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Abstract-We are in an age where people are paying increasing 
attention to energy conservation around the world. The heating 
and air-conditioning systems of buildings introduce one of the 
largest chunk of energy expenses. In this paper, we make a key 
observation that after a meeting or a class ends in a room, the 
indoor temperature will not immediately increase to the outdoor 
temperature. We call this phenomenon Thermal Inertia. Thus, if 
we arrange subsequent meetings in the same room; than a room 
that has not been used for some time, we can take advantage of 
such un-dissipated cool or heated air and conserve energy. 

We develop a green room management system with three 
main components. First, it has a wireless sensor network to 
collect indoor, outdoor temperature and electricity expenses 
of the air-conditioning devices. Second, we build an energy­
temperature correlation model for the energy expenses and 
the corresponding room temperature. Third, we develop room 
scheduling algorithms. Our system is validated with real deploy­
ment of a sensor network for data collection and thermodynamics 
model calibration. We conduct a comprehensive evaluation with 
synthetic room and meeting configurations. We observe a 30% 
energy saving as compared with the current schedules. 

I. INTRODUCTION 

There is a huge interest in building a green world recently. 
The key focus is energy conservation and energy efficiency. 
Computer scientists are actively contributing our effort in two 
directions, 1) improve energy efficiency of computing systems, 
and 2) apply computing systems (e.g., sensor networks) for 
energy conservation in broader disciplines. 

For the first category, many studies are working on ener­
gy efficiency for data centers [5][10][11][13], a top energy 

consumer among all computing devices. While the energy 
expenses of computing industry are increasing fast in recen­
t years, the largest portion of energy consumption is still 
dominated by such areas as commercial buildings, residential 
usage, transportation, manufactory industry [14]. Especially, 

for regions where the Industrial sector is small, the electricity 
consumption by commercial buildings can be more dominat­

ing; for example in Hong Kong, 65% of electricity in 2008 

goes to the commercial sector [3]. 

The heating and air conditioning of commercial buildings 
has the largest chunk in energy expenses. In 2008 the Office 

Segment of Hong Kong, 54% electricity goes to space condi­
tioning (i.e., air-conditioning), 14% goes to lighting, 13% goes 

to office equipments such as computers [3]. Monitoring the 
conditions of the buildings and efficient utilization of heating, 
ventilation, and air conditioning (HVAC) have been a long 
time topic[6][8][9]; and advanced commercial buildings can 
automatically turn off lights and HVAC systems of rooms 
when humans are not in presence. Nevertheless, we notice 

that even if the heating or air-conditioning of a room is turned 
off, the heat or the cool air will not immediately dissipate. 

We call this phenomenon Thermal Inertia. We consider the 
un-dissipated cool or heated air a valuable resource that can 
be utilized, so that future usage of this room can take this 
advantage without re-heating or re-cooling the room. 

Based on this observation, we develop an energy conser­

vation room management system, such that the allocation of 
the rooms of a building (or classrooms in campus) is based 
not only on a schedule (e.g., meeting time, room capacity), 
but also on the existing heating or air-conditioning conditions 
of the rooms. In the rest of the paper, we will only use air­

conditioning as an example to ease our presentation. 
Clearly, our room management system falls into an opti­

mization problem. It is not straightforward, however to know 

how much energy will be saved if a room is scheduled. As 
an example, consider a recommended office temperature to be 

26°C (79°F). Assume a room was used 20 minutes ago, and its 
current temperature is 29°C (84°F). The outdoor temperature 
is 37°C (99°F). If we schedule a meeting 5 minutes later in 
this room, how much electricity is needed to re-cool it to the 
targeted temperature 26°C (79°F)? 

This is affected by such factors as the room specifics 

(size, wall materials, etc), indoor and outdoor temperature, 
the targeted temperature etc. A key difficulty is to build a 
correlation among these factors. The more accurate this corre­

lation model is, the better the scheduling algorithm we can run 
on top of it. Building this model does not solely fall into the 
computer science domain. Advanced thermodynamics theories 
may be needed. We believe that in the sensor network research 
today, it is very common that cross-discipline understandings 

are required; for example, it is shown that knowledge on 
sensor placement quality in the sense of civil engineering 
can make the structural health monitoring system built by 

computer scientists more plausible [4]. A careful management 
on the degree of understanding on different disciplines is 

very important. In our work, we choose to apply rudimental 
thermodynamics theory to build an initial energy-temperature 
model. We then use sensor data to calibrate this model. We 
validate the effectiveness of such design by a real experiment. 

Another difficulty is that we do not have off-the-shelf 
components for our sensor network. We thus extend Imote2 to 
an electricity-meter in order to record electricity usage of air­
conditioners. On top of these, we develop room scheduling 

algorithms. We first develop an optimal algorithm for a special 
case where all rooms are equal. For the general case, we 

develop two efficient heuristics. 
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Besides a real world system deployment for model val­
idation and data collection, we evaluate our system with 
comprehensive simulations with synthetic room configurations 
and meeting schedules. We observe that we can save 30% of 
electricity as compared to the synthetic data. 

II. ROOM MANAGEMENT SYSTEM: AN OVERVIEW 

We discuss some high level system choices. As a first 
work, we confine our study that given the schedules, how 

the classes/meetings should be arranged. We leave a detailed 
investigation of online room management as future work. 

To accurately schedule rooms and maximally conserve 

energy, an important part of our system is that we need to build 
an energy-temperature correlation model so that the room 
scheduling algorithm can run on top of it. More specifically, 
we need a function such that given the current temperature and 
room environment configurations, the energy to be consumed 

to achieve the target temperature. There are two extreme 
ways for building such model. First we can apply advanced 
thermodynamics theories and material sciences to explicitly 
compute such function. Second, we can build a database with 
entries of the environment parameters (e.g., indoor tempera­
ture, outdoor temperature, and targeted temperature) and the 

corresponding energy consumptions. In the room scheduling 
algorithm, whenever an estimation on the energy expenses is 
needed, an entry in this database that has the most similar 

environmental configuration can be extracted. 
The first choice falls into the expertise of Building and 

Service Engineering. We have consulted experts of BSE from 
both academia and industry. While there are sophisticated tools 

such as EnergyPlus [1], they admit that it is difficult to build 
a model purely from theory. For the second choice, to build 
the correlation database, a sensor network can be deployed 
to collect such data as temperature and energy expenses. The 
accuracy depends on the granularity of the data collection. The 
more samples the database has, the more accurate to find the 

energy expenses with a similar environmental configuration. 
After some studies on physical laws on heat conduction and 
some field experimental validation, our choice finally falls 

into a mixture of the two extremes. We use an initial model 
following rudimental Fourier's law of heat conduction. In this 
model, some parameters are difficult to compute from theory. 

These parameters are invariants, however, e.g., only affected 
by the materials of the room. Thus we inversely calibrate the 
parameters of this model using the data collected by a sensor 
network. The high-level framework of our system is in Fig. 1. 

We also want to clarify that in this paper, we use electricity 
expenses as our optimization objective. For end-users, having 
their electricity bills cut directly means money saving. 

III. SENSOR NETWORK DESIGN 

For a building, or a campus, there are multiple rooms. For 
each room, we need to build an energy-temperature correlation 
model (detail in Section IV) to be used for the scheduling 
algorithm (details in Section V). As such, a sensor network 
should be deployed in each room. In this sensor network, 

Energy-temperature 
correlation model 

C Room Scheduling Algorithm 
'-------- ---' 

Fig. I: The framework of the room management system. 
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Fig. 3: Experiment Environment 

there should be a sensor to record electricity usage to air­
conditioning the room. We also need to record the temperature. 
As the temperature in different locations of the room may 
not be uniform, a set of temperature sensors is suggested. We 
would like to comment that the sensor network is only used for 
the construction of the energy-temperature correlation model 
for each room. After the model is built, we can predict the 
energy consumption using the model. Since the sensor network 
needed in each room is the same, in practice, we can deploy 
a sensor network and build the energy-temperature correlation 
model room-by-room. 

A. Design of an Electricity-meter 

Our system needs to estimate the energy consumption for 
air-conditioning the room to a targeted temperature. We extend 

Imote2 with a PowerBay SSC VC to record electricity current 
(see Fig. 2). PowerBay SSC VC also becomes a power supply 

to Imote2. In operation, PowerBay SSC VC will record the 
power (in Watt) and such data will be digitized and output to 
Imote2. The data can then be transmitted out by Imote2. 

B. Development of Sensor Network 

We implement our sensor system in TinyOS, and use Collect 

Tree Protocol (CTP) [2] for data routing among sensor nodes. 
The temperature and electricity data are sent to a base station 

node attached to a laptop. The lifetime of our sensor system 
is determined by TelosB nodes if they use battery power. 
In practice, every node gets the temperature and transmits 

32 bytes every lO seconds; The projected lifetime of our 
sensor network can thus reach 2000 hours. We find that this 
is far enough for us to collect data and calibrate the energy­
temperature correlation model. 

IV. DESIGN OF ENERGy-TEMPERATURE CORRELATION 

MODEL AND EXPERIMENTAL VALIDATION 

In this section, we develop a model where the electricity 
is a function of (a room, current indoor/outdoor temperature, 
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targeted temperature). Our idea is based on the observation 
that thermodynamic factors of a room are invariants. They 
are determined by their physical materials and do not change 

(or change ignorably) with outside factors. Therefore, for 
each real-world room, we can build a virtual perfect room 

to mimic it. For this virtual perfect room, we build an 
energy-temperature correlation model using Fourier's law of 
heat conduction with the set of invariants undetermined. To 

compute these invariants, we collect a set of electricity and 
temperature data by our sensor network. We then inversely 
derive these invariants. After fitting these invariants back to 

the model, we can compute electricity usage in the room given 
any indoor/outdoor temperature and targeted temperature. 

A. Energy-Temperature Correlation Model 

We use a virtual perfect room where I) The room space 
is enclosed, i.e., no air exchange with other spaces; 2) All 
walls, ceiling and floor are made of materials with the same 
thermal conductivity and have identical thickness; 3) All 
outside temperature of the room is same and is constant. We 
also assume 1) the electrical power P of the air conditioner 
is constant when it is in operation, and is zero if it stops; and 

2) the electricity-energy transformation rate r is a constant; 
this indicates the effective energy Pe injected into a room per 
second when an air-conditioner is in operation is constant. 

Let T be the indoor temperature. Let To be the temperature 
outside the room. Let Q be the heat transfer rate from outdoor 
to the room. Let k be the thermal conductivity of the material. 

Let A be the total area of the six walls. Let L be the thickness 
of a material. According to Fourier's law [7], we have Q = 

kt (To - T). Let m be the mass of the air of the room. Let C 
be the heat capacity of the air of the room. The temperature 

changing rate �I of the room [12] is �I = Q:;{). Let A = 

kt . We say A as the conductivity of this specific room. We 
obtain the following function for indoor temperature change: 

T(t) = To + Pe X � + Coe- ':ct (I) 
Here Co is an initialization parameter determined by T(O), 

the temperature at time 0: 

C - { T(O) - To; air-conditioner not in operation (2) 
a - T(O) - To - �e; air-conditioner in operation 
The energy-temperature correlation model is Eq.1 and Eq.2. 

We consider A as an invariant, because it is related to the 
physical properties of the materials. Therefore, we calibrate 
this parameter by sensor data. We also calibrate To. We 
emphasize that To is artificial that approximates the overall 
outdoor situation of all walls. Though one wall may have a 

bigger change in outdoor temperature, To does not change 
abruptly. We will show that this is true in our experiments. 

We use the sensor data to inversely compute the invariants 
A, r and semi-invariant To. We use )., To and r to denote them. 
Then we fit )., To and r back into Eq.1 and Eq.2 to fulfill our 
model. 

The operation of a room can be cut into three periods: 1) 
the vacancy period (VP); 2) the re-cooling period (RP); and 3) 
the maintaining period (MP). The energy-temperature function 

Fig. 4: Experiment Results 
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Fig. 5: Data selection for Individu- Fig. 6: Predicted T vs. temperature 
alCaIO data of Node 5. 

of VP and RP are different (see the two phases of Eq.1 and 
Eq.2). MP is a combination of short periods of VP and RP. 

Through the sensor network, we will collect a temperature 

sequence for each sensor node i and an electricity sequence. 

For each of these sequences, we identify periods of VPs, 
RPs and MPs. For each node i, we then apply Algorithm 

IndividualCalO to calibrate ).i, TOi and ri. The basic idea is 
we select three points in VP to calculate ).i, TOi (See Fig.S); 
then select two points in RP and put the calculated ).i, TOi into 
the two equations to calculate ri. As ).i, TOi and ri computed 
from each sensor i are not fully equal. We apply Algorithm 

ModelCalO to get the final )., To and r. The basic idea is to 
remove outliers by setting an upper error bound E: and compute 
a weighted average of all ).i, TOi and ri. 

B. Experiment Validation 

We conduct a real experiment to validate our model. Our 

experiment was conducted in a hotel room in Shenzhen, 
China. The configuration of the room and sensor network is 
shown in Fig. 3. There were ten sensors to collect temperature 
and an electricity-meter connected to the air-conditioner. Our 
experiment lasted one day from March 2nd to 3rd 2011. We 
periodically turned on and off the air-conditioner(AC). The 

result is shown in Fig. 4. The bottom part of Fig. 4 shows 
the temperature of four indoor sensors and the outdoor sensor. 

The upper part of Fig. 4 shows the corresponding output power 
level of the AC. Fig. 4 indicates the weak connection between 
the outdoor temperature (No. 10) and the indoor temperature. 

After getting ()., To, r) = (58 . 72, 25 . 38, -0 . 32) ,  we fit them 
back to our model. We draw a predicted temperature curve in 

Fig. 6 by applying the same initial temperature, the same ener­
gy sequence. Compared with the real temperature sequence of 
Node 5. We see that the predicted temperature is fairly close 

to the real temperature sequence. Thus we conclude that our 
model can be used to estimate future room electricity usage. 

V. ROOM SCHEDULING ALGORITHM 

With the energy-temperature correlation model, we are 

prepared to develop the room scheduling algorithm. We have 
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searched existing room scheduling algorithm in literature. To 
the best of our knowledge, we did not find any standard 
algorithm. We believe ad-hoc scheduling is used because of 
two reasons: 1) the number of rooms is not always tight, 2) 
there is no optimization objective, only to fit the meetings in. 
As such, advanced algorithms might not be necessary. 

We formally state the problem. Given a set R of n rooms 
and a set M of m meetings to be scheduled. A meeting 
Mi E M is associated with a time interval (bi, ei) and a target 

temperature Tti, where bi, ei represent the start time and the 
end time of the meeting respectively. Each meeting Mi has a 

capacity requirement Ci. Each room Rj E R has a capacity 

Cj. For Rj that can hold Mi, we must have Ci < Cj. Every 
room Rj is associated with a function Ej(Tt, t) showing the 
energy needed to maintain the target temperature Tt for t and 
a function REj(Tt, t) showing the energy needed to re-cool 
the room to Tt where last meeting has ended for t. Ej(Tt, t) 
and REj(Tt, t) can be computed by our energy-temperature 
correlation model. We want to find a schedule S consisting 
a set of time intervals, one for each meeting. The objective is 

to reduce the total energy of S. 
We first develop an optimal algorithm when the rooms are 

uniform. For the general problem with non-uniform rooms, we 
develop two fast heuristics for different scenarios. 

A. Rooms with Uniform Capacity 

Our algorithm Energy-Aware Room Scheduling (Uniform), 

Energy-RS(Uniform) for short, is a greedy-based algorithm. 
We sort the meetings in ascending order based on their starting 
times. We then group the meetings with the same starting time. 
Our algorithm performs in iterations and in each iteration, we 
handle a group of meetings with the current earliest starting 
time. We allocate these meetings to the rooms that have ending 

times that are closest these meetings. Due to page limits, the 
pseudo-code of our algorithm is in [15]. 

Theorem 1: The total energy consumption by Algorithm 
Energy-RS(Uniform) is minimum. 

Proof" Due to page limitation, please refer to [15] • 

Theorem 2: The total number of rooms scheduled by Al­
gorithm Energy-RS(Uniform) is minimum. 

Proof" Due to page limitation, please refer [15]. • 

Existing ad-hoc meeting scheduling algorithms usually do 
not bother if using more rooms. This theorem indicates that 
Algorithm Energy-RS (Uniform) will select the smallest num­
ber of rooms. This is useful for the general algorithm with 
non-uniform rooms; since we try not to schedule meetings 
with small capacity requirements into oversized rooms. 

B. Rooms with Non-Uniform Capacity 

1) Energy-RS(): We use Algorithm Eenergy-RS (Uniform) 
as a building block to develop algorithm Energy-Aware Room 

Schedule (Energy-RS()). We outline our basic idea. Assume 
the number of different capacities of all rooms is g. We 
classify the rooms into different groups R(,h, RQ2"'" RQg 
according to their capacity. Let GCk be the room capacity 
of RQk. We have I::IRj E RQk, Cj = GCk. Assume 

(a) (b) 

Fig. 7: Total energy expense for re-cooling the rooms as against to the number 
of meetings; rooms with uniform capacity. (a) meeting length: option 01. (b) 
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(a) (b) 
Fig. 8: Total energy expense for re-cooling the rooms as against to the number 
of meetings; rooms with non-uniform capacity. (a) meeting length: option 01. 
(b) meeting length: option 02 

R�h, RQ2, .. " RQg is sorted in ascending order according 
to their capacity GCk. We classify the meeting into different 

groups MQ1, MQ2,' .. , MQg according to the capacity re­

quirements of the meetings. For a meeting Mi with a capacity 
requirement Ci, it is grouped into MQk where GCk-l < Ci :::; 
GCk. As an example, assume the room capacities of all rooms 

are 20, 40, 60. The meeting requirements are 17, 18, 34. We 
thus classify the meetings with capacity requirements of 17 

and 18 into the group of 20 and the meeting with capacity 
requirement of 34 into the group of 40. 

We schedule meetings of MQk into room group RQk in 
ascending order. For each group pair (MQk, RQk)' we apply 
Algorithm Energy-RS (Uniform). From Theorem 2, we know 
that Algorithm Energy-RS (Uniform) uses the smallest number 

of rooms. Thus, the chance that a meeting with small capacity 
requirement is pushed into an oversized room is minimized. 
The complexity of Algorithm Energy-RSO is nm. 

2) TimeUr-RS(): In our framework, each meeting has a 
capacity requirement and a meeting time requirement. This 

is the case for many scenarios. For some cases, however, 
the meeting time can be determined by the room scheduling 
system. We conjecture this is a general case since there is no 
optimization goal for many meeting schedules; only to fit all 
the meetings in without meeting-meeting, room-room conflict. 

We propose a simple greedy-based algorithm which allows 
reassignment of meeting times, we call Time Unrestricted 
Energy Aware Room Scheduling (TimeUr-RS()). TimeUr-RSO 
is greedy by sorting meeting capacities in descending order 
and then fitting into the rooms. This algorithm can be used 
to provide suggestions for the decision makers, in case there 
is no compulsory reason to have strict meeting times. In our 

simulation, TimeUr-RSO is used as a performance comparison. 

VI. PERFORMANCE EVALUATION 

A. Simulation setup 

We evaluate our system in a set of synthetic room arrange­

ments we generate semi-randomly. We consider rooms with 
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uniform capacity and non-uniform capacity separately. 

For the uniform case, the default room capacity is 100 seats 

and the total number of rooms is 150. The meeting times are 
randomly generated in range [S:OO, 22:00]. The lengths of the 
meetings are randomly chosen from two groups of options, 
01 = [1,1.5,2,2.5,3], O2 = [1,2,3]. For the non-uniform 
capacity case, we have eight different types of rooms. 

The numbers of different types of rooms follow a poisson 
distribution with a mean of 3. The capacity requirement for 

the meetings follows a poisson distribution with a mean of 3. 

The default values of our simulation are To = 25°C, f = 

-0.32 for all rooms. We set Tt = 20°C for all meetings. 

We compare our algorithm with an ad-hoc room scheduling 
algorithms (denoted as RS) that can satisfy the meeting time 
and room capacity requirements. 

We choose our primary performance metric as the total 
energy needed to re-cool the rooms to the target temperature 

for all rooms and all meetings. Note that we exclude the energy 
needed during the classes, which we cannot conserve. This 
metric is stable for all room scheduling algorithms. 

B. Simulation results 

In Fig. 7, we show the total energy for re-cooling the 

rooms for different algorithms. In Fig. 7 (a), we see that the 
re-cooling energy needed for ad-hoc room scheduling RS is 
always greater than our algorithm Energy-RS and TimeUr-RS. 

This is not surprising as the RS only satisfies the meeting 
requirements. When the number of meetings increases, we 
can see that all three algorithms need more energy in re­
cooling the rooms. This is because there are more meetings 
and more rooms to be used. RS increases much faster than our 
algorithms, however; as both of our algorithms have taken the 
energy conservation into consideration. More specifically, we 
can see that if there are SOO meetings to schedule, the total 
electricity needed by RS, Energy-RS and TimeUr-RS is 503 
kWh, 214 kWh, and 141 kWh respective. We can see that we 

have reduced the electricity consumption for more than half. 
If the meeting time is not restricted, we can make a suggestion 
on meeting times so as to reduce the electricity consumption 
to less than one third. 

We then see Fig. 7 (b) where the meeting time is randomly 
chosen from O2• We see similar trend as that in Fig. 7(a). 
We also see that the less number of choices that we have in 
meeting time, the greater the benefit we gain. This is because 

if there is a smaller number of meeting length options, there is 

also a smaller number of small time segments that we cannot 
fit the meetings in due to more irregular meeting time length. 
On the contrary, we do not see improve for RS as its schedule 
is ad-hoc. 

We then study the general case where rooms are of non­

uniform capacity. We show the results in Fig. S. We see that 

the gain of Energy-RS is smaller. This is because, in each type 
of room capacity, we have a much smaller number of meeting 
choices. If one takes a closer look at Fig. 7 (a), we can see that 
the best performance arrives when the number of meetings is 
SOO. When the number of meetings is 100, or 50, the gain is 

smaller. In our general case, we have S different types of rooms 
resulting in a smaller number of meetings in each type. Thus, 
the gain is smaller. We can summarize that the more meetings, 
the more choices; leading to more re-cooling energy needed; 
and a better performance of Energy-RS as compared to RS. 

VII. CONCLUSION 

In this paper, we observed Thermal Inertia; that is, after 
a meeting ends in a room, the cool air will not immediately 
dissipate. We took such advantage and designed a new room 
management system for energy conservation. We extended 
sensor hardware and designed a two tier sensor network to 

monitor necessary information such as indoor/outdoor tem­
perature and electricity expenses. We developed an energy­
temperature correlation model and validate the model with 
our sensor network in real-world experiment. We further de­

veloped efficient room scheduling algorithms. Comprehensive 
simulations verified the effectiveness of our system. 
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