

Efficient Flooding Scheme Based on 1-hop
Information in Mobile Ad Hoc Networks

Hai Liu, Pengjun Wan, Xiaohua Jia, Xinxin Liu, and Frances Yao
Dept of Computer Science

City University of Hong Kong, HongKong
{liuhai@cs, pwan@cs, jia@cs, whulxx@, csfyao@}cityu.edu.hk

 Abstract—Flooding is one of the most fundamental operations in
mobile ad hoc networks. Traditional implementation of flooding
suffers from the problems of excessive redundancy of messages,
resource contention, and signal collision. This causes high
protocol overhead and interference to the existing traffic in the
networks. Some efficient flooding algorithms were proposed to
avoid these problems. However, these algorithms either perform
poorly in reducing redundant transmissions, or require each
node to maintain 2-hop (or more) neighbors information. In the
paper, we study the sufficient and necessary condition of 100%
deliverability for flooding schemes that are based on only 1-hop
neighbors information. We further propose an efficient flooding
algorithm that achieves the local optimality in two senses: 1) the
number of forwarding nodes in each step is the minimal; 2) the
time complexity for computing forwarding nodes is the lowest,
which is O(nlogn), where n is the number of neighbors of a node.
Extensive simulations have been conducted and simulation
results have shown that performance of our algorithm is
significantly better than the existing message efficient flooding
methods.

Keywords-flooding, broadcasting, mobile ad hoc networks,
wireless networks

1. INTRODUCTIONS

Flooding is one of the most fundamental operations in
mobile ad hoc networks (MANET). Most of the major routing
protocols, such as DSR [1], AODV [2], ZRP [3], LAR [4], etc.,
rely on flooding for disseminating route discovery, route
maintenance, or topology update packets. Flooding is a very
frequently invoked utility function in MANETs. Therefore, an
efficient implementation of flooding scheme is crucial in
reducing the overhead of routing protocols and improving the
throughput of networks.

Pure flooding, or called blind flooding, was first discussed
in [5, 6], where every node in the network retransmits the
flooding message when it is its first time to receive it. This
simple scheme guarantees that a flooding message can reach all
nodes if there is no collision and the network is connected.
However, it generates excessive amount of redundant network
traffic, because all nodes in the network transmit the flooding
message. This will consume a lot of energy resource of mobile
nodes and cause the congestion of the network. Furthermore,
due to the broadcast nature of radio transmissions, there is a

 This work is supported in part by Research Grants Council of Hong Kong
under grant numbers CityU 1165/04E and CityU 114505.

very high probability of signal collisions when all nodes flood
the message in the network at the same time, which would
cause more re-transmissions or some nodes failing to receive
the message. It is so called the broadcast storm problem [7].
Sinha et al claimed that “in moderately sparse graphs the
expected number of nodes in the network that will receive a
broadcast message was shown to be as low as 80%” in [8].

To solve the broadcast storm problem, several schemes
have been proposed to reduce the redundancy in flooding
operations. The most notable works are [9], [10], and [11].
However, these algorithms either perform poorly in reducing
redundant transmissions, or require each node to maintain 2-
hop neighbor information. Maintaining 2-hop neighbor
information for each node incurs extra overhead of the system
and the information can be hardly accurate when the mobility
of the system is high. In the paper, we propose an efficient
flooding algorithm that is only based on 1-hop neighbors
information, which makes the protocol easy to be implement
and light-weight in overhead. Our proposed algorithm also
achieves the local optimality in two senses: 1) the number of
forwarding nodes is the minimal; 2) the time complexity is the
lowest. Time complexity for computing the forwarding nodes
in each step is O(nlogn), which is the lower bound (n is the
number of neighbors of a node).

Efficient flooding scheme is different from the broadcast
mechanisms discussed in [12, 13]. The broadcast mechanism is
used for transmission of large amount data or stream media
data, which requires a broadcast routing to find an efficient
route before the actual transmission of data, so that data can be
transmitted efficiently along the pre-found route. In contrast,
flooding is usually used for dissemination of control packets,
which is a one-off operation. It does not need routing before
hand.

2. RELATED WORK

The existing efficient flooding schemes can be classified
into three categories based on the information each node keeps:
1) no need of neighbor information; 2) 1-hop neighbor
information; 3) 2-hop or more neighbor information.

Schemes in the first category do not need information of
neighbors. Pure flooding scheme is a typical example in this
category. Authors in [7, 14] showed the serious problem that
pure flooding causes through analysis and simulations. A
probabilistic-based scheme was further proposed to reduce

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.

1-4244-0222-0/06/$20.00 (c)2006 IEEE

Authorized licensed use limited to: CityU. Downloaded on May 22,2010 at 06:42:15 UTC from IEEE Xplore. Restrictions apply.

redundant rebroadcasts and differentiate timing of rebroadcasts
to avoid collisions. Upon receiving a flooding message for the
first time, a node will forward it with probability P. Clearly,
when P = 1, this scheme is equivalent to pure flooding. The
probabilistic scheme includes counter-based, distance-based,
location-based and cluster-based flooding schemes. Simulation
results showed different levels of improvement over pure
flooding. This probabilistic scheme was further investigated in
[15]. It showed that the success rate curve for probabilistic
flooding tends to become linear for the network with low
average node degree, and resembles a bell curve for the
network with high average node degree. In these schemes, a
non-redundant transmission might be dropped out, without
being forwarded further. This will cause some nodes in the
network failing to receive the flooding message (i.e., these
nodes are not reached by the flooding). Besides this
deliverability problem, another major concern of these
techniques is the difficulties in setting the right threshold value
(e.g., retransmission probability, etc.) in various network
situations [16].

Schemes in the second category assume that each node
keeps information of 1-hop neighbors. 1-hop neighbor
information can be obtained by exchanging the HELLO
message in MAC layer protocols. A major issue in the schemes
that use 1-hop or 2-hop information is the selection of a subset
of neighbors for forwarding the flooding message. There are
two strategies for choosing forwarding nodes: sender-based,
where each sender nominates a subset of its neighbors to be the
next hop forwarding nodes, and receiver-based, where each
receiver of a flooding message makes its own decision on
whether it should forward the message. Several flooding
schemes that use 1-hop information and guarantee 100%
deliverability were discussed in [10]. This work also analyzed
the performance of the two strategies for choosing forwarding
nodes. To avoid transmission collision, it also proposed a
simple transmission order for forwarding nodes: a farther
neighbor waits for a shorter time to forward a message after it
receives it. The flooding with self pruning (FSP) scheme
proposed in [17] is a receiver-based scheme that uses 1-hop
information. In this scheme, a sender forwards a flooding
message by attaching all of its 1-hop neighbors to the message.
A receiver compares its own 1-hop neighbors with the node list
in the message. If all its 1-hop neighbors are already included
in the list, it will not forward the message; otherwise it
forwards the message as its sender. The work in [18] compared
the performance of several flooding schemes. It showed that
the improvement of FSP is very limited in most of network
conditions. Another notable work of efficient flooding that uses
1-hop neighbor information is Edge Forwarding [9]. For each
node, its transmission coverage is partitioned into six equal-
size sectors. A node, upon receiving a flooding message, makes
its own decision whether it should forward the message based
on the availability of other forwarding nodes in the overlapped
areas. Taking an example in Fig. 1, node a, whose coverage
disk is partitioned into six sectors, floods a message that is
received by its neighbor b. Node b dose not need to forward the
message if and only if 1) there exist nodes in the small

enclosed areas A, B and C; and 2) Any nodes in areas D and E
can be reached by the nodes in A and C, respectively. This is
because the coverage disk of b can be covered by either a or
the nodes in areas A, B, and C. By doing so, it reduces the
forwarding nodes in flooding.

a

B
A

E

D

Cb

Fig. 1. Example of Edge Forwarding.

Most existing flooding schemes that use neighborhood
knowledge are based on information of 2-hop neighbors. To
obtain the information about 2-hop neighbors, one solution is
that each node attaches the list of its own neighbor
information to the HELLO message for exchange. The
schemes proposed in [17, 19, 20, 21] are sender-based, while
schemes in [11, 22, 23, 24, 25, 26] are receiver-based. In the
schemes that use 2-hop neighbor information, each node
knows the network topology (connectivity) of 2-hop neighbors.
To forward messages efficiently, the task for each node is to
select the minimal subset of its 1-hop neighbors that can reach
all its 2-hop neighbors. A multipoint relaying method was
proposed in [19, 20], which tries to find the minimal number
of forwarding nodes among the neighbors. Finding the
minimal number of forwarding nodes was proved to be NP-
complete [20]. Authors proposed a heuristic algorithm that
selects forwarding nodes at each step, such that the number of
newly covered neighbors is maximized. The approximation
ratio of this heuristic algorithm was proved to be at most logn,
where n is the number of 2-hop neighbors. Notice that this
performance ratio is only for each step (i.e., for 2-hop
neighbors), not for the entire network. Another important
technique is the use of connected dominating set (CDS) [11,
27]. A dominating set (DS) is a subset of nodes such that
every node in the graph is either in the set or is adjacent to a
node in the set. A CDS is a connected DS. Any routing in
MANETs can be done efficiently via CDS [11]. Although
finding minimal CDS (MCDS) is NP-hard even in unit disk
graph (UDG) [28], some distributed algorithms for computing
MCDS with approximation ratio have been proposed in [27,
29]. However, maintaining a CDS in the network is costly,
which is not suitable for flooding operations in highly mobile
situations. Generally, the schemes that use 2-hop neighbor
information incur high protocol overhead in the network with
high mobility and high node density, and they cannot be easily
fitted into a network that does not support 2-hop neighbor
information exchange.

Our flooding scheme requires each node to keep only 1-
hop neighbor information. We prove that our flooding scheme
not only guarantees 100% deliverability, but also achieves the
local optimality in terms of number of forwarding nodes and

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.

Authorized licensed use limited to: CityU. Downloaded on May 22,2010 at 06:42:15 UTC from IEEE Xplore. Restrictions apply.

computational complexity. In this paper, we will not discuss
the scheduling of transmissions of forwarding nodes.
Interested readers can refer to the related work in [30, 31].

The rest of the paper is organized as follows. We propose
an efficient flooding scheme in section 3. Section 4 discusses
the handling of mobility. In section 5, we discuss the
simulation of our flooding scheme by using ns-2 test-bed and
compare its performance with other flooding algorithms.
Finally, we conclude the work in section 6.

3. EFFICIENT FLOODING SCHEME BASED ON 1-HOP
INFORMATION

3.1. System Model and Overview of Method

We assume all nodes in the network have the same
transmission range R. Thus, the network can be represented as
a unit disk graph G(V,E). We assume the network is connected.
Each node v in V has a unique ID, denoted by id(v). Let N(v)
denote the set of neighbor nodes of v. That is, nodes in N(v)
are within the transmission range of v and can receive signals
transmitted by v. Node v needs to know the information of its
neighbors, including their IDs and their geographic locations.
The 1-hop neighbor information can be easily obtained from
the HELLO messages periodically broadcasted by each node.
For the rest of the paper, we simply use neighbors to mean 1-
hop neighbors.

The basic idea of our flooding scheme is as follows. When
a node (called the source) has a message to be flooded out, it
computes a subset of its neighbors as forwarding nodes and
attaches the list of the forwarding nodes to the message. Then,
it transmits (broadcasts) the message out. After that, every
node in the network does the same as follows. Upon receiving
a flooding message, if the message has been received before, it
is discarded; otherwise the message is delivered to the
application layer, and the receiver checks if itself is in the
forwarding list. If yes, it computes the next hop forwarding
nodes among its neighbors and transmits the message out in
the same way as the source. The message will eventually reach
all the nodes.

We discuss our method in three parts: a) forwarding node
selection, where a node selects a subset of its 1-hop neighbors
to forward the flooding message; b) forwarding node
optimization, which further reduces the size of forwarding
nodes by removing the nodes that are already covered; c)
mobility handling, where each node incrementally updates its
forwarding set in response to topology changes.

3.2. Theoretical Foundations of Minimal Forwarding
Nodes

We aim at designing a 1-hop flooding scheme. Flooding
schemes in [9], [10] and [17] are all 1-hop flooding schemes
that guarantee 100% deliverability of flooding messages. To
achieve the optimal efficiency, we need to study the sufficient
and necessary condition of 100% deliverability for flooding

schemes that are based on 1-hop information. We introduce
the following definitions.

Def 1. Coverage disk of a node. The coverage disk of node s,
denoted by d(s), is a disk that is centered at s and whose radius
is the transmission range of s.

Since all neighbors of node s should be covered by d(s), in this
paper, we call “s covers u” or “u is covered by s” when u is a
neighbor of s.

Def 2. Coverage area of a node-set. The coverage area of a set
of nodes A, denoted by C(A), is the union of coverage disks of
nodes in A.

We simply call “the area is covered by A” if the area is within
C(A).

Def 3. Neighbor’s coverage area. The neighbor’s coverage
area of node s is the union of coverage disks of all s’s
neighbors plus s itself, i.e., C(N(s)∪{s}).

Def 4. Boundary of neighbor’s area. The boundary of
neighbor’s area of node s is the boundary of the area of
C(N(s)∪{s}).

u

v

ws

Fig. 2. Neighbor’s area of node s.

For simplicity, the neighbor’s coverage area is called
neighbor’s area and the boundary of neighbor’s area called
neighbor’s boundary for the rest of the paper. For example in
Fig. 2, the set of neighbors of s N(s)={u, v, w}. Thus, the
neighbor’s area of s is C({s, u, v, w}), i.e., whole shadow area.
The neighbor’s boundary of s is the outside boundary of this
shadow area.

Def 5. Forwarding set. The set of forwarding nodes of s,
denoted by F(s), is a subset of s’s neighbors that are selected
for forwarding the flooding message (F(s) includes s itself).

Def 6. Minimum forwarding set Fmin(s). The minimal
forwarding set of s, denoted by Fmin(s), is the smallest F(s) that
covers the neighbor’s area of s.

Theorem 1. A 1-hop flooding scheme achieves 100%
deliverability if and only if for each node s the neighbor’s area
of s is covered by F(s).

Proof. Sufficient condition (←). Suppose for each node s the
neighbor’s area of s is covered by F(s). We need to prove that
the flooding scheme achieves 100% deliverability.

For each transmission node s, since all 2-hop neighbors of
s are within the neighbor’s area of s, they are sure to be

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.

Authorized licensed use limited to: CityU. Downloaded on May 22,2010 at 06:42:15 UTC from IEEE Xplore. Restrictions apply.

covered by nodes in F(s). Thus, all nodes that are 2-hop away
from the source s are sure to be covered by F(s). Notice that
s’s 3-hop neighbors are neighbors of s’s 2-hop neighbors.
There must exist some transmission nodes in F(s), such that
s’s 3-hop neighbors are 2-hop neighbors of these transmission
nodes. Thus, s’s 3-hop neighbors are sure to be covered by
forwarding sets of these transmission nodes. Nodes that are 4-
hop and more from the source can be proved in the similar
way. Therefore, the flooding message will be forwarded hop
by hop throughout the whole network.

Necessary condition (→). Suppose a flooding scheme A
achieves 100% deliverability. Let FA(s) denote the set of
forwarding nodes of s that is computed by A. We need to
prove that for each node s the neighbor’s area of s is covered
by FA(s). We prove it by contradiction.

We consider a kind of networks where all nodes are within
coverage disk of a central node, denoted by s. That is, any
network in this category consists of a central node and its
neighbors, shown in Fig. 3. Suppose scheme A does not
guarantee that for each node s the neighbor’s area of s is
covered by FA(s). There must exist such a network as shown in
Fig. 3 and the neighbor’s area of s is not fully covered by
FA(s). Since Fmin(s) is the smallest forwarding set that covers
the neighbor’s area of s, we have Fmin(s)⊄FA(s). In other words,
there exists node u∈Fmin(s) and u∉FA(s). Notice that coverage
disks of all nodes in Fmin(s) are sure to contribute to the
neighbor’s boundary of s (if not, it can be removed from
Fmin(s)). We place node v on the boundary that is contributed
only by u (dashed line in Fig. 3 is the neighbor’s boundary of
s). Notice that s has information of only 1-hop neighbors. s
does not know that v is a neighbor of u and u is the only node
to reach v. So v can not be covered by any node in FA(s) since
u∉FA(s).

s
u

v

Fig. 3. Example of neighbor’s area of s.

On the other hand, since there is no other nodes outside
coverage disk of s, node v can neither be covered by
forwarding set of other nodes. That is, node v will eventually
miss the flooding message. It contradicts the assumption that
flooding scheme A achieves 100% deliverability. Theorem 1 is
proved. 

Theorem 1 tells us that the sufficient and necessary
condition of 100% deliverability for any 1-hop flooding
scheme is that for each node s, the neighbor’s area of s should
be covered by F(s). Otherwise, some nodes in the network

may miss the flooding message. Theorem 1 gives the
theoretical guideline for computing F(s) in our flooding
scheme.

3.3. Computing Minimal Forwarding Nodes

Suppose s is a node that receives a flooding message for
the first time and s appears in the forwarding list attached to
the message (s could be the original source of the message). s
is designated as a forwarding node and it computes the next
hop forwarding nodes from its neighbors. Since s only has 1-
hop neighbor information, it does not know who are the 2-hop
neighbors. To achieve 100% deliverability, according to
Theorem 1, F(s) must cover the entire neighbor’s area of s.
Our task can be formally defined as:

Minimize F(s) such that
() ()

() ()
v F s u N s

d v d u
∈ ∈

=U U .

Taking the example in Fig. 2 again, s has three neighbors:
u, v and w. Since d(u)∪d(v)∪d(s) makes up the neighbor’s
area of s, it is enough to cover all s’s 2-hop neighbors if only u
and v forward the message. In the other word,
d(w)⊆d(u)∪d(v)∪d(s), there is no need for w to forward the
message.

To minimize F(s), every node in F(s) must contribute to
the neighbor’s boundary of s; otherwise, this node can be
removed from F(s) without affecting the coverage area of F(s).
Therefore, computing the minimal F(s) is to find a subset of
N(s) such that every node in the subset contributes to the
neighbor’s boundary of s.

We first give a simple O(n2) algorithm to compute F(s) as
follows, where n=|N(s)|. Since the outside nodes of N(s), i.e.,
the nodes further away from s, are usually the nodes that
contribute to the neighbor’s boundary of s, all nodes in N(s)
are sorted in descending order into a list according to their
Euclidean distance to s. The first node in the list (that is the
farthest away from s) is included in F(s). Each time, the next
node in the list is considered. If its coverage disk is not fully
covered by the so far constructed F(s), it is added into F(s).
This operation is repeated until all nodes in the list are
considered. It is not difficult to see that F(s) is the minimum
(i.e., every node in F(s) contributes to the neighbor’s boundary
of s) and the time complexity is O(n2).

The next we present an algorithm with time complexity
O(nlogn). The strategy of this method is to compute the
neighbor’s boundary of s, and thus the nodes that contribute to
this boundary are the nodes in F(s). We use the pair-wise
boundary merging method to compute the boundary efficiently.
Initially, each node is arbitrarily paired with another node to
merge their coverage boundaries. Then, the merged pair’s
boundary is further merged with another pair’s boundary. This
merge operation is repeated until eventually there is only one
big merged boundary, which is the neighbor’s boundary of s.
The minimal F(s) consists of the nodes that contribute to this
boundary.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.

Authorized licensed use limited to: CityU. Downloaded on May 22,2010 at 06:42:15 UTC from IEEE Xplore. Restrictions apply.

s
v

u
o

a

b

c

d

Fig. 4. Example of arcs.

Before considering the procedure for merging boundaries,
we introduce data structures to represent arcs and boundaries.
A boundary consists of a sequence of arcs. If we use the
location of s as the reference point, any arc in the neighbor’s
boundary of s can be uniquely defined by a 3-tuple (θs, u, θe),
where θs, u and θe are the starting angle, the centre and the
ending angle of the arc, respectively. θs and θe are relative to
the horizontal line going through s counting in anti-clock
direction. For example in Fig. 4, line os is the horizontal line
from s, which is used as the reference line in counting starting
and ending angles of arcs. Arc ab of disk u is represented by
(∠osb, u, ∠osa), where ∠osb is the starting angle and ∠osa
the ending angle of ab .

A boundary consists of a sequence of arcs. Thus, a
boundary is represented by an array of arcs, denoted by B[].
The ith element in B[], B[i]=(, ,s e

i i iuθ θ), i=1,…,m, denotes the
ith arc in the boundary. The arcs in B[] are sorted in non-
descending order according to their starting angles. That is,

1 2[1]. [2]. ... [].s s s
mB B B mθ θ θ≤ ≤ ≤ . This sorted feature of arcs in

B is critical to the efficient merging algorithm to be presented
below. Because of this feature, the arcs in two boundaries can
be merged in the same sequential order as the progress of their
array indices without backtracking. To make the ending angle
greater than the starting angle, any arc that crosses the
horizontal line from s is split into two arcs. For the same
example in Fig. 4, arc cd is split into arcs od and co and
they are represented by (0o, v, ∠osd), (∠osc, v, 360o),
respectively. The neighbor’s boundary of s in Fig. 4 can be
represented as B[]= { od , db , ba , ac , co } ={(0o, v, ∠osd),
(∠osd, s, ∠osb), (∠ osb, u, ∠osa), (∠osa, s, ∠osc), (∠osc, v,
360o)}.

Considering merging two boundaries Bi and Bj into a new
one B, we start from the first arcs in Bi and Bj, respectively,
merge them and store the merged arc in B. Suppose now we
are at the point of merging the kth arc of Bi (i.e., Bi[k]) with the
lth arc of Bj (i.e., Bj[l]), and storing the merged arc in B[h].
Notice that two arcs intersect with each other at no more than
two points (because any two different disks intersect with each
other at no more than two points). There are three possible
cases of the intersection: 1) no intersection; 2) only one
intersecting point; 3) two intersecting points. We discuss the
cases one by one.

If arcs Bi[k] and Bj[l] have no intersection, it can be further
divided in three sub-cases: 1.1) the sectors of two arcs are
overlapped with each other, as in Fig. 5(a); 1.2) sector of one
arc is contained by the other, as in Fig. 5(b); 1.3) There is no
overlapping of the sectors of two arcs, in Fig. 5(c). For case
1.1, arc Bi[k] contributes to the resulting boundary B. Thus, the
resulting arc in B is Bi[k], i.e., B[h]=Bi[k]. Then, we move to
next arc in Bi and compare Bi[k+1] with Bj[l]. For case 1.2,
segment ab of Bi[k] is for sure to contribute to B, but segment
bc may intersect with arc of Bj[l+1]. Therefore, B[h] is set to
ab . Then, we move to next arc in Bj, i.e., Bj[l+1], to compare

it with segment bc . For case 1.3, without losing generality,
assuming Bi[k].θs<Bj[l].θs, arc Bi[k] is for sure to contribute to
B, but Bj[l] may intersect with Bi[k+1]. We set B[h]=Bi[k], and
move the next to compare Bi[k+1] with Bj[l]. Notice that in the
above merging operation, we use the important feature that
arcs in Bi and Bj are sorted according to their starting angles,
and the merging operation can be done in sorted order.

s

][kBi

][lBj

][kBi

][lBj

s

a

bc

(a) Case 1.1 (b) Case 1.2

][kBi

][lBj

s

][kBi

][lB j

s

a

b

c

(c) Case 1.3 (d) Case 2

][kBi][lB j s

ab

c d
 (e) Case 3

Fig. 5. Relationship between two arcs.

For the case where arcs Bi[k] and Bj[l] have only one
intersecting point at b, as shown in Fig. 5(d), segment ab of
Bi[k] contributes to B and segment bc of Bj[l] may intersect

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.

Authorized licensed use limited to: CityU. Downloaded on May 22,2010 at 06:42:15 UTC from IEEE Xplore. Restrictions apply.

with Bi[k+1]. Thus, we set B[h] = ab and, then move to the
next to compare Bi[k+1] with the segment bc of Bj[l].

If arcs Bi[k] and Bj[l] have two intersecting points at b and
c, as shown in Fig. 5(e), both segments ab of Bj[l] and bc of
Bi[k] contribute to B. We set B[h]= ab and B[h+1]= bc . Then,
we move to compare Bi[k+1] with segment cd of Bj[l].

Following the above discussion of merging the two arcs in
Bi and Bj, and moving the pointer to the next arc for merging,
this operation can be repeated until all arcs in Bi are merged
with Bj into the new boundary B. The following is the detailed
boundary merge algorithm.

BoundaryMerge Algorithm
Input: Bi and Bj.
Output: B.
Begin

k=1; // pointer to the current arc in Bi.
l=1; // pointer to the current arc in Bj.
h=1; // pointer to the current arc in B.
while (there is unmerged arc in both Bi and Bj) do

 Merge Bi[k] and Bj[l] to B according to cases 1–3;
Adjust k, l, and h accordingly;

Return B.
End

Theorem 2. Time complexity of BoundaryMerge algorithm is
O(n1+n2), where n1 and n2 are the numbers of arcs in Bi and Bj,
respectively.

Proof. Notice that in BoundaryMerge algorithm, we always
move to the next arc of Bi or Bj after comparison and no
backtracking is needed. So the total running time is O(n1+n2),
where n1 and n2 are the number of arcs in Bi and Bj,
respectively. Theorem proved. 

Now, we consider the forwarding node selection algorithm.
Initially, for each node i, 1≤i≤ |N(s)|, its arc outside of the area
of d(s) is represented by a boundary array Bi[]. Then, the arcs
are merged in pair-wise by using the BoundaryMerge
algorithm, until there becomes a single boundary of the
coverage area of N(s). F(s) consists of the nodes that
contribute to this boundary.

FwdNodes Algorithm
Input: s and N(s).
Output: F(s).
Begin

j=n; // n=|N(s)|.
while j>1 do

 for (i=1; i<j; i=i+2)
 B(i+1)/2[]=BoundaryMerge(Bi[], Bi+1[]);
 j=j/2;

Output F(s)={B[i].ui | i=1,2,…,k}; //B: the final boundary.
End

Notice that if n is odd in the above algorithm, we add a
virtual arc whose starting angle and ending angle are both 0o.
It does not affect correctness of the output.

Theorem 3. Time complexity of FwdNodes algorithm is
O(nlogn), where n=|N(s)|.

Proof. In FwdNodes algorithm, each time we partition the
current n boundaries into n/2 group, and run BoundaryMerge
algorithm to merge two boundaries in each group. According
to Theorem 2, it takes O(n) to complete boundary merge in all
groups. Since each time the number of groups reduces half, it
costs O(logn) to obtain the final one group, i.e., coverage’s
boundary. So the total time complexity is O(nlogn).

Theorem 3 is proved. 

FwdNodes algorithm requires that each node has 1-hop
information. According to Theorem 1, it guarantees that all
nodes can receive the flooding message. Based on these
conditions, the following theorem states that our algorithm is
optimal.

Theorem 4. FwdNodes algorithm achieves local optimality in
terms of: 1) the number of forwarding nodes is the minimal,
i.e., F(s)=Fmin(s); 2) the time complexity is the lowest.

Proof. In FwdNodes algorithm, each node only has 1-hop
information. To cover 2-hop neighbors that are beyond its
view, each node should select some 1-hop neighbors to relay
the message, such that these selected neighbors can
sufficiently cover the neighbor’s area of the node. Thus, all 2-
hop neighbors are guaranteed to be covered. In the algorithm,
each node s selects the minimal set of nodes F(s) to forward
the message by computing the neighbor’s boundary of s.
Notice that any node in F(s) contributes to the final boundary.
If a node in F(s) does not relay the message, other nodes can
not take over its duty. It means that all nodes in F(s) should
forward the message to guarantee 2-hop neighbors are covered.
Thus, we have F(s)=Fmin(s).

According to Theorem 3, time complexity of computing
F(s) is O(nlogn), where n=|N(s)|. Notice that computing F(s) is
equivalent to computing the neighbor’s boundary of s. We will
prove that sorting problem can be induced to boundary
computing problem.

s
u

o

Fig. 6. Sorting problem is induced to boundary computing problem.

Given n real numbers to be sorted, we first scale them to
the numbers in [0, 2π]. For each scaled number a∈[0, 2π],
point u is placed on the border of a small circle, such that
∠uso=a (See Fig. 6, centre of the small circle is s, line os is
parallel to X-axis and angles are counted in anti-clock
direction). Notice that these nodes are in N(s) and the distance
from s are the same. So each disk of node contributes to the

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.

Authorized licensed use limited to: CityU. Downloaded on May 22,2010 at 06:42:15 UTC from IEEE Xplore. Restrictions apply.

neighbor’s boundary of s. After running FwdNodes algorithm,
starting angles []. s

iB i θ , i=1,2,..n, of final boundary are in non-
descending order. It is equivalent to sort the given n nodes.
That is, sorting problem can be induced to boundary
computing problem. We know that the fastest sorting
algorithm costs O(nlogn) time. So FwdNodes algorithm is the
fastest algorithm to compute the neighbor’s boundary of s.
Theorem 4 is proved. 

After computing F(s) by FwdNodes algorithm, s attaches
IDs of nodes in F(s) to the flooding message and broadcasts it
out. When receiving this message, a neighbor node of s checks
if its own ID is in the forwarding list attached to the message.
If yes, it will call the FwdNodes algorithm and forward the
message out, the same as s does. In this way, the message is
forwarded hop by hop until all the nodes in the network
receive it.

3.4. Forwarding Node Optimization

The F(s) computed above is only locally optimal based on
the 1-hop information of s. When a node u receives the
flooding message from s (we call s the parent of u) and u is a
forwarding node nominated by s (i.e., u∈F(s)), the computing
of F(u) can be further optimized based on the information of
F(s), which is attached to the flooding message from s. This is
because some nodes in F(u) may be already covered by node s
or node-set F(s), and thus F(u) could be further reduced by
removing out those nodes.

Consider the example given in Fig. 7, where nodes u and
v are neighbors of s and F(s)={u,v}. The coverage area d(u)
overlaps with d(s) and d(v) (notice node v is also in F(s)). The
nodes in the overlapped area of d(u) with d(s) were already
considered by s when computing F(s). Thus, these nodes can
be removed from F(u). For the overlapped area of d(u) with
other nodes in F(s), for example node v in Fig. 7, we use node
ID as the priority for forwarding messages. That is, the node
with the smaller ID has to forward the message if its coverage
disk overlaps with another node. Therefore, the nodes of F(u)
that fall into the coverage area of the following node-set can
be removed from F(u):

{s}∪{v| v∈(F(s)∩N(u)) and id(v)≤ id(u)}. (1)

Notice that in node-set (1), we only consider set F(s)∩
N(u). That is, nodes in the node-set (1) are all neighbors of
node u. Thus, u knows the geographic locations of nodes in
the above node-set. This location information is necessary
when u checks whether nodes in F(u) fall into the coverage
area of the node-set (1). We can see this optimization is still
based on 1-hop information of a node.

Taking the example in Fig. 7 again, suppose id(v)≤ id(u)
and F(u)={1,2,3,4,5}. Since nodes 1 and 2 are in N(s), they are
already covered by s and can be removed from F(u). Node 3 is
covered by v, and v is also a forwarding node and id(v)≤id(u).
Thus, node 3 can also be removed from F(u). Finally,
F(u)={4,5}. That is, node u only needs to nominate the nodes
of F(u) in clear area.

s u

v

1

2

3

4

5
6

Fig. 7. An example of optimizing F(u).

The significance of this optimization is that it prevents the
flooding message from going backwards. The message is
always propagated forward towards the uncovered area, which
reduces the redundant transmissions greatly.

The following is the optimized forwarding node selection
algorithm. It is executed whenever a node receives a flooding
message.

OptFwdNodes Algorithm
Input: message m from s.
Begin

if m was received before, then discard m;
else
 Deliver m to upper layer;

if this node, say u, is in forward-list in m
Compute F(u);
Remove from F(u) the nodes that are covered by
node-set (1);
Attach F(u) to m and transmit m out.

End

According to Theorem 4, we know that FwdNodes
algorithm can guarantee that all nodes receive flooding
message. After optimization in the OptFwdNodes algorithm,
the 100% deliverability feature is still preserved. The
following theorem states this feature.

Theorem 5. The OptFwdNodes algorithm guarantees that all
nodes can receive flooding message.

Proof. According to Theorem 4, if all forwarding nodes run
FwdNodes algorithm, 100% deliverability is guaranteed. So,
to prove theorem 5, we need to prove that removing nodes
from F(u) in OptFwdNodes algorithm does not affect 100%
deliverability of our scheme.

We suppose {u, v}⊆F(s) and id(v)≤ id(u). If some nodes in
F(u) are neighbors of s and v, the coverage disks of these
nodes are sure to be within the coverage area of F(s) and F(v).
So there is no need to let these nodes forward the message.
Thus, removing these nodes from F(u) does not affect 100%
deliverability of our scheme. Theorem is proved. 

Time complexity of OptFwdNodes algorithm is given
bellow.

Theorem 6. Time complexity of OptFwdNodes algorithm is
O(nlogn), where n=|N(s)|.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.

Authorized licensed use limited to: CityU. Downloaded on May 22,2010 at 06:42:15 UTC from IEEE Xplore. Restrictions apply.

Proof. It is not difficult to see the time complexity of
OptFwdNodes algorithm is the same as that of FwdNodes
algorithm. Theorem 6 is proved. 

Source node first floods a message by running FwdNodes
algorithm. Each forwarding node forwards the message by
running OptFwdNodes algorithm. Finally, all nodes in the
network can receive the message and the redundant
transmission can be significantly reduced.

4. MOBILITY HANDLING

In MANETs, nodes may be mobile, which causes
dynamic changes of the network topology. For the flooding
scheme, each node, say s, maintains its neighbor information
and computes F(s). To cope with the dynamic topology
changes, there are two strategies to maintain the flooding
scheme: a) No update. Each node re-computes its forwarding
node set for each flooding request; or b) Incremental update.
Each node incrementally updates its forwarding node set upon
each topology change. For strategy (a), we do not need to do
anything. In this section, we propose an efficient algorithm
that can incrementally update the forwarding node set as the
topology changes. By using this method, nodes do not need to
re-compute the forwarding node set when it needs to flood a
message. The forwarding node set is maintained at each node
and is always ready for use.

For each node u, there are three cases that require updating
F(u): 1) a neighbor of u moves but still in N(u); 2) a neighbor
of u moves out of N(u); 3) a node moves in and becomes the
new neighbor of u. We assume that only one update is handled
at a time. We concentrate on updating F(u) for these three
cases, and discuss them case by case.

Case 1. We consider the first case that the location of a
neighbor v changes but v is still in N(u). There are two sub-
cases.

Case 1.1. If v∉F(u), we need to check whether the
coverage disk of v exceeds the neighbor’s boundary of u. If it
happens, disk of v will contribute to the final boundary B and
F(u) will be updated. We first compute how many arcs in B
are affected by the movement of v. It is can be done by
locating the starting angle and ending angle of current location
of disk v in B by binary search. Suppose that k arcs in B are
affected by the arc of disk v. It means that the sectors of these
arcs overlap with the sector of disk v. Notice that these k arcs
form a continuous segment of B in non-decreasing order
according to their starting angles. Then, we run
BoundaryMerge algorithm to merge this segment and the arc
of disk v to update the new boundary B and F(u).

Case 1.2. If v∈F(u), the final boundary B not only may be
affected by the current location of v, but also may be affected
by the former location of v. Notice that v∈F(u) and location of
v changes. Some nodes in N(u)–F(u) may contribute to B
because v leaves its former place. On the other hand, some
nodes in F(u) may become invalid because v moves to the
current place. So it has two steps update. We first compute

how many arcs in N(u) may contribute to the new boundary
because of leaving of v. Since there is no order in N(u), we
find k arcs that may contribute to B one by one. We compute
the new boundary of these k arcs. Second, similar to case 1.1,
we still need to compute how many arcs in B are affected by
the new location of v. Suppose l continuous arcs in B are
affected. We update B and F(u) again by merging these l
continuous arcs and the arc of disk v in current place.

Case 2. We consider the case that v is a neighbor of u , and
v moves out of N(u). If v∉F(u), there is no need to update. If
v∈F(u), some nodes in N(u)–F(u) may contribute to B due to
the leaving of v. This is similar to the first step of case 1.2. We
can update F(u) for this case.

Case 3. We consider the case that a node v moves into
coverage disk of u, and becomes the new neighbor of u.
Similar to case 1.1. We can update F(u) for this case.

Detailed algorithm is given bellow.

TopologyUpdate Algorithm
Input: v that changes its location to u.
Output: updated F(u).
Begin

if v∉F(u) and v is now in N(u) //case 1.1 or case 3.
Find arcs in B that are affected by disk v;
//suppose k arcs B[i], B[i+1],…,B[i+k-1] are affected.
BoundaryMerge({B[i], B[i+1],…,B[i+k-1]}, d(v));

if v∈F(u) //case 1.2 or case 2.
Find arcs in N(u) that are affected by v’s leaving;
// suppose k arcs are affected.
Compute the boundary of the affected k arcs;
Find arcs in B that are affected by v’s current place;
// suppose l arcs B[i], B[i+1],…,B[i+l-1] are affected.
BoundaryMerge({B[i], B[i+1],…,B[i+l-1]}, d(v));

Update F(u) based on the new boundary B.
End

Theorem 7. Time complexity of update for case 1.1, case 3
and case 1.2, case 2 are O(k+logn) and O(n+klogk),
respectively, where n=|N(s)| and k is the number of nodes that
are affected by topology change.

Proof. For case 1.1 and case 3, it costs O(logn) to locate the
arc of disk v in B by binary search. It further costs O(k) to
merge {B[i], B[i+1],…,B[i+k-1]} and disk v by
BoundaryMerge algorithm. So the total time cost of update for
case 1.1 and case 3 is O(k+logn).

For case 1.2 and case 2, it costs O(n) to find k disks of
nodes in N(u) that are affected by movement of v. Similar to
boundary computing in FwdNodes algorithm, computing new
boundary of these k disks costs O(klogk). It further costs
O(l+logn) to compute the new boundary of l disks in the
second step. So the total time cost of update for case 1.2 and
case 2 is O(n+klogk). Theorem 7 is proved. 

From Theorem 7, we can see that update for case 1.1 and
case 3 is very efficient comparing to re-computing F(u).
Update for case 1.2 and case 2 is also efficient when k is not

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.

Authorized licensed use limited to: CityU. Downloaded on May 22,2010 at 06:42:15 UTC from IEEE Xplore. Restrictions apply.

large. If k=Θ(n), time complexity of TopologyUpdate
algorithm is the same as that of FwdNodes algorithm.

5. SIMULATION

To analyze the performance of our flooding scheme, we
compare it with three deliverability-guaranteed schemes: Pure
flooding, Edge Forwarding (it requires 1-hop information [9]),
and CDS-based flooding [11] (it requires 2-hop information).
In CDS-based scheme, a node marks itself belonging to the
CDS if there exist two unconnected neighbors. A marked node
can quit the CDS later if its neighbors are covered by two
CDS neighbors and they have greater IDs. It was proved that
the marked nodes form a CDS [11]. Notice that all forwarding
nodes in a flooding operation form a CDS in the network. It
means that the number of forwarding nodes is no less than the
number of MCDS (Minimum CDS) in the network. So the
number of MCDS is the lower bound of the number of
forwarding nodes. Although computing MCDS is NP-hard,
there exists a ratio-8 approximation algorithm [29]. This lower
bound is computed and is used as a benchmark for comparison
with the simulated flooding schemes.

We study the performance of flooding schemes against
two parameters: number of nodes, transmission range. We run
simulations under the ns-2 test bed with the CMU wireless
extension. The simulator parameters are listed in Tab. 1. The
popular two-ray ground reflection model is adopted as the
radio propagation model. The MAC layer scheme follows the
IEEE 802.11 MAC specification. We use the broadcast mode
with no RTS/CTS/ACK mechanisms for all message
transmissions. Each data packet with attached information has
a constant length of 256 bytes. The bandwidth of a wireless
channel is set to 2M b/s as default. Some of the schemes
require nodes to send HELLO message to their 1-hop
neighbors periodically. This cost of HELLO message is
ignored in our performance study.

TAB. 1. SIMULATION PARAMETERS.

Parameter Value
Simulator ns-2 (version 2.28)

MAC Layer IEEE 802.11
Data Packet Size 256 bytes

Bandwidth 2 Mb/s
Transmission Range 100~300 meter

Number of Node 200~1000
Size of Square Area 200,000~1,000,000 meter2

Number of Trails 100

The main objective of those efficient flooding schemes is
to reduce the number of forwarding nodes as much as
possible, such that the redundant transmission is minimized.
So we use the metric ratio of forwarding nodes to evaluate the
efficiency of flooding schemes. The ratio of forwarding nodes
is defined to be the ratio of total number of nodes involved in
the packet forwarding in a flooding operation over the total
number of nodes in the network, such as:

ratio of forwarding nodes=
nodes totalofnumber the

nodes forwarding ofnumber the .

Reducing the forwarding nodes in flooding would
effectively reduce the signal collision in the network. The
MAC layer of IEEE 802.11 in ns-2 can check the occurrence
of collisions. If the number of collisions is high, it would
result in more packet loss or more retransmissions. We also
use the metric, number of collisions, to evaluate the efficiency
of flooding schemes. The number of collisions is defined to be
the sum of collisions that each node experiences before it
receives the flooding message correctly.

Signal collisions will eventually affect the deliverability of
flooding messages. Some nodes in the network miss flooding
messages due to the large number of collisions. The metric,
deliverability ratio, is used to further study the efficiency of
algorithms. The deliverability ratio is defined by the number
of nodes that successfully receive the flooding messages over
the total number of nodes in the network.

In each simulation run, we generate a certain number of
nodes and randomly place them on a square area. There is a
link between two nodes if and only if their Euclidean distance
is not greater than transmission range R. The source which
initiates a flooding message is randomly picked from nodes in
the network. Only one flooding occurs at any one time (except
for the experiments of deliverability ratio). Three flooding
schemes and the theoretical lower bound that are mentioned
above are simulated and compared with our scheme under the
same environment. We study how the ratio of forwarding
nodes, the number of collisions and the deliverability ratio are
affected by two parameters: the number of nodes, transmission
range, respectively. The results presented in the following
figures are the means of 100 separate runs. Any case where
the network is not connected is discarded.

5.1. Performance versus Number of Nodes

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

200 400 600 800 1000

the number of nodes

r
a
t
i
o

o
f

f
o
r
w
a
r
d
i
n
g

n
o
d
e
s

Edge Forwarding CDS-based
Our Scheme Lower Bound

Fig. 8. Ratio of forwarding nodes VS. the number of nodes.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.

Authorized licensed use limited to: CityU. Downloaded on May 22,2010 at 06:42:15 UTC from IEEE Xplore. Restrictions apply.

0

500

1000

1500

2000

2500

3000

200 400 600 800 1000

the number of nodes

t
h
e

n
u
m
b
e
r

o
f

c
o
l
l
i
s
i
o
n
s

Pure Flooding Edge Forwarding
Our Scheme

Fig. 9. The number of collisions VS. the number of nodes.

20

30

40

50

60

70

80

90

100

200 400 600 800 1000

the number of nodes

d
e
l
i
v
er
a
b
i
l
i
t
y

r
a
ti
o

(
%
)

Pure Flooding Edge Forwarding
Our Scheme

Fig. 10. Deliverability ratio VS. the number of nodes.

In this simulation, a certain number of nodes, from 200
to 1000, are randomly placed on a 1000×1000 m2 area. The
transmission range is fixed at 250 m. In the experiment of
deliverability ratio in Fig. 10, the network load is set to
10Pkt/s. It means that the network generates 10 flooding
messages per second on average. Deliverability ratio is
calculated for 100 seconds. Since every node is a forwarding
node in the pure flooding scheme, its curve was dropped out in
Fig. 8. The simulation results are plotted in Fig. 8, Fig. 9 and
Fig. 10. We have following observations.

1) Performance of our flooding scheme is significantly better
than performance of Edge Forwarding and CDS-based
schemes showed in Fig, 8. It is because that each
forwarding node u selects the minimal F(u) to cover all 2-
hop neighbors in our scheme. It guarantees that the
number of forwarding nodes is minimized at each step
while Edge Forwarding and CDS-based schemes do not.

2) The curve of our scheme becomes closer to the curve of
lower bound when the number of nodes increases. See Fig.

8, when the number of nodes reaches 1000, only 16.5% of
nodes participate in forwarding in our scheme while ratios
of Edge Forwarding and CDS-based schemes are 50.7%
and 71%, respectively. This is because, as the increase of
network density (resulting from the increase of nodes),
N(u) becomes larger, but F(u) is saturated. That is, the
number of nodes required to cover the same area (i.e., the
neighbor’s area) will not increase that much, because each
node has a fixed coverage disk. Therefore, the ratio
F(u)/N(u) decreases as the increase of nodes in the
network. We can conclude that our flooding scheme is
more suitable for networks with high density.

3) Both the curves of our scheme and of Edge Forwarding
fall down when the number of nodes increases in Fig. 8.
But, number of nodes has little effect on the result of
CDS-based scheme. Notice that when network density
increases, there is more chance for u’s neighbors being
connected. At the same time, high density also causes
increase of N(u). It means there is a high chance that there
exist two unconnected neighbors. So these two conflicting
factors make the result of CDS-based scheme not
sensitive to the change of number of nodes.

4) Our scheme and Edge Forwarding both have much lower
collisions comparing with pure flooding. The reason is
that every node forwards flooding messages in pure
flooding while our scheme and Edge Forwarding only
select a subset of neighbors to forward the messages. This
smaller set of forwarding nodes will result in less
collisions in the network. Performance of our scheme is
better than that of Edge Forwarding. For example in Fig.
9, when the number of nodes reaches 600, the number of
collisions of our scheme is only 211 while that of Edge
Forwarding schemes are 364. After that, the collisions of
Edge Forwarding method is over 100% higher than our
scheme.

5) Deliverability ratio of our scheme is significantly higher
than the ratios of Edge Forwarding and Pure Flooding.
See Fig. 10, our scheme guarantees 100% deliverability
when the number of nodes varies from 200 to 400 while
deliverability ratios of Edge Forwarding and Pure
Flooding are only 75%-90% around. Although collisions
occur in our scheme even the number of nodes is small, a
node that misses flooding messages from a forwarding
node still has chance to receive messages from another
forwarding node. So the value of our scheme can almost
reach 100% if the number of nodes is between 200 to 600
(the number of collisions is low). The performance of
Pure Flooding is the worst among three schemes. It is
caused by the broadcast storm problem since every node
re-transmits the flooding message in the network.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.

Authorized licensed use limited to: CityU. Downloaded on May 22,2010 at 06:42:15 UTC from IEEE Xplore. Restrictions apply.

5.2. Performance versus Transmission Range

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 150 200 250 300

transmission range

r
a
t
i
o

o
f

f
o
r
w
a
r
d
i
n
g

n
o
d
e
s

Edge Forwarding CDS-based
Our Scheme Lower Bound

Fig. 11. Ratio of forwarding nodes VS. transmission range

0

500

1000

1500

2000

2500

3000

3500

4000

100 150 200 250 300
transmission range

t
h
e

n
u
m
b
e
r

o
f

c
o
l
l
i
s
i
o
n
s

Pure Flooding Edge Forwarding
Our Scheme

Fig. 12. The number of collisions VS. transmission range.

50

60

70

80

90

100

100 150 200 250 300

transmission range

d
e
l
i
v
e
r
a
b
i
l
it
y

r
a
t
i
o

(
%
)

Pure Flooding Edge Forfwarding
Our Scheme

Fig. 13. Deliverability ratio VS. transmission range.

In this simulation, 1000 nodes are randomly placed on a
1000×1000 m2 area. The network load is set to 10Pkt/s and

each simulation is run for 100 seconds in Fig. 13. We study
the performance against the transmission range of each node.
The simulation results are plotted in Fig. 11, Fig. 12 and Fig.
13. We have following observations.

1) Performance of our scheme is significantly better than
performance of Edge Forwarding and CDS-based
schemes shown in Fig. 11. The reason is similar to the
results in Fig. 8. As the increase of transmission range,
each node has more neighbors. It has the same effect on
the increase of network density as the increase of nodes in
a fixed square area.

2) The curve of our scheme becomes closer to the curve of
lower bound when transmission range increases in Fig. 11.
This trend is more significant than that in Fig. 8. See Fig.
11, when the transmission range reaches 300 m, only
10.4% of nodes participate in forwarding in our flooding
scheme while values of Edge Forwarding and CDS-based
schemes are 44.6% and 64.6%, respectively. This is
because that increase of transmission range not only
results in higher density of network, but also makes
flooding faster in the network. It means that flooding
operation can be done in less steps due to the large
transmission range of nodes. Notice that our scheme
achieves that the number of forwarding nodes is minimal
at each step. So less steps to complete flooding makes our
results closer to the lower bound when transmission range
increases.

3) Both the curves of our scheme and Edge Forwarding fall
down when transmission range increases in Fig. 11. The
curve of CDS-based scheme does not change much when
R increases from 100 m to 200 m. The reason has been
discussed before. But further increase of R makes the
curve fall down. It is because that when R reaches a
certain value, such as 200 m in Fig. 11, further increase of
R will slightly increase N(u) due to the fixed number of
nodes. But increase of R makes nodes have more chance
to be connected. So curve of CDS-based scheme falls
down when R is more than 200 m.

4) Curves in Fig. 12 show the similar trend as those in Fig. 9.
When the transmission range increases (i.e., a node has
more neighbors), there are more chances for nodes to
experience collisions. Since our scheme minimizes the
number of forwarding nodes in each step, its performance
is much better than that of pure flooding and Edge
Forwarding schemes.

5) Deliverability ratios of three schemes all increase when
transmission range increases in Fig. 13. It is because that
increase of transmission range not only causes more
collisions, but also provides more chances for nodes to
receive flooding messages from different forwarding
nodes. See Fig. 13, the ratio of our scheme becomes very
close to 100% after transmission range is larger than 200.
Our scheme performs best among three schemes.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.

Authorized licensed use limited to: CityU. Downloaded on May 22,2010 at 06:42:15 UTC from IEEE Xplore. Restrictions apply.

6. CONCLUSIONS

The paper addressed the efficient flooding problem in
MANETs. We have presented an efficient flooding scheme
that uses only 1-hop neighbor information. We have proved
that our proposed scheme achieves the local optimality in
terms of: 1) the number of forwarding nodes is the minimal; 2)
the time complexity O(nlogn) is the lowest. Extensive
simulations have been conducted to compare our scheme with
pure flooding, Edge Forwarding and CDS-based schemes.
Simulation results have shown that our proposed scheme uses
less forwarding nodes, incurs less collision, obtains high
deliverability ratio, compared with the existing schemes.

REFERENCES
[1] D. Johnson and D. A. Maltz, “Dynamic Source Routing in Ad Hoc

Wireless Networks,” in Mobile Computing, T. Imielinski and H. F.
Korth, Eds., pp. 153–181. Kluwer Academic Publishers, Dordrecht, The
Netherlands, 1996.

[2] C. E. Perkins, “Ad Hoc On-Demand Distance Vector (AODV) Routing,”
INTERNET DRAFT - Mobile Ad hoc NETworking (MONET) Working
group of the Internet Engineering Task Force (IETF), November 1997.

[3] Z. J. Haas and M. R. Pearlman, “The Zone Routing Protocol (ZRP) for
Ad Hoc Networks,” INTERNET DRAFT - Mobile Ad hoc NETworking
(MONET) Working group of the Internet Engineering Task Force
(IETF), November 1997.

[4] Y. Ko and N. Yaidya, “Location-Aided Routing (LAR) in Mobile Ad
Hoc Networks,” in Proc. of MOBICOM’98, 1998, pp. 66–75.

[5] C. Ho, K. Obraczka, G. Tsudik, and K. Viswanath, “Flooding for
Reliable Multicast in Multi-hop Ad Hoc Networks,” in Proc. of the Int’l
Workshop on Discrete Algorithms and Methods for Mobile Computing
and Communication, 1999, pp. 64–71.

[6] J. Jetcheva, Y. Hu, D. Maltz, and D. Johnson, “A Simple Protocol for
Multicast and Broadcast in Mobile Ad Hoc Networks,” Internet Draft:
draft-ietf-manet-simple-mbcast-01.txt, July 2001.

[7] S. Ni, Y. Tseng, Y. Chen, and J. Sheu, “The broadcast storm problem in
a mobile ad hoc network,” Proc. of ACM/IEEE MOBICOM’99, pp. 151-
162, Aug. 1999.

[8] P. Sinha, R. Sivakumar and V. Bharghavan, “Enhancing ad hoc routing
with dynamic virtual infrastructures”, IEEE INFOCOM 2001, pp. 1763-
1772.

[9] Ying Cai, Kien A. Hua, and Aaron Phillips, “Leveraging 1-hop
Neighborhood Knowledge for Efficient Flooding in Wireless Ad Hoc
Networks,” 24th IEEE International Performance Computing and
Communications Conference (IPCCC), April 7-9, 2005, Phoenix,
Arizona.

[10] Chun-Chuan Yang and Chao-Yu Chen, “A Reachability-Guaranteed
Approach for Reducing the Broadcast Storms in MANETs,”
Proceedings of IEEE Semiannual Vehicular Technology Conference
(VTC-2002 Fall), Sept. 2002.

[11] J. Wu and H. Li, “On Calculating Connected Dominating Set for
Efficient Routing in Ad Hoc Wireless Networks,” in Proc. of the 3rd
Int’l Workshop on Discrete Algorithms and Methods for Mobile
Computing and Communications (DiaLM), 1999, pp. 7–14.

[12] J.E. Wieselthier, G. D. Nguyen, and A. Ephremides, “On the
Construction of Energy-Efficient Broadcast and Multicast Trees in
Wireless Networks”, IEEE Infocom’2000.

[13] Deying Li, Xioahua Jia and Hai Liu, “Energy efficient broadcast routing
in ad hoc wireless networks”, IEEE Trans on Mobile Computing, Vol. 3,
No. 2, Apr - Jun, 2004, pp.144-151.

[14] Y. Tseng, S. Ni, and E. Y. Shih, “Adaptive Approaches to Relieving
Broadcast Storms in a Wireless Multihop Mobile Ad Hoc Networks,” In
Proc. of ICDCS’01, pp 481-488, 2001.

[15] Y. Sasson, D. Cavin, and A. Schiper, “Probabilistic broadcast for
flooding in wireless mobile ad hoc networks,” In Swiss Federal Institute
of Technology, Technical Report IC/2002/54, 2002.

[16] M. T. Sun, W. C. Feng, and T. H. Lai, “Location Aided broadcast in
wireless ad hoc networks,” in Proc. of GLOBECOM’01, 2001.

[17] H. Lim and C. Kim, “Multicast Tree Construction and Flooding in
Wireless Ad Hoc Networks,” In Proc. of the ACM Int’l Workshop on
Modeling, Analysis and Simulation of Wireless and Mobile System
(MSWIM), pp 61-68, Aug. 2000.

[18] B. Williams and T. Camp, “Comparison of Broadcasting Techniques for
Mobile Ad Hoc Networks,” In Proc. of MOBIHOC’02, pp 914-205,
2002.

[19] A. Laouiti, A. Qayyum, and L. Viennot, “Multipoint relaying: An
efficient technique for flooding in mobile wireless networks,” In 35th
Annual Hawaii International Conference on System Sciences
(HICSS’2001). IEEE Computer Society, 2001.

[20] A. Qayyum, L. Viennot, and Anis Laouiti, “Multipoint Relaying for
Flooding Broadcast Messages in Mobile Wireless Networks,” In
Proceeding of the 35th Hawaii International Conference on System
Sciences, 2002.

[21] Wei Lou and Jie Wu, “Double-Covered Broadcast (DCB): A Simple
Reliable Broadcast Algorithm in MANETs,” in Proc. of INFOCOM
2004, 2004.

[22] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris, “Span: An
Energy-Efficient Coordination Algorithm for Topology Maintenance in
Ad Hoc Wireless Networks,” in Proc. of MOBICOM’01, July 2001, pp.
85–96.

[23] W. Peng and X. Lu, “On the Reduction of Broadcast Redundancy in
Mobile Ad Hoc Networks,” in Proc. of MOBIHOC’00, 2000.

[24] I. Stojmenovic, M. Seddigh, and J. Zunic, “Dominating Sets and
Neighbor Elimination Based Broadcasting Algorithms in Wireless
Networks,” IEEE Transactions on Parallel and Distributed Systems, vol.
13, no. 1, pp. 14–25, January 2002.

[25] J. Sucec and I. Marsic, “An Efficient Distributed Network-Wide
Broadcast Algorithm for Mobile Ad Hoc Networks,” in Rutgers
University, CAIP Technical Report 248, September 2000.

[26] J. Wu and F. Dai, “Broadcasting in Ad Hoc Networks Based on Self-
Pruning,” in Proc. of INFOCOM’03, March 2003.

[27] Fei Dai and Jie Wu, “An Extended Localized Algorithm for Connected
Dominating Set Formation in Ad Hoc Wireless Networks,” IEEE Trans.
Parallel Distrib. Syst. 15(10): 908-920, 2004.

[28] M. V. Marathe, H. Breu, H. B. Hunt III, S. S. Ravi, and D. J.
Rosenkrantz, “Simple heuristics for unit disk graphs,” Networks, vol. 25,
pp 59-68, 1995.

[29] P.-J. Wan, K. Alzoubi, and O. Frieder, “Distributed Construction of
Connected Dominating Set in Wireless Ad Hoc Networks,” Proc. IEEE
INFOCOM, vol. 3, pp 1597-1604, June 2002.

[30] Dariusz R. Kowalski and Andrzej Pelc, “Deterministic Broadcasting
Time in Radio Networks of Unknown Topoloby,” Proc. of the 43rd
Annual IEEE Symposium on Foundations of Computer Science
(FOCS’02), 2002.

[31] Rajiv Gandhi, Srinivasan Parthasarathy, and Arunesh Mishra,
“Minimizing Broadcast Latency and Redundancy in Ad Hoc Networks,”
In Proc. of the Fourth ACM Int. Symposium on Mobile Ad Hoc
Networking and Computing (MOBIHOC'03), pp 222-232, Jun. 2003.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.

Authorized licensed use limited to: CityU. Downloaded on May 22,2010 at 06:42:15 UTC from IEEE Xplore. Restrictions apply.

