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Abstract— A wide range of applications for wireless ad hoc
networks are time-critical and impose stringent requirement
on the communication latency. This paper studies the problem
Minimum-Latency Broadcast Scheduling (MLBS) in wireless ad
hoc networks represented by unit-disk graphs. This problem
is NP-hard. A trivial lower bound on the minimum broadcast
latency is the radius R of the network with respect to the
source of the broadcast, which is the maximum distance of all
the nodes from the source of the broadcast. The previously
best-known approximation algorithm for MLBS produces a
broadcast schedule with latency at most 648R. In this paper, we
present three progressively improved approximation algorithms
for MLBS. They produce broadcast schedules with latency at
most 24R − 23, 16R − 15, and R + O (log R) respectively.

I. INTRODUCTION

A wide range of applications for wireless ad hoc networks
such as military surveillance, emergency disaster relief and
environmental monitoring are time-critical. These applications
impose stringent requirement on the communication latency.
One major challenge in achieving fast communication is how
to handle the intrinsic broadcasting nature of radio communi-
cations. From the perspective of communication latency, the
broadcasting nature of radio transmission is a double-edged
sword. On one hand, it may speed up the communications
since it enables a message to reach all neighbors of its
transmitter simultaneously in a single transmission. On the
other hand, it may also slow down the communications since
the transmission by a node may interfere and disable nearby
communications. In order to achieve fast communication, one
has to magnify the speed-up impact while diluting the slow-
down impact of the broadcasting nature. In this paper, we
study the problem Minimum-Latency Broadcast Scheduling
(MLBS) in wireless ad hoc networks in which communica-
tion proceeds in synchronous time-slots. In its most general
setting, an instance of MLBS consists of an undirected graph
G = (V,E) representing the communication topology and a
distinguished node s ∈ V as the source of the broadcast. For
any subset U of V , denote by Inf (U) the set of nodes in
V \ U each of which has exactly one neighbor in U . Then a
broadcast schedule of latency � is a sequence 〈U1, U2, · · · , U�〉
satisfying that (1) U1 = {s}; (2) Ui ⊆ ∪i−1

j=1Inf (Uj) for each

2 ≤ i ≤ �; and (3) V \ {s} ⊆ ∪�
j=1Inf (Uj). The problem

MLBS seeks a broadcast schedule of the smallest latency.

MLBS in general (undirected) graphs has been extensively
studied in the literature. Let n be the number of nodes in
the input graph G. Chlamtac and Kutten [2] established the
NP-hardness of MLBS in general graphs. Recently, Elkin
and Kortsarz proved a logarithmic multiplicative inapprox-
imability and a polylogarithmic additive inapproximability:
Unless NP ⊆ BPTIME

(
nO(log log n)

)
, there exist two

universal positive constants c1 and c2 such that MLBS admits
neither multiplicative (c1 log n)-approximation [6] nor additive(
c2 log2 n

)
-approximation [7]. A trivial lower bound on the

minimum broadcast latency is the radius R of G with respect
to s, defined as the maximum distance of the nodes in G
from s. However, R is a very loose lower bound in general.
Indeed, Alon et al. [1] proved the existence of a family of n-
node graphs of radius 2, for which any broadcast schedule has
latency Ω

(
log2 n

)
. Approximation algorithms for MLBS in

general graphs developed in the literature can be classified into
two categories, multiplicative approximation algorithms [2],
[3], [12], and additive approximation algorithms [4], [8], [10],
[11], [13]. Table I summarizes the latency of the broadcast
schedules constructed by these approximation algorithms.

Approx. Algorithm Latency

Chlamtac and Kutten [2] O(R∆)

Chlamtac and Weinstein [3] O
(
R log2 (n/R)

)
Kowalski and Pelc [12] O

(
R log n + log2 n

)
Gaber and Mansour [10] O

(
R + log6 n

)

Elkin and Kortsarz [8] R + O
(√

R log2 n
)

Gasieniec, Peleg, and Xin [11] R + O
(
log3 n

)
Cicalese, Manne, and Xin [4] R + O

(
log3 n/ log log n

)
Kowalski and Pelc [13] O

(
R + log2 n

)

TABLE I

APPROXIMATION ALGORITHMS FOR MLPS IN GENERAL GRAPHS.

MLBS in unit-disk graphs (UDGs) was only considered in
[5], [9]. For a wireless ad hoc network in which all nodes
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lie in a plane and have transmission radii equal to one, its
communication topology is a UDG G = (V,E) in which there
is an edge between two nodes if and only if their Euclidean
distance is at most one. In [5] Dessmark and Pelc presented
a broadcast schedule of latency at most 2400R. This should
be contrasted with the lower bound Ω

(
log2 n

)
from [1] valid

for some graphs with constant R: the graphs constructed in
[1] are “pathological,” in particular they are not UDG. In [9]
Gandhi, Parthasarathy and Mishra claimed the NP-hardness
of MLBS in unit-disk graphs and constructed an improved
broadcast schedule whose latency can be shown to be at most
648R. We remark that their algorithm is incorrect but the bug
can be fixed.

The main contribution of this paper consists of three pro-
gressively improved approximation algorithms for MLBS in
UDGs, Basic Broadcast Schedule (BBS), Enhanced Broadcast
Schedule (EBS), and Pipelined Broadcast Schedule (PBS).
They produce broadcast schedules with latency at most 24R−
23, 16R−15, and R+O (log R) respectively. The rest of this
paper is organized as follows. In Section II, we introduce some
terms, notations and and simple facts. In Section III, Section
IV and Section V, we present the first approximation algorithm
and the second approximation algorithm respectively. Finally,
we conclude this paper in Section VI.

II. PRELIMINARIES

In this section, we introduce some terms, notations and
simple facts. Let G = (V,E) be an undirected graph with
|V | = n, and s be a fixed node in G. The subgraph of
G induced by a subset U of V is denoted by G [U ]. The
minimum degree of G is denoted by δ (G). The inductivity of
G is defined by δ∗ (G) = maxU⊆V δ (G [U ]). For any positive
integer k, the k-th power of G, denoted by Gk, is a graph over
V in which there is an edge between two nodes u and v if
and only if their distance in G is at most k. The depth of
a node v is the distance between v and s, and the radius of
G with respect to s, denoted by R, is maximum distance of
all the nodes from s. They can be computed by conducting a
standard breath-first-search (BFS) on G. For 0 ≤ i ≤ R, the
layer i of G consists of all nodes of depth i.

Let X and Y be two disjoint subsets of V . A (X,Y )-
schedule of latency � is a sequence 〈U1, U2, · · · , U�〉 satisfying
that (1) U1 ⊆ X; (2) Ui ⊆ X ∪ (∪i−1

j=1Inf (Uj)
)

for each
2 ≤ i ≤ �; and (3) Y ⊆ ∪�

j=1Inf (Uj). X is a cover of
Y if each node in Y is adjacent to some node in X , and a
minimal cover (MC) of Y if X is a cover of Y but no proper
subset of X is a cover of Y . Suppose that X is a cover of Y .
Any ordering x1, x2, · · · , xm of X induces a minimal cover
W ⊆ X of Y by the following sequential pruning method:
Initially, W = X . For each i = 1 up to m, if W \ {xi} is a
cover of Y , remove xi from W . If X is a cover of V �X ,
then X is called a dominating set of G. If X is a dominating

set and G [X] is connected, then then X is called a connected
dominating set of G.

A subset U of V is a k-independent set (k-IS) of G if the
pairwise distances of the nodes in U are all greater than k,
and a maximal k-independent set of G is U is a k-independent
set of G but no proper subset of U is a k-independent set of
G. Note that a set U is a (maximal) k-IS if and only if it is a
(maximal) IS in Gk. Any node ordering v1, v2, · · · , vn of V
induces a maximal k-IS U in the following first-fit manner:
Initially, U = {v1}. For i = 2 up to n, add vi to U if
distG (vi, U) > k. The parameter k is often omitted if k = 1.
Clearly, any maximal IS of G is a dominating set of G, and
for any 2-IS U the set Inf (U) consists of all nodes adjacent
to U . If G is a UDG, then a set U is an IS of G if and only if
any pair of nodes in U are separated by an Euclidean distance
greater than one. In addition, each node can be adjacent to at
most five nodes in any IS, and any nodes at layer 0 < i < R
can be adjacent to at most four nodes at the layer i+1 in any
IS.

A proper node coloring of G is an assignment of colors,
represented by natural numbers, to the nodes in V such
that any pair of adjacent nodes receive different colors. It
is equivalent to a partition of V into independent sets. Any
node ordering v1, v2, · · · , vn of V induces a proper node
coloring of G in the following first-fit manner: For i = 1
to n, assign to vi the least possible color which is not used
by any neighbor vj with j < i . A particular node ordering of
interest is the smallest-degree-last ordering. A smallest-degree-
last ordering v1, v2, · · · , vn can be generated by the following
simple algorithm: Initially, U = V . For i = n down to 1, set vi

to be the node of smallest degree in G [U ] and then remove vi

from U . It’s well-known that the node coloring of G induced
by a smallest-degree-last ordering uses at most 1 + δ∗ (G)
colors [14].

III. BASIC BROADCAST SCHEDULING

In this section, we present a simple algorithm BBS for
MLBS in UDG which produces a broadcast schedule with
latency at most 24R−23. This algorithm exploits the fact that
any independent set U of a UDG G can be partitioned into
at most twelve 2-independent sets of G in polynomial-time
even if the positions of the nodes are not available. Indeed,
we observe that a partition of U into 2-IS’s is equivalent to
a proper node coloring of G2 [U ] with each subset in the
partition corresponding to a color class. Thus, we compute
the coloring induced by the smallest-degree-last ordering and
output the color classes as the partition of U . The number
of colors, or equivalently the number of subsets in the out
partition, is at most 1 + δ∗

(
G2 [U ]

)
. The next lemma shows

that δ∗
(
G2 [U ]

) ≤ 11, and consequently the output partition
meets the requirement.
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Lemma 1: For any IS U of a UDG G, δ∗
(
G2 [U ]

) ≤ 11.

Proof: We first show that δ
(
G2 [U ]

) ≤ 11. Let v be the
bottom-most node in U . It is sufficient to show that the the
degree of v in G2 [U ] is at most 11. By the selection of v, all
neighbors of v in G2 [U ] lie in the top half-annulus centered
at v with radii one and two. Consider a half-annulus of radii
one and two centered at a point v. Separate this half-annulus
into two by an intermediate circle with radius 2 cos(π/7) −√

4 cos2(π/7) − 3 , then partition the inner half-annulus into 4
equal-sized pieces and the outer half annulus into 7 equal-sized
pieces as shown in Figure 1. A straightforward calculation
yields that each of the 11 pieces has diameter at most one.
So each piece can contain at most one node in U . Hence, the
half-annulus of radii one and two centered at v contains at
most 11 nodes in U , and thus the degree of v in G2 [U ] is at
most 11.

Next, we prove δ∗
(
G2 [U ]

) ≤ 11. Note that for any subset
U ′ of U , U ′ is itself an IS of G and the subgraph of G2 [U ]
induced by U ′ is G2 [U ′]. Thus, δ

(
G2 [U ′]

) ≤ 11. This implies
that δ∗

(
G2 [U ]

) ≤ 11.

4cos     −32cos    −π
7 1 1

v

π
7

2

Fig. 1. Partition of the half annulus with radii 1 and 2 into 11 pieces of
diameter at most one.

We remark that if the positions of the nodes are available,
we can even partition U into at most 12 subsets, each of which
consists of the nodes with pairwise distances greater than two
and hence is 2-IS. Such partition can be obtained by the tiling
approach presented in [16]. Specifically, we tile the plane into
regular hexagons of side equal to 1/2 (see Figure 2(a)). Each
hexagon, or cell, is left-closed and right-open, with the top-
most point included and the bottom-most point excluded (see
Figure 2(b)). Clearly, each cell contains at most one node in
U . Cells are further grouped into clusters of size 12 according
to the pattern as shown in Figure 2(a). We then label the
12 cells in a cluster with the numbers 1 through 12 in an
arbitrary pattern, as long as all clusters adopt the same pattern
of labeling of the cells. For each 1 ≤ i ≤ 12, let Ui be the set
of nodes in U lying the cells with label i. Since the distance
between any two points in two different (half-closed and half-
open) cells with the same label is greater than two, all nodes

(b)
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8 9 10

11 12

1 2 3

4 5 6 7

8 9 10

11 12

1 2 3

4 5 6 7

8 9 10

11 12
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8 9 10

11 12

1 2 3

4 5 6 7

8 9 10

11 12

1 2 3

4 5 6 7

8 9 10

11 12

1 2 3

4 5 6 7

8 9 10

11 12

(a)

Fig. 2. Tiling of the plane into hexagons with 12 hexagons per cluster.

in U have pairwise distances greater than two. Hence, the sets
Ui with 1 ≤ i ≤ 12 form a desired partition of U .

Now we are ready to describe the algorithm BBS. We first
construct a BFS tree T of G rooted at s, and compute the
depths of all nodes in T and the radius R of G. Then, we
construct the MIS U of G induced by the increasing order of
depth. The nodes in U are referred to as dominators as U is
also a dominating set of G. The parents of the dominators
in T are referred to as connectors, as they together with
the dominators, form a connected dominating set. Only the
dominators and connectors are the transmitting nodes. Their
transmissions are scheduled layer by layer in the top-down
manner. At each layer, transmissions by dominators precede
the transmissions by connectors. Specifically, for each 0 ≤
i ≤ R, denote by Ui the set of dominators with depth i. Note
that U0 = {s} and U1 = ∅. For each 2 ≤ i ≤ R, compute a
partition of Ui into ci 2-IS’s Uij for 1 ≤ j ≤ ci with ci ≤ 12.
For each 1 ≤ i ≤ R − 1 and 1 ≤ j ≤ ci+1, denote Wij to be
the set of parents of nodes in Ui+1,j . Then, at layer 0, only the
source s transmits as dominator in time-slot 0. At layer 1, no
node is a dominator, and connectors transmit in the sequence
〈W1j : 1 ≤ j ≤ c2〉. At each layer i with 2 ≤ i ≤ R − 1,
dominators transmit in the sequence 〈Uij : 1 ≤ j ≤ ci〉 and
immediately afterwards, connectors transmit in the sequence
〈Wij : 1 ≤ j ≤ ci+1〉. At layer R , no node is a connector,
and dominators transmit in the sequence 〈URj : 1 ≤ j ≤ cR〉.

The next theorem asserts the correctness of the algorithm
BBS and establishes an upper bound on the latency of the
broadcast schedule produced by BBS.

Theorem 2: Algorithm BBS is correct and it produces a
broadcast schedule with latency at most 24R − 23.

Proof: By the property of 2-IS, after a dominator trans-
mits, all its neighbors in G are informed. By the selection of
dominators, each connector is adjacent to some dominator in
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the previous or the same layer. Thus, all connectors in a layer
must have been informed after the transmissions by dominators
in the same layer. By the selection of the connectors and their
transmission scheduling, the dominators at a layer must have
been informed after all connectors at the previous layer have
completed their transmissions. Finally, after the transmissions
by all dominators, all other nodes are informed. Therefore,
algorithm BBS is correct.

A straightforward calculation yields that the latency of the
broadcast schedule is 1 + c2 +

∑R−1
i=2 (ci + ci+1) + cR = 1 +

2
∑R

i=2 ci. Since ci ≤ 12 for each 2 ≤ i ≤ R, the latency is
bounded by 1 + 2 · 12 (R − 1) = 24R − 23.

Finally, we remark that while each dominator transmits
exactly once, a connector may transmits at most four times.
Precisely, the number of transmissions by a connector is equal
to the number of dominator children in T , which is at most
four.

IV. ENHANCED BROADCAST SCHEDULING

In this section, we present an algorithm EBS for MLBS
in UDG which produces a broadcast schedule with latency
at most 16R − 15. The algorithm EBS is an enhancement
from BBS. It differs from the algorithm BBS only in how
the connectors are selected and scheduled for transmissions.
Instead of choosing all parents of the dominators as connectors
as in BBS, it selects a minimal subset of parents of the
dominators as connectors. As a result, all the connectors at
a layer would take at most 4 time-slots to transmit in EBS,
a reduction from as many as 12 time-slots taken by the
connectors at a layer to transmit in BBS. In addition, each of
the dominators and connectors transmit exactly once in EBS,
while a connector may transmits up to 4 times in BBS. Thus,
EBS not only produces shorter broadcast schedule, but also
eliminates the transmission redundancy completely.

The selection and transmission scheduling of the connectors
in EBS are generated by an algorithm called iterative minimal
covering (IMC). The algorithm IMC takes as input a graph G
and a pair of disjoint vertex subsets (X,Y ) satisfying that X
is a cover of Y , and outputs a sequence 〈Wi : 1 ≤ i ≤ l〉 of
disjoint subsets of X satisfying that (1) W1∪W2∪· · ·∪Wl is
a minimal cover of Y , (2) Y ⊆ Inf (W1)∪ Inf (W2)∪ · · · ∪
Inf (Wl), and (3) l is no more than the maximum number
of nodes in Y adjacent to a node in X . It runs as follows.
Initialize l = 0, X0 = X , and Z = Y . Repeat the following
iteration while Z �= ∅: Increment l by 1, compute a minimal
cover Xl ⊆ Xl−1 of Z, set Wl = Xl−1 \ Xl, and remove
Inf (Xl) from Z. When Z = ∅, set Wl = Xl and output
the sequence 〈Wi : 1 ≤ i ≤ l〉. The next lemma shows that the
output sequence meets the three desired properties.

Lemma 3: The algorithm IMC is correct.

Proof: Clearly, Xi = Wi ∪ Wi+1 ∪ · · · ∪ Wl for each
1 ≤ i ≤ l. Thus (1) holds since X1 is a minimal cover of Y .
Next, we prove (2) holds. Let Y0 = Y , and for each 1 ≤ i ≤ l,
let Yi = Y \ (Inf (X1) ∪ · · · ∪ Inf (Xi)). Then, Yi is the set
Z at the end of the i-th iteration. Since Yl is empty, Y ⊆
Inf (X1)∪ Inf (X2)∪ · · · ∪ Inf (Xl). Consider an arbitrary
node y ∈ Y . Then y ∈ Inf (Xi) for some 1 ≤ i ≤ l. Let x
be the unique neighbor of y in Xi, and suppose that x ∈ Wj

for some i ≤ j ≤ l. Then, x is also the unique neighbor
of y in Wj . So y ∈ Inf (Wj), which implies that (2) holds.
Finally, we prove (3). Let x be an arbitrary node in Xl. Then, x
belongs to each Xi for 1 ≤ i ≤ l. Since Xi is a minimal cover
of Yi−1, there is a node yi−1 in Yi−1 satisfying that yi−1 is a
neighbor of x but is not a neighbor of any other node in Xi.
Hence, yi−1 ∈ Inf (Xi). This implies that y0, y1, · · · , yl−1

are distinct. Thus, x has at least l neighbors. In other words, l
is no more than the neighbors in Y of x. Therefore, (3) holds
as well.

Lemma 3 implies that if additionally X is a subset of nodes
at the layer i and Y is a subset of independent nodes at the
layer i + 1 for some 0 ≤ i ≤ R− 1, then the sequence out by
the algorithm IMC consists of at most four sets.

The algorithm EBS construct a BFS tree T of G rooted at
s, and compute the depths of all nodes in T and the radius
R of G. Then we construct the MIS U of G induced by the
increasing order of depth as the set of dominators. For each
0 ≤ i ≤ R, denote by Ui the set of dominators with depth
i. Note that U0 = {s} and U1 = ∅. Compute a partition
of Ui into ci 2-IS’s Uij for 1 ≤ j ≤ ci with ci ≤ 12.
For each 1 ≤ i ≤ R − 1, let Pi be the set of parents
of the nodes in Ui+1. Apply the algorithm IMC to G and
the pair (Pi, Ui+1), and let 〈Wij : 1 ≤ j ≤ li〉 be the output
sequence of subsets of Pi. The nodes in ∪R−1

i=1 ∪li
j=1 Wij are

the selected connectors, as they together with the dominators
form a connected dominating set of G. Only the dominators
and connectors are the transmitting nodes, and their trans-
missions are scheduled layer by layer starting from layer 0.
For each layer, transmissions by dominators are scheduled
before transmission by connectors. Specifically, layer 0 has
only the source s as dominator, which transmits in time-slot
0. Layer 1 contains no dominators, and connectors in layer 1
transmit in the sequence 〈W1j : 1 ≤ j ≤ l1〉. For each layer
2 ≤ i ≤ R− 1, dominators in layer i transmit in the sequence
〈Uij : 1 ≤ j ≤ ci〉 and immediately afterwards, connectors in
layer i transmit in the sequence 〈Wij : 1 ≤ j ≤ li〉. Layer R
contains no connectors, and dominators in layer R scheduled
in the sequence 〈URj : 1 ≤ j ≤ cR〉.

The next theorem asserts the correctness of the algorithm
EBS and establishes an upper bound on the latency of the
broadcast schedule produced by EBS.

Theorem 4: Algorithm EBS is correct and it produces a
broadcast schedule with latency at most 16R − 15.
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Proof: The correctness of EBS follows from the same
argument for the correctness of BBS. The latency of the broad-
cast schedule produced by EBS is 1+ l1 +

∑R−1
i=2 (ci + li)+

cR = 1 +
∑R−1

i=1 li +
∑R

i=2 ci. Since li ≤ 4 for each 1 ≤ i ≤
R−1 and ci ≤ 12 for each 2 ≤ i ≤ R, the latency is bounded
by 1 + 12 (R − 1) + 12 (R − 1) = 16R − 15.

We conclude this section with an algorithm Inter-Layer
Broadcast Scheduling (ILBS), which outputs a (X,Y )-
schedule of latency at most 16 for any pair of vertex subsets X
and Y satisfying that X (resp., Y ) is a subset of nodes in the
layer i (resp., i+1) for some 0 ≤ i ≤ R−1 and X is a cover
of Y . The algorithm selects a maximal independent set U of
G [X ∪ Y ] induced by an ordering in which nodes in X are
before the nodes in Y . Then, apply the algorithm IMC to G
and the pair (X,U ∩ Y ) to obtain a sequence 〈Wi : 1 ≤ i ≤ l〉
of disjoint subsets of X . Next, compute a partition of U into 2-
IS’s Ui for 1 ≤ i ≤ c with c ≤ 12. Then, output transmission
schedule is 〈Wi : 1 ≤ i ≤ k〉 , 〈Ui : 1 ≤ i ≤ c〉. Note that if
i = 1, then X = {s} and the latency is trivially equal to one. If
i > 1, then l ≤ 4 and hence the latency is k+c ≤ 4+12 = 16.

V. PIPELINED BROADCAST SCHEDULING

In this section, we present an algorithm PBS for MLBS in
UDG which produces a broadcast schedule with latency R+
O (log R). Instead of scheduling the transmissions layer-by-
layer in the top-down manner, PBS pipelines transmissions in
more than one layers. This means that a node in a lower layer
may receive and/or transmit the messages than a node in an
upper layer. Such pipelining relies on a special BFS tree T
referred to as canonical BFS tree and an associated ranking
rank of the nodes constructed layer-by-layer in the bottom-up
manner as follows. Initially, T is empty and rank(v) = 0 for
each node v at the layer R. The ranks and the children of all
nodes at each other layer i are computed iteratively: Initialize
U to be the set of nodes at layer i, and W to be the set of
nodes at layer i + 1. Repeat the following iteration while W
is nonempty. Compute the maximum rank r of the nodes in
W , and find a node v ∈ U which is adjacent to the largest
number of nodes in W with rank r. If v is adjacent to only
one node in W with rank r, then rank(v) = r; otherwise,
rank(v) = r + 1. Put all neighbors of v in W as the children
of v in T . Remove v from U , and remove all neighbors of
v from W . When W is empty, then for each node v ∈ U ,
rank(v) = 0. Figure 3 gives an example of the ranking and
the canonical BFS tree constructed in this way.

The canonical BFS tree and the ranking have a number of
interesting properties. Clearly, each node has rank no more
than its parent in T . It’s also easy to prove by induction
in the bottom-up manner that for each node v, rank (v) ≤
	log |Tv|
, where Tv is the subtree of T induced by v and
all its descendants. In particular, for each node v, rank (v) ≤

0

0 00000

001100

010200

001210

100220

10122

3

Fig. 3. The ranking of V and the canonical BFS tree consisting of solid
edges.

	log n
. Furthermore, if u1 and u2 are two nodes at the same
layer, v1 and v2 are their child respectively at layer i+1, and
all of them have the same rank, then neither u1 and v2 nor u2

and v1 are adjacent in G. Indeed, assume by symmetry that
u1 is ranked before u2. Then, by the time of u1 is picked for
ranking, both v1 and v2 remain in W . Since u1 and v1 have
the same rank, v1 must be the only neighbor of u1 in W . In
particular, v2 is not adjacent to u1. Since u1 is ranked before
u2, v2 is also the only neighbor of u2 in W and hence v1 is
not adjacent to u2.

Now, we describe a weaker algorithm A for MLBS in UDG
which produces a broadcast schedule with latency R + 51r =
R+ O (log n), and will later be used to develop the algorithm
PBS. For each integer i and j, set tij = i + 351 (r − j).
Compute the radius R, a canonical BFS tree T and the
associated ranking. Let r be the rank of the source node s.
For each 0 ≤ i < R and 0 ≤ j ≤ r, set Vij to be the
set of nodes in layer i with rank j , and V ′

ij to be the set
of their children. Let Gij be the subgraph of G induced by
Vij ∪ V ′

ij . Each subgraph Gij is a basic pipelined scheduling
unit. Within Gij , a session Sij sends the message from Vij

to V ′
ij as follows. Denote by W0 the set of parents of nodes

in V ′
ij with rank j. Apply the algorithm ILBS to generate a(

Vij , V
′
ij \ Inf (W0)

)
-schedule 〈W1,W2, · · · ,Wl〉. Then, for

each 0 ≤ k ≤ l, all nodes in Wk transmit in the time-slot
tij + 3k.

The next theorem asserts the correctness of the algorithm
EBS and establishes an upper bound on the latency of the
broadcast schedule produced by EBS.
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Fig. 4. The transmission scheduling of Sij ’s.

Theorem 5: The algorithm A is correct and it produces a
broadcast schedule of latency at most tR,0 = R + 51r.

Proof: Each Sij starts at the time-slot tij and ends no
later than the time-slot tij + 48 by the property of ILBS (see
Figure 4). If j = 0, then Sij either has no transmissions or
has all the transmissions only on the time-slot tij . We claim
that that each Sij ends before the time-slot tR,0. Note that tij
strictly increases with i and decreases with j. If j > 0, then
Sij ends no later than the time-slot tij + 48 = ti,j−1 − 3 ≤
tR−1,0 − 3 < tR,0. If j = 0, then Sij ends no later than the
time-slot tij ≤ tR−1,0 < tR,0. Thus, our claim is true, and
consequently the latency is at most tR,0 = R + 51r.

Now, we show that if (i, j) �= (i′, j′), then Sij and Si′j′

do not interfere with each other. If |i − i′| > 2, the claim
holds due to far separation. If 0 < |i − i′| ≤ 2, then the
claim holds due to the interleaving of the transmissions. If
i = i′, then j �= j′. By symmetry, assume that j < j′. Then
tij = ti,j+1 + 51 ≥ ti,j′ + 51 = (ti,j′ + 48) + 3. This implies
that the session in Sij′ ends at least 3 slots before Sij starts
. Next, we prove by induction on that by all nodes in Vij are
already informed before the time-slot tij . This is true if i = 0.
Assume that i > 1 and consider a node v ∈ Vij . Let u be its
parent in T and j′ be the rank of u. Then, j′ ≥ j. If j′ = j,
then v is informed in Gi−1,j in the time-slot ti−1,j = tij − 1
by the property of T . If j′ > j, then v is informed in Si−1,j′ ,
which ends before by Sij starts. Therefore, the algorithm A
is correct.

Finally, we are ready to describe the algorithm PBS. We
first construct a BFS tree T of G rooted at s, and compute
the depths of all nodes in T and the radius R of G. Then we
construct the MIS U of G induced by the increasing order of
depth as the set of dominators. Compute the shortest-path tree
T ′ from s to all other dominators. In other words, T ′ is the
minimal subtree of T spanning the dominators. Let V ′ be the
set of nodes in T ′, and G′ be the subgraph of G induced by
V ′. The broadcast schedule consists of two phases. The first
phase is a broadcast schedule in G′ from s produced by the
algorithm A. The second phase schedules the transmissions
by the dominators in the following way: Compute a partition
of U into 2-IS’s Ui for 1 ≤ i ≤ c with c ≤ 12. Then, the
dominators transmit in the sequence 〈U1, U2, · · · , Uc〉.

Theorem 6: The algorithm PBS is correct and it produces
a broadcast schedule of latency R + O (log R).

Proof: The correctness of PBS is trivial. Next, we show
that the broadcast schedule produced by PBS has latency
R + O (log R). Since the second phase of the broadcast
schedule takes at most 12 time-slots, it is sufficient to show
that the second phase of the broadcast schedule has latency
R + O (log R). Denote by R′ the radius of G′ with respect to
s. Then R′ is equal to either R or R− 1. By the folklore area
argument, |U | = O

(
R′2). Since the shortest-path between

s and each dominator contains at most R′ nodes other than
s, |V ′| ≤ |U | · R′ + 1 = O

(
R′3). By Theorem 5, the

broadcast schedule in G′ from s produced by A has latency
R′ + O

(
log O

(
R′3)) = R + O (log R).

VI. DISCUSSIONS

In this paper, we present three progressively improved
approximation algorithms BBS, EBS, and PBS for MLBS
in UDGs. They produce broadcast schedules with latency at
most 24R − 23, 16R − 15, and R + O (log R) respectively.
In the broadcast schedules output by BBS and EBS, the
number of transmitting nodes is no more than eight times the
size of a minimum connected dominated set [15]. In addition,
EBS eliminates the transmission redundancy in BBS. While
the algorithm PBS may produce shorter broadcast schedule,
it cannot guarantee that the number of transmitting nodes is
within a constant factor of the minimum. If we the subgraph
of G induced by the dominators and connectors constructed
in EBS as the graph G′ used in PBS, then such modified PBS
outputs a broadcast schedule of latency 2R + O (log R) and
ensures that the number of transmitting nodes is within the
constant factor of the minimum.

A generalization to the problem MLBS is Minimum-
Latency Multi-Source Multicast Scheduling which seeks a
shortest (X,Y )-schedule for any be two disjoint subsets of X
and Y of a UDG G. All the three approximation algorithms
can be extended in the straightforward manner for approximat-
ing this general problem with similar approximation factors.
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