the deliverability of 
flooding messages. Some nodes in the network miss flooding 
messages due to the large number of collisions. The metric, 
deliverability ratio, is used to further study the efficiency of 
algorithms. The deliverability ratio is defined by the number 
of nodes that successfully receive the flooding messages over 
the total number of nodes in the network. 

In each simulation run, we generate a certain number of 
nodes and randomly place them on a square area. There is a 
link between two nodes if and only if their Euclidean distance 
is not greater than transmission range R. The source which 
initiates a flooding message is randomly picked from nodes in 
the network. Only one flooding occurs at any one time (except 
for the experiments of deliverability ratio). Three flooding 
schemes and the theoretical lower bound that are mentioned 
above are simulated and compared with our scheme under the 
same environment. We study how the ratio of forwarding 
nodes, the number of collisions and the deliverability ratio are 
affected by two parameters: the number of nodes, transmission 
range, respectively. The results presented in the following 
figures are the means of 100 separate runs. Any case where 
the network is not connected is discarded. 

5.1. Performance versus Number of Nodes 
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Fig. 8. Ratio of forwarding nodes VS. the number of nodes. 
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Fig. 9. The number of collisions VS. the number of nodes. 
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Fig. 10. Deliverability ratio VS. the number of nodes. 

In this simulation, a certain number of nodes, from 200 
to 1000, are randomly placed on a 1000×1000 m2 area. The 
transmission range is fixed at 250 m. In the experiment of 
deliverability ratio in Fig. 10, the network load is set to 
10Pkt/s. It means that the network generates 10 flooding 
messages per second on average. Deliverability ratio is 
calculated for 100 seconds. Since every node is a forwarding 
node in the pure flooding scheme, its curve was dropped out in 
Fig. 8. The simulation results are plotted in Fig. 8, Fig. 9 and 
Fig. 10. We have following observations. 

1) Performance of our flooding scheme is significantly better 
than performance of Edge Forwarding and CDS-based 
schemes showed in Fig, 8. It is because that each 
forwarding node u selects the minimal F(u) to cover all 2-
hop neighbors in our scheme. It guarantees that the 
number of forwarding nodes is minimized at each step 
while Edge Forwarding and CDS-based schemes do not.  

2) The curve of our scheme becomes closer to the curve of 
lower bound when the number of nodes increases. See Fig. 

8, when the number of nodes reaches 1000, only 16.5% of 
nodes participate in forwarding in our scheme while ratios 
of Edge Forwarding and CDS-based schemes are 50.7% 
and 71%, respectively. This is because, as the increase of 
network density (resulting from the increase of nodes), 
N(u) becomes larger, but F(u) is saturated. That is, the 
number of nodes required to cover the same area (i.e., the 
neighbor’s area) will not increase that much, because each 
node has a fixed coverage disk. Therefore, the ratio 
F(u)/N(u) decreases as the increase of nodes in the 
network. We can conclude that our flooding scheme is 
more suitable for networks with high density. 

3) Both the curves of our scheme and of Edge Forwarding 
fall down when the number of nodes increases in Fig. 8. 
But, number of nodes has little effect on the result of 
CDS-based scheme. Notice that when network density 
increases, there is more chance for u’s neighbors being 
connected. At the same time, high density also causes 
increase of N(u). It means there is a high chance that there 
exist two unconnected neighbors. So these two conflicting 
factors make the result of CDS-based scheme not 
sensitive to the change of number of nodes.  

4) Our scheme and Edge Forwarding both have much lower 
collisions comparing with pure flooding. The reason is 
that every node forwards flooding messages in pure 
flooding while our scheme and Edge Forwarding only 
select a subset of neighbors to forward the messages. This 
smaller set of forwarding nodes will result in less 
collisions in the network. Performance of our scheme is 
better than that of Edge Forwarding. For example in Fig. 
9, when the number of nodes reaches 600, the number of 
collisions of our scheme is only 211 while that of Edge 
Forwarding schemes are 364. After that, the collisions of 
Edge Forwarding method is over 100% higher than our 
scheme. 

5) Deliverability ratio of our scheme is significantly higher 
than the ratios of Edge Forwarding and Pure Flooding. 
See Fig. 10, our scheme guarantees 100% deliverability 
when the number of nodes varies from 200 to 400 while 
deliverability ratios of Edge Forwarding and Pure 
Flooding are only 75%-90% around. Although collisions 
occur in our scheme even the number of nodes is small, a 
node that misses flooding messages from a forwarding 
node still has chance to receive messages from another 
forwarding node. So the value of our scheme can almost 
reach 100% if the number of nodes is between 200 to 600 
(the number of collisions is low). The performance of 
Pure Flooding is the worst among three schemes. It is 
caused by the broadcast storm problem since every node 
re-transmits the flooding message in the network.  
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5.2.  Performance versus Transmission Range 
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Fig. 11. Ratio of forwarding nodes VS. transmission range 
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Fig. 12. The number of collisions VS. transmission range. 
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Fig. 13. Deliverability ratio VS. transmission range. 

In this simulation, 1000 nodes are randomly placed on a 
1000×1000 m2 area. The network load is set to 10Pkt/s and 

each simulation is run for 100 seconds in Fig. 13. We study 
the performance against the transmission range of each node. 
The simulation results are plotted in Fig. 11, Fig. 12 and Fig. 
13. We have following observations. 

1) Performance of our scheme is significantly better than 
performance of Edge Forwarding and CDS-based 
schemes shown in Fig. 11. The reason is similar to the 
results in Fig. 8. As the increase of transmission range, 
each node has more neighbors. It has the same effect on 
the increase of network density as the increase of nodes in 
a fixed square area. 

2) The curve of our scheme becomes closer to the curve of 
lower bound when transmission range increases in Fig. 11. 
This trend is more significant than that in Fig. 8. See Fig. 
11, when the transmission range reaches 300 m, only 
10.4% of nodes participate in forwarding in our flooding 
scheme while values of Edge Forwarding and CDS-based 
schemes are 44.6% and 64.6%, respectively. This is 
because that increase of transmission range not only 
results in higher density of network, but also makes 
flooding faster in the network. It means that flooding 
operation can be done in less steps due to the large 
transmission range of nodes. Notice that our scheme 
achieves that the number of forwarding nodes is minimal 
at each step. So less steps to complete flooding makes our 
results closer to the lower bound when transmission range 
increases.  

3) Both the curves of our scheme and Edge Forwarding fall 
down when transmission range increases in Fig. 11. The 
curve of CDS-based scheme does not change much when 
R increases from 100 m to 200 m. The reason has been 
discussed before. But further increase of R makes the 
curve fall down. It is because that when R reaches a 
certain value, such as 200 m in Fig. 11, further increase of 
R will slightly increase N(u) due to the fixed number of 
nodes. But increase of R makes nodes have more chance 
to be connected. So curve of CDS-based scheme falls 
down when R is more than 200 m. 

4) Curves in Fig. 12 show the similar trend as those in Fig. 9. 
When the transmission range increases (i.e., a node has 
more neighbors), there are more chances for nodes to 
experience collisions. Since our scheme minimizes the 
number of forwarding nodes in each step, its performance 
is much better than that of pure flooding and Edge 
Forwarding schemes.  

5) Deliverability ratios of three schemes all increase when 
transmission range increases in Fig. 13. It is because that 
increase of transmission range not only causes more 
collisions, but also provides more chances for nodes to 
receive flooding messages from different forwarding 
nodes. See Fig. 13, the ratio of our scheme becomes very 
close to 100% after transmission range is larger than 200. 
Our scheme performs best among three schemes.  
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6. CONCLUSIONS 

The paper addressed the efficient flooding problem in 
MANETs. We have presented an efficient flooding scheme 
that uses only 1-hop neighbor information. We have proved 
that our proposed scheme achieves the local optimality in 
terms of: 1) the number of forwarding nodes is the minimal; 2) 
the time complexity O(nlogn) is the lowest. Extensive 
simulations have been conducted to compare our scheme with 
pure flooding, Edge Forwarding and CDS-based schemes. 
Simulation results have shown that our proposed scheme uses 
less forwarding nodes, incurs less collision, obtains high 
deliverability ratio, compared with the existing schemes.  
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