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Abstract—For wireless link scheduling in multi-channel multi-
radio wireless networks aiming at maximizing (concurrent)
multiflow, constant-approximation algorithms have recently been
developed in [11]. However, the running time of those algorithms
grows quickly with the number of radios per node (at least in
the sixth order) and the number of channels (at least in the
cubic order). Such poor scalability stems intrinsically from the
exploding size of the fine-grained network representation upon
which those algorithms are built. In this paper, we introduce a
new structure, termed as concise conflict graph, on the node-level
links directly. Such structure succinctly captures the essential
advantage of multiple radios and multiple channels. By exploring
and exploiting the rich structural properties of the concise conflict
graphs, we are able to develop fast and scalable link scheduling
algorithms for either minimizing the communication latency or
maximizing the (concurrent) multiflow. These algorithms have
running time growing linearly in both the number of radios
per node and the number of channels, while not sacrificing the
approximation bounds.

Index Terms—Link scheduling, multi-channel multi-radio, ap-
proximation algorithms.

I. INTRODUCTION

With the rapid technology advances, many off-the-shelf

wireless transceivers (i.e., radios) are capable of operating

on multiple channels. For example, the IEEE 802.11 b/g

standard and IEEE 802.11a standard provide 3 and 12 channels

respectively, and MICA2 sensor motes support more than 50

channels. The rapidly diminishing prices of the radios has

also made it feasible to equip a wireless node with multiple

radios. Providing each node with one or more multi-channel

radios offers a promising avenue for enhancing the network ca-

pacity by simultaneously exploiting multiple non-overlapping

channels through different radio interfaces and mitigating

interferences through proper channel assignment. However,

it is quite challenging to effectively utilize multiple channels

and/or multiple radios to maximize throughput capacity. The

major technical obstacle stems from the disruptive change

of the network geometry in multi-channel multi-radio (MC-

MR) wireless networks: the geometric closeness now does not

necessarily imply interference, for it is possible for a pair of

links to transmit concurrently over different channels without

conflict even if they are very close to each other. As the result

of such non-locality nature, it is even unknown whether a set of

links in a MC-MR wireless network can transmit at the same

time or not may be decidable in polynomial time. In contrast,

the same decision problem in single-channel single-radio (SC-

SR) wireless networks is easily solvable in polynomial time.
In order to overcome the technical obstacle caused by

the non-locality nature, a fine-grained network representation
of the MC-MR wireless networks was introduced in [11].

Consider a MC-MR wireless network in which 𝑉 is the set of

wireless nodes, 𝐴 is the set of direct node-level communcation

links, each node 𝑣 has 𝜏 (𝑣) radios, and there are 𝜆 non-

overlapping channels. In its fine-grained network represen-

tation, each communication link is encoded by an ordered

quintuple specifying the transmitting node, the receiver node,

the radio at the transmitting node, the radio at the receiving

node, and the channel. Specifically, for each node-level link

(𝑢, 𝑣) in 𝐴, we make 𝜆 ⋅ 𝜏 (𝑢) ⋅ 𝜏 (𝑣) replications (𝑢, 𝑣, 𝑖, 𝑗, 𝑘)
for 1 ≤ 𝑖 ≤ 𝜏 (𝑢), 1 ≤ 𝑗 ≤ 𝜏 (𝑣), and 1 ≤ 𝑘 ≤ 𝜆. A

replication (𝑢, 𝑣, 𝑖, 𝑗, 𝑘) always utilizes the 𝑖-th radio at 𝑢
and the 𝑗-th radio at 𝑣 over the 𝑘-th channel. Each of these

replications is referred to as a fine-grained communication

link. A set 𝐼 of these replicated links can transmit at the same

time if and only if (1) all replication links in 𝐼 are radio-

disjoint, in other words, no pair share a common radio, and (2)

for each channel 𝑘, all the replication links in 𝐼 transmitting

over channel 𝑘 are conflict-free. The first condition can be

easily verified in polynomial time, and the second condition

can be verified in the same way as in SC-SR wireless networks.

Therefore, the decision problem whether a set of replication
links can transmit at the same time can now be solvable in

polynomial time.
The above fine-grained network representation allows for

the conventional definition of the conflict graph of the repli-

cated links. By leveraging the general techniques developed

in [10], Wan et al. [11] obtained constant-approximation

algorithms for the following link scheduling problems under

the 802.11 interference model or the protocol interference

model:

∙ Shortest Weighted Link Schedule (SWLS): Given a set

of traffic demands on the replicated links, find a shortest

fractional schedule of replicated links for these traffic

demands.
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∙ Maximum Multiflow (MMF): Given a set of end-to-end

unicast communication requests, find a link schedule of

length at most one which can carry on the maximum

multiflow of these unicast requests.

∙ Maximum Concurrent Multiflow (MCMF): Given a set

of end-to-end unicast communication requests together

with their traffic demands, find a link schedule of length

at most one which can carry on the maximum concurrent

multiflow of these unicast requests.

A major drawback of those approximation algorithms is the

poor scalability of the running time with respect to the number

of radios and the number of channels. Those approximation

algorithms for both MMF and MCMF involves solving a

linear program with a huge number of variables. In fact, for

each unicast request, there is a link-flow variable associated

with each replicated link. Thus, the total number of variables

in the linear program is the number of unicasts times the

number of replicated links. On the other hand, the running

time taken by the Karmarkar’s interior point method for linear

programming, the fastest one known so far, grows in the cubic
order of the number of variables. Consequently, the running

time of those algorithms grows quickly with the number of

radios per node (at least in the sixth order) and the number

of channels (at least in the cubic order). Such running time

would be very slow even for a MC-MR wireless network of

moderate size. For an instance, consider a MC-MR wireless

network with 256 links, 4 radios per node, and 16 channels,

and with 16 unicast requests, the number of link-flow variables

is already

16× 4× 4× 16× 256 = 220,

Thus, solving the LP with a mega (220) variables has a running

time in the exa (260) order.

Another limitation of the algorithmic studies in [11] on

SWLS is the requirement on the traffic demands given on

the replicated links, rather than on the node-level links. The

works in [11] didn’t explicitly address how to compute a

link schedule for a given set of traffic demands on the node-
level links. A viable two-phased approach is to first split the

given node-level link demands to an appropriate set of traffic

demands on the replicated links by solving a linear program

similar to MMF or MMCF, and then apply the algorithms

developed in [11] for SWLS to the resulting traffic demands

on the replicated links to compute a link schedule. However,

the linear program in the first phase also has variables as many

as the replicated links, and hence also suffers from the poor

scalability as discussed in the previous paragraph.

The main objective of this paper is to develop scalable
approximation algorithms for MMF, MMCF, and the variant

of SWLS with the traffic demands given on the node-level
links, while not sacrificing the approximation bounds. For this

purpose, we introduce a terse structure, termed by concise
conflict graph, on the node-level links directly. Such structure

succinctly captures the essential advantage of multiple radios

and multiple channels. We will explore the rich structural

properties of the concise conflict graphs. By exploiting these

properties of the concise conflict graphs, we are able to de-

velop scalable link scheduling algorithms for MMF, MMCF,

and the variant of SWLS with the traffic demands given on the

node-level links. These algorithms have running time growing

linearly in both the maximum number of radios at individual

nodes and the number of channels, while are still able to

achieve the same approximation bounds as those achieved in

[11].

The remainder of this paper is organized as follows. In

Section II, we introduce the definition of concise conflict graph

and explore its fundamental structural properties. In Section

III, we develop a first-fit link scheduling algorithm for the

variant of SWLS with the traffic demands given on the node-

level links. In Section IV, we give two polynomial approximate

capacity subregions defined on the node-level links directly.

In Section V, we present the approximation algorithms for

MMF and MMCF. In Section VI, we review the related works

on link scheduling in MC-MR wireless networks. Finally, we

conclude this paper in Section VII.

II. CONCISE CONFLICT GRAPH

Consider an instance of MC-MR multihop wireless network

with a set 𝑉 of networking nodes and a set 𝐴 of node-level

communication links. Each node 𝑣 has 𝜏 (𝑣) radios, and there

are 𝜆 non-overlapping channels. Two links in 𝐴 are said to

have a conflict if they cannot transmit at the same time over

the same channel. Furthermore, a conflicting pair of distinct

links in 𝐴 are said to have primary conflict if there share

one common end, and secondary conflict otherwise. For the

sake of convenience, each link is said to have a self-conflict
with itself. The concise conflict graph of the MC-MR wireless

network is the edge-weighted graph 𝐺 on 𝐴 in which there

is an edge between each conflicting pair of links (𝑎, 𝑏) whose

weight denoted by 𝑐 (𝑎, 𝑏), is defined as follows:

∙ If 𝑏 = 𝑎 (i.e., self-conflict), then

𝑐 (𝑎, 𝑏) = 1−
(
1− 1

𝜏 (𝑢)

)(
1− 1

𝜏 (𝑣)

)(
1− 1

𝜆

)

where 𝑢 and 𝑣 are the two end-nodes of 𝑎.

∙ If 𝑎 and 𝑏 have a common endpoint 𝑢 (i.e., 𝑎 and 𝑏 have

a primary conflict), then

𝑐 (𝑎, 𝑏) = 1−
(
1− 1

𝜏 (𝑢)

)(
1− 1

𝜆

)
.

∙ If 𝑎 and 𝑏 have the secondary conflict, then

𝑐 (𝑎, 𝑏) =
1

𝜆
.

Note that 𝑐 (𝑎, 𝑏) = 𝑐 (𝑏, 𝑎). Let 𝐸 denote the set of edges

in 𝐺, and ℐ denote the collection of the independent sets in

𝐺. In other words, ℐ is the collection of the subsets of 𝐴
which can transmit successfully at the same time over the same

channel. Note that 𝐺 can be regarded as a generalization of the

conventional conflict graph of the underlying SC-SR wireless

network by adding a self-loop at each link and assigning each

edge a weight specified by the function 𝑐. Thus, ℐ is essentially
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the collection of the independent sets of links in the underlying

SC-SR wireless network.

In this section, we explore the relevant topological prop-

erties of the concise conflict graph. We first introduce some

terms and notations. For each subset 𝐵 of 𝐴, we use 𝐵𝜏,𝜆 to

denote the set of all replications of the links in 𝐵 as described

in the first section of this paper. In particular, 𝐴𝜏,𝜆 is the set

of all replicated links of the links in 𝐴. For any 𝑑 ∈ ℝ
𝐴
+, a

function (or vector) 𝑥 ∈ ℝ
𝐴𝜏,𝜆

+ is said to be split of 𝑑 if for

each 𝑎 ∈ 𝐴,

𝑑 (𝑎) =
∑

𝑒∈{𝑎}𝜏,𝜆
𝑥 (𝑒) ;

if 𝑥 is a split of 𝑑, then 𝑑 is also called the aggregation of 𝑥. We

also distinguish three types of conflicts between a conflicting

pair of replicated links 𝑒 and 𝑒′ in 𝐴𝜏,𝜆:

∙ self-conflict: this happens when 𝑒 = 𝑒′.
∙ primary conflict: this happens when 𝑒 and 𝑒′ share exactly

one common radio.

∙ secondary conflict: this happens when 𝑒 and 𝑒′ are radio-

disjoint but share the same channel, and their node-level

links conflict with each other.

We use 𝐺𝜏,𝜆 to denote the conflict graph of 𝐴𝜏,𝜆. We would

like to emphasize that 𝐺𝜏,𝜆 also contains a self-loop at each

vertex and its edges are unweighted. Let ℐ𝜏,𝜆 denote the

collection of the independent sets in 𝐺𝜏,𝜆. In other words,

ℐ𝜏,𝜆 is the collection of the sets of replicated links in 𝐴𝜏,𝜆

which can transmit successfully at the same time. For any

subset 𝑆 of 𝐴𝜏,𝜆, a subset 𝐼 of 𝑆 is said to be a maximal
independent set of 𝑆 if 𝐼 ∈ ℐ𝜏,𝜆 and for any link 𝑒 ∈ 𝑆 ∖ 𝐼 ,

𝐼 ∪ {𝑒} /∈ ℐ𝜏,𝜆. Consider a link 𝑎 ∈ 𝐴. An independent set

𝐼 ∈ ℐ𝜏,𝜆 is said to be 𝑎-tight if each link 𝑒 ∈ {𝑎}𝜏,𝜆 ∖ 𝐼 has

a conflict with some link in 𝐼 ∩𝑁≺𝐺 (𝑎)
𝜏,𝜆

.

A. Interpretation of Edge-Weights

The lemma below reveals the physical meaning of the edge-

weights in the concise conflict graph.

Lemma 2.1: Suppose that 𝑎 and 𝑏 are pair of conflicting

links in 𝐴. Then, each replicated link of 𝑏 conflicts with exactly

𝑐 (𝑎, 𝑏) portion of replicated links of 𝑎.

Proof: Let 𝑎 = (𝑢, 𝑣) and 𝑒 be a replicated link of 𝑏.
Case 1: 𝑏 is 𝑎 itself. A replicated link of 𝑎 has no conflict

with 𝑒 if and only if it does not share any radio with 𝑒 and

it uses a different channel from 𝑒. The number of replicated

links of 𝑎 which have no conflict with 𝑒 is

(𝜏 (𝑢)− 1) (𝜏 (𝑣)− 1) (𝜆− 1) .

Hence, the number of replicated links of 𝑎 which have conflict

with 𝑒 is

𝜏 (𝑢) 𝜏 (𝑣)𝜆− (𝜏 (𝑢)− 1) (𝜏 (𝑣)− 1) (𝜆− 1)

= 𝜏 (𝑢) 𝜏 (𝑣)𝜆

[
1−

(
1− 1

𝜏 (𝑢)

)(
1− 1

𝜏 (𝑣)

)(
1− 1

𝜆

)]

= 𝜏 (𝑢) 𝜏 (𝑣)𝜆𝑐 (𝑎, 𝑎) .

Case 2: 𝑏 shares exactly one end with 𝑎. By symmetry, we

assume that 𝑢 is the common end of 𝑎 and 𝑏. A replicated link

of 𝑎 has no conflict with 𝑒 if and only if it does not share any

radio at 𝑢 with 𝑒 and it uses a different channel from 𝑒. The

number of replicated links of 𝑎 which have no conflict with 𝑒
is

(𝜏 (𝑢)− 1) 𝜏 (𝑣) (𝜆− 1) .

Hence, the number of replicated links of 𝑎 which have conflict

with 𝑒 is

𝜏 (𝑢) 𝜏 (𝑣)𝜆− (𝜏 (𝑢)− 1) 𝜏 (𝑣) (𝜆− 1)

= 𝜏 (𝑢) 𝜏 (𝑣)𝜆

[
1−

(
1− 1

𝜏 (𝑢)

)(
1− 1

𝜆

)]

= 𝜏 (𝑢) 𝜏 (𝑣)𝜆𝑐 (𝑎, 𝑏) .

Case 3: 𝑏 shares no end with 𝑎. A replicated link of 𝑎 has

conflict with 𝑒 if and only if it it uses the same channel from 𝑒.
Hence, the number of replicated links of 𝑎 which have conflict

with 𝑒 is

𝜏 (𝑢) 𝜏 (𝑣) = 𝜏 (𝑢) 𝜏 (𝑣)𝜆
1

𝜆
= 𝜏 (𝑢) 𝜏 (𝑣)𝜆𝑐 (𝑎, 𝑏) .

Therefore, the lemma holds in all cases.
For any link 𝑎 ∈ 𝐴, 𝑁𝐺 (𝑎) denotes the set of neighbors of

𝑎 in 𝐺. Since 𝐺 has a self-loop at each vertex, 𝑎 is a neighbor

to itself, and hence 𝑎 ∈ 𝑁𝐺 (𝑎). Thus, 𝑁𝐺 (𝑎) consisting of

all links in 𝐴 (including itself) having conflict with 𝑎. For any

link 𝑎, any subset 𝐵 of links, and any 𝑑 ∈ ℝ
𝐴
+, define

Γ (𝐵, 𝑎; 𝑑) =
∑

𝑏∈𝑁𝐺(𝑎)∩𝐵
𝑐 (𝑎, 𝑏) 𝑑 (𝑏) .

we shall interpret the physical meaning of the above expres-

sion.
Consider any 𝑥 ∈ ℝ

𝐴𝜏,𝜆

+ . For any pair of links 𝑒 and 𝑒′

in 𝐴𝜏,𝜆, the 𝑥-weighted interference received by 𝑒 from 𝑒′ is

defined to be 𝑥 (𝑒′) if 𝑒 and 𝑒′ conflict to each other, and 0
otherwise. For any link 𝑒 and and any subset 𝑆 of 𝐴𝜏,𝜆, the

𝑥-weighted interference received by 𝑒 from 𝑆 is defined to

be the total 𝑥-weighted interference received by 𝑒 from all

links in 𝑆. The lemma below presents an interesting invariant
property.

Lemma 2.2: Consider a link 𝑎 and a subset 𝐵 of links.

For any 𝑑 ∈ ℝ
𝐴
+ and any split 𝑥 of 𝑑, the average 𝑥-weighted

interference received by the replicated links of 𝑎 received from

𝐵𝜏,𝜆 is exactly Γ (𝐵, 𝑎; 𝑑).
Proof: Let 𝑎 = (𝑢, 𝑣) and consider any link 𝑏 ∈

𝐵 ∩ 𝑁𝐺 (𝑎). By Lemma 2.1, the total weighted interference

received by all replicated links of 𝑎 from any replicated link

𝑒 of 𝑏 to is

𝜏 (𝑢) 𝜏 (𝑣)𝜆𝑐 (𝑎, 𝑏)𝑥 (𝑒) .

So, the total weighted interference by all replicated links of 𝑎
from all replicated links of 𝑏 is

𝜏 (𝑢) 𝜏 (𝑣)𝜆𝑐 (𝑎, 𝑏) 𝑑 (𝑏) .

Thus, the total weighted interference by all replicated links of

𝑎 from 𝐵𝜏,𝜆 is

𝜏 (𝑢) 𝜏 (𝑣)𝜆
∑

𝑏∈𝐵∩𝑁𝐺[𝑎]𝑐 (𝑎, 𝑏) 𝑑 (𝑏)

= 𝜏 (𝑢) 𝜏 (𝑣)𝜆Γ (𝐵, 𝑎; 𝑑) .
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As 𝑎 has 𝜏 (𝑢) 𝜏 (𝑣)𝜆 replicated links, the lemma holds.

For any subset 𝑆 of 𝐴𝜏,𝜆, we use 1𝑆 to denote the indicator

function of 𝑆. In other words, 1𝑆 (𝑒) is one if 𝑒 ∈ 𝑆 and zero

otherwise.

Lemma 2.3: Let 𝐵 be a non-empty subset of 𝐴, and 𝑑 ∈
ℝ

𝐴
+ be the aggregation of 1𝐼 for some maximal independent set

𝐼 of a subset 𝐵𝜏,𝜆, Then, for any link 𝑎 ∈ 𝐵, Γ (𝐵, 𝑎; 𝑑) ≥ 1.

Proof: Since 𝐼 is a maximal independent set of a subset

𝐵𝜏,𝜆, the total 1𝐼 -weighted interference received by any

replicated link of 𝑎 from 𝐵𝜏,𝜆 is at least one. Hence, the

average 1𝐼 -weighted interference received by the replicated

links of 𝑎 from 𝐵𝜏,𝜆, which is Γ𝐺 (𝐵, 𝑎; 𝑑) by Lemma 2.2, is

at least one. So, the lemma holds.

Similarly, we can prove the following lemma.

Lemma 2.4: Let 𝐵 be a non-empty subset of 𝐴, 𝑎 be a link

in 𝐵, and 𝑑 ∈ ℝ
𝐴
+ be the aggregation of 1𝐼 for some 𝑎-tight

independent set 𝐼 of 𝐵𝜏,𝜆. Then, Γ (𝐵, 𝑎; 𝑑) ≥ 1.

B. Weighted Inductivity

Consider a link ordering ≺ of 𝐴. For any link 𝑎 ∈ 𝐴,

𝑁≺𝐺 (𝑎) denotes the set of neighbors of 𝑎 in 𝐺 preceding 𝑎 in

the ordering ≺ plus 𝑎 itself. For any 𝑑 ∈ ℝ
𝐴
+, the value

max
𝑎∈𝐴

Γ
(
𝑁≺𝐺 (𝑎) , 𝑎; 𝑑

)

is referred to as 𝑑-weighted inductivity of ≺ and is denoted

by Δ≺ (𝑑). The smallest 𝑑-weighted inductivity of all possible

link orderings is called the 𝑑-weighted inductivity of the

network. Now, we describe a special vertex ordering called

smallest-last ordering and show that it achieves the smallest

inductivity. It is produced successively as follows: Initialize

𝐵 to 𝐴. For 𝑖 = ∣𝐴∣ down to 1, let 𝑎𝑖 be a link minimizing

Γ (𝐵, 𝑏; 𝑑) among all links 𝑏 in 𝐵, and delete 𝑎𝑖 from 𝐵. Then

the ordering
〈
𝑎1, 𝑎2, ⋅ ⋅ ⋅ , 𝑎∣𝐴∣

〉
is a smallest-last ordering.

Similar to [7], we can implement this algorithm with time

complexity 𝑂 (∣𝐸∣) and space complexity 𝑂 (∣𝐸∣).
Theorem 2.5: The smallest-last ordering achieves the small-

est 𝑑-weighted inductivity

Δ∗ (𝑑) = max
∅∕=𝐵⊆𝐴

min
𝑏∈𝐵

Γ (𝐵, 𝑏; 𝑑) .

Proof: We first show that the 𝑑-weighted inductivity of

any link ordering ≺ is at least Δ∗ (𝑑). Let 𝐵 be an non-empty

subset of 𝐴 such that

Δ∗ (𝑑) = min
𝑏∈𝐵

Γ (𝐵, 𝑏; 𝑑) .

Let 𝑎 be the last link in this ordering ≺ such that 𝑎 ∈ 𝐵.

Then,

𝑁𝐺 (𝑎) ⊇ 𝑁≺𝐺 (𝑎) ⊇ 𝑁𝐺 (𝑎) ∩𝐵,
which implies

Γ
(
𝑁≺𝐺 (𝑎) , 𝑎; 𝑑

) ≥ Γ (𝑁𝐺 (𝑎) ∩𝐵, 𝑎; 𝑑)
= Γ (𝐵, 𝑎; 𝑑) ≥ Δ∗ (𝑑) .

Thus, the 𝑑-weighted inductivity of ≺ is at least Δ∗ (𝑑).

Next, let ≺ be the smallest-last ordering
〈
𝑎1, 𝑎2, ⋅ ⋅ ⋅ , 𝑎∣𝐴∣

〉
and we show that its 𝑑-weighted inductivity is at most Δ∗ (𝑑).
Consider any 1 ≤ 𝑖 ≤ 𝐴. Let 𝐴𝑖 = {𝑎1, 𝑎2, ⋅ ⋅ ⋅ , 𝑎𝑖}. Then,

𝑁≺𝐺 (𝑎𝑖) = 𝑁𝐺 (𝑎𝑖) ∩𝐴𝑖,

and hence

Γ
(
𝑁≺𝐺 (𝑎𝑖) , 𝑎𝑖; 𝑑

)
= Γ (𝐴𝑖, 𝑎𝑖; 𝑑) .

By the selection criteria of 𝑎𝑖, we have

Γ (𝐴𝑖, 𝑎𝑖; 𝑑) = min
𝑏∈𝑉𝑖

Γ (𝐴𝑖, 𝑏; 𝑑) ≤ Δ∗ (𝑑) ,

which implies

Γ
(
𝑁≺𝐺 (𝑎𝑖) , 𝑎𝑖; 𝑑

) ≤ Δ∗ (𝑑) .

Thus, the 𝑑-weighted inductivity of ≺ is at most Δ∗ (𝑑).
Therefore, the smallest-last ordering achieves the smallest

inductivity Δ∗ (𝑑) among all link orderings. So, the theorem

follows.

Next, we present an upper bound on Δ∗ (𝑑). An orientation
of 𝐺 is a digraph obtained from 𝐺 by imposing an orientation

on each edge of 𝐺. Consider an orientation 𝐷 of 𝐺. For any

link 𝑎 ∈ 𝐴, 𝑁 𝑖𝑛
𝐷 (𝑎) (respectively, 𝑁𝑜𝑢𝑡

𝐷 (𝑎)) denotes the set

of in-neighbors (respectively, out-neighbors) of 𝑎 in 𝐷. Note

that 𝐷 also has a self-loop at each vertex, and consequently,

𝑎 ∈ 𝑁 𝑖𝑛
𝐷 (𝑎) ∩𝑁𝑜𝑢𝑡

𝐷 (𝑎) for each 𝑎 ∈ 𝐴. Define

Δ𝑖𝑛
𝐷 (𝑑) = max

𝑎∈𝐴
Γ
(
𝑁 𝑖𝑛

𝐷 (𝑎) , 𝑎; 𝑑
)
.

Theorem 2.6: For any orientation 𝐷 of 𝐺 and any 𝑑 ∈ ℝ
𝐴
+,

Δ∗ (𝑑) ≤ 2Δ𝑖𝑛
𝐷 (𝑑) .

The proof of the above theorem utilizes the following

lemma, which is a generalization of Lemma 3 in [12].

Lemma 2.7: Suppose that𝐷 is an orientation𝐷 of𝐺. Then,

for any 𝑑 ∈ ℝ
𝐴
+ and any nonempty subset 𝐵 of 𝐴, there exists

at least one link 𝑎 ∈ 𝐵 satisfying

Γ
(
𝑁 𝑖𝑛

𝐷 (𝑎) ∩𝐵, 𝑎; 𝑑) ≥ Γ
(
𝑁𝑜𝑢𝑡

𝐷 (𝑎) ∩𝐵, 𝑎; 𝑑) .
Now we prove Theorem 2.6. Let 𝐵 be an non-empty subset

of 𝐴 such that

Δ∗ (𝑑) = min
𝑏∈𝐵

Γ (𝐵, 𝑏; 𝑑) .

By Lemma 2.7, there is at least one link 𝑎 ∈ 𝐵 such

Γ
(
𝑁 𝑖𝑛

𝐷 (𝑎) ∩𝐵, 𝑎; 𝑑) ≥ Γ
(
𝑁𝑜𝑢𝑡

𝐷 (𝑎) ∩𝐵, 𝑎; 𝑑) .
Thus,

Γ (𝐵, 𝑎; 𝑑)

=Γ
(
𝑁 𝑖𝑛

𝐷 (𝑎) ∩𝐵, 𝑎; 𝑑)+ Γ
(
𝑁𝑜𝑢𝑡

𝐷 (𝑎) ∩𝐵, 𝑎; 𝑑)
− 𝑐 (𝑎, 𝑎) 𝑑 (𝑎)

≤2Γ (
𝑁 𝑖𝑛

𝐷 (𝑎) ∩𝐵, 𝑎; 𝑑) ≤ 2Γ
(
𝑁 𝑖𝑛

𝐷 (𝑎) , 𝑎; 𝑑
) ≤ 2Δ𝑖𝑛

𝐷 (𝑑) .

Thus,

Δ∗ (𝑑) ≤ Γ (𝐵, 𝑎; 𝑑) ≤ 2Δ𝑖𝑛
𝐷 (𝑑) .

This completes the proof of Theorem 2.6.
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C. Weighted Link Schedule

Suppose that 𝑑 ∈ ℝ
𝐴
+ is a node-level link-demand function.

A (fractional) link schedule of 𝑑 ∈ ℝ
𝐴
+ is a set

Π =
{
(𝐼𝑗 , ℓ𝑗) ∈ ℐ𝜏,𝜆 × ℝ+ : 1 ≤ 𝑗 ≤ 𝑘}

satisfying that for each link 𝑎 ∈ 𝐴,

𝑑 (𝑎) =
∑𝑘

𝑗=1ℓ𝑗

∣∣∣𝐼𝑗 ∩ {𝑎}𝜏,𝜆
∣∣∣ ;

the two values 𝑘 and
∑𝑘

𝑗=1 ℓ𝑗 are referred to as the size and

length (or latency) of Π respectively. The minimum length of

all link schedules of 𝑑 is denoted by 𝜒∗ (𝑑). In this subsection,

we derive lower bounds on 𝜒∗ (𝑑).
Given a link ordering ≺ of 𝐴, its backward local indepen-

dence number (BLIN) is defined to be

max
𝑎∈𝐴

max
{∣𝐼∣ : 𝐼 ⊆ 𝑁≺𝐺 (𝑎) , 𝐼 ∈ ℐ} .

Given an orientation 𝐷 of 𝐺, its inward local independence
number (ILIN) is defined to be

max
𝑎∈𝐴

max
{∣𝐼∣ : 𝐼 ⊆ 𝑁 𝑖𝑛

𝐷 (𝑎) , 𝐼 ∈ ℐ} .
Then, we have the following lower bounds on 𝜒∗ (𝑑).

Lemma 2.8: Consider any 𝑑 ∈ ℝ
𝐴
+.

1) For any link ordering ≺ of 𝐴 with BLIN 𝜇,

𝜒∗ (𝑑) ≥ Δ≺ (𝑑)
𝜇+ 2

.

2) For any orientation 𝐷 of 𝐺 with ILIN 𝜇,

𝜒∗ (𝑑) ≥ Δ𝑖𝑛
𝐷 (𝑑)

𝜇+ 2
.

Proof: We only give the proof of the second part, while

remarking that the proof the first part is literally the same.

Consider a split 𝑥 of 𝑑 given by a shortest link schedule of 𝑑.

Let 𝑎 ∈ 𝐴 be such that

Δ𝑖𝑛
𝐷 (𝑑) = Γ

(
𝑁 𝑖𝑛

𝐷 (𝑎) , 𝑎; 𝑑
)
.

By Lemma 2.2, the total 𝑥-weighted interference received by

some replicated link 𝑒 of 𝑎 from all replicated links of 𝑁 𝑖𝑛
𝐷 (𝑎)

is at least Γ
(
𝑁 𝑖𝑛

𝐷 (𝑎) , 𝑎; 𝑑
)
. In other words, the total 𝑥-weights

of all replicated links of 𝑁 𝑖𝑛
𝐷 (𝑎) which have interference

with 𝑒 is at least Γ
(
𝑁 𝑖𝑛

𝐷 (𝑎) , 𝑎; 𝑑
)
. On the other hand, the

transmission concurrency of replicated links is limited by 𝜇+2
as any independent set consisting of these replicated links

contains at most 𝜇 of those which have the same channel as

𝑒 and at most two others which have different channel from 𝑒
but share an radio with 𝑒. Thus, the minimum latency required

by these links is at least

Γ
(
𝑁 𝑖𝑛

𝐷 (𝑎) , 𝑎; 𝑑
)

𝜇+ 2
=
Δ𝑖𝑛

𝐷 (𝑑)

𝜇+ 2
.

This implies that

𝜒∗ (𝑑) ≥ Δ𝑖𝑛
𝐷 (𝑑)

𝜇+ 2
.

So, the second part of the lemma holds.

The corollary below follows immediately from Theorem

2.5, Theorem 2.6, and Lemma 2.8,

Corollary 2.9: Consider any 𝑑 ∈ ℝ
𝐴
+.

1) If there is a link ordering of 𝐴 with BLIN 𝜇, then

𝜒∗ (𝑑) ≥ Δ∗ (𝑑)
𝜇+ 2

.

2) If there is an orientation of 𝐺 with ILIN 𝜇,

𝜒∗ (𝑑) ≥ Δ∗ (𝑑)
2 (𝜇+ 2)

.

Since BLIN and ILIN only depend on the topology of 𝐺
rather than the edge weight function 𝑐, the following properties

which hold in the convectional conflict graph of the underlying

SC-SR wireless network also hold in 𝐺:

∙ Under the 802.11 interference model with uniform inter-

ference radii, the lexicographic ordering of 𝐴 has BLIN

at most 6 [3] and it can be computed in in 𝑂 (∣𝐴∣ log ∣𝐴∣)
time.

∙ Under the 802.11 interference model with arbitrary inter-

ference radii, there is an orientation 𝐷 of 𝐺 with ILIN at

most 8 which can be constructed in in 𝑂 (∣𝐴∣) time [12].

∙ Under the protocol interference model in which the

interference radius of the sender of each link is at least

𝜑 times the link length for some 𝜑 > 1, there is an

orientation 𝐷 of 𝐺 with ILIN
⌈
𝜋/ arcsin 𝜑−1

2𝜑

⌉
−1 which

can be constructed in 𝑂 (∣𝐴∣) time [10].

III. GREEDY LINK SCHEDULING

In this section, we present a scalable greedy scheduling

algorithm for the variant of SWLS with the traffic demands

given on the node-level links. Consider an instance of MC-MR

wireless network specified in Section II, and let 𝐺 = (𝐴,𝐸; 𝑐)
be its concise conflict graph. For any subset 𝐵 of 𝐴, we use

𝑉 (𝐵) to denote the set of endpoints of the links in 𝐵, and

𝐸 (𝐵) to denote the set of edges in the subgraph of 𝐺 induced

by 𝐵. Note that 𝐸 (𝐵) contains all the self-loop edges at 𝐵.

We first describe an algorithm GMIS which takes as input a

list 𝐵 of links 𝑏𝑖 = (𝑢𝑖, 𝑣𝑖) for 1 ≤ 𝑖 ≤ ∣𝐵∣ in 𝐴 and outputs

a maximal independent 𝐼 of 𝐵𝜏,𝜆, the subset 𝐵′ of links in 𝐵
which have at least one replicated link in 𝐼 , and the function

𝑔 ∈ ℝ
𝐵′
+ which counts the number of replicated links in 𝐼 of

each link in 𝐵′. Conceptually, the algorithm is a simple greedy

one: For each link in 𝐵 from the head to the tail, the algorithm

selects as many replicated links of this link as possible using

the radios at its two endpoints which have not been used by

any preceding links and the channels which have not been used

by any preceding conflicting links. An efficient implementation

of such greedy approach is described as follows. Both 𝐼 and

𝐵′ are empty initially. Each node 𝑣 ∈ 𝑉 (𝐵) maintains a list

𝑅 (𝑣) of available radios, which is initialized to the list

⟨1, 2, ⋅ ⋅ ⋅ , 𝜏 (𝑣)⟩ ,

2013 Proceedings IEEE INFOCOM

2125



and a variable to store ∣𝑅 (𝑣)∣. Each link 𝑎 ∈ 𝐵 maintains a

list 𝐶 (𝑎) of the available channels, which is initialized to the

list

⟨1, 2, ⋅ ⋅ ⋅ , 𝜆⟩ ,
and a variable to store ∣𝐶 (𝑎)∣. For the purpose of the fast

update on the channel lists, each link also maintains a com-

panion array 𝐶 ′ (𝑎) indexed by the channel numbers. The 𝑗-
th element of 𝐶 ′ (𝑎) consists of two entries: the first entry is

a 0/1 variable, which indicates the availability (respectively,

unavailability) of channel 𝑗 with value 1 (respectively, 0); the

second entry is a pointer, which points to null if the first entry

is 0, or otherwise points to the channel number 𝑗 in the list

𝐶 (𝑎). Initially, for each 1 ≤ 𝑗 ≤ 𝜆, the first entry in the 𝑗-th
element is 1, and the second entry of the 𝑗-th element points

to the channel number 𝑗 in the list 𝐶 (𝑎). The algorithm runs

iteratively for each 𝑖 incrementally from 1 to ∣𝐵∣. In the 𝑖-th
iteration, we first compute

𝑔 (𝑏𝑖) = min {∣𝑅 (𝑢𝑖)∣ , ∣𝑅 (𝑣𝑖)∣ , ∣𝐶 (𝑎𝑖)∣} .
If 𝑔 (𝑏𝑖) = 0, we move on to the next iteration. Otherwise, we

proceed as follows:

∙ Add 𝑏𝑖 to 𝐵′.
∙ Repeat the following for 𝑔 (𝑏𝑖) times: Remove the first

radio from 𝑅 (𝑢𝑖), the first radio from 𝑅 (𝑣𝑖), and the

first channel from 𝐶 (𝑏𝑖), and then add the replicated link

of 𝑏𝑖 determined by these three elements together 𝐼 .

∙ Decrease both ∣𝑅 (𝑢𝑖)∣ and ∣𝑅 (𝑣𝑖)∣ by 𝑔 (𝑏𝑖).
∙ For each link 𝑏𝑗 with 𝑗 > 𝑖 which conflicts with 𝑏𝑖,

we update the unavailability of the 𝑔 (𝑏𝑖) channels of the

above selected replicated links of 𝑏𝑖 and then remove

them from 𝐶 (𝑏𝑗).

After the last iteration, we output the triple (𝐼, 𝑔, 𝐵).
The correctness of the algorithm GMIS is obvious. We show

that its running time is

𝑂

(
∣𝐵∣𝜆+ ∣𝐸 (𝐵)∣ max

𝑣∈𝑉 (𝐵)
𝜏 (𝑣)

)
.

Indeed, the total running time taken by the initialization is

𝑂
(∑

𝑣∈𝑉 (𝐵)𝜏 (𝑣) + ∣𝐵∣𝜆
)

= 𝑂

(
∣𝑉 (𝐵)∣ max

𝑣∈𝑉 (𝐵)
𝜏 (𝑣) + ∣𝐵∣𝜆

)
.

The total running time taken by the computation of 𝑔 is

𝑂 (∣𝐵∣). The total running time taken by the computation of

𝐼 and the updates of the radio lists of nodes is

𝑂

⎛
⎝ ∣𝐵∣∑

𝑖=1

𝑔 (𝑏𝑖)

⎞
⎠ = 𝑂

(
∣𝐵∣ max

𝑣∈𝑉 (𝐵)
𝜏 (𝑣)

)
.

Since the total number of times for which the channels

lists of the links are updated is at most ∣𝐸 (𝐵)∣ and each

update takes 𝑂 (max𝑣∈𝑉 𝜏 (𝑣)) time, the total running time

taken by updating the channel lists of the links in 𝐵 is

𝑂 (∣𝐸 (𝐵)∣max𝑣∈𝑉 𝜏 (𝑣)). As ∣𝐵∣ ≤ ∣𝐸 (𝐵)∣ and 𝑉 (𝐵) =
𝑂 (𝐸 (𝐵)), the total running time of the algorithm is

𝑂

(
∣𝐵∣𝜆+ ∣𝐸 (𝐵)∣ max

𝑣∈𝑉 (𝐵)
𝜏 (𝑣)

)
.

Next, we describe an algorithm GLS which takes as input a

list of 𝐴 sorted in some ordering ≺ and a link demand function

𝑑 ∈ ℝ
𝐴
+ specified by an array, and outputs a (fractional) link

schedule Π of 𝑑. Initially, Π is empty. The algorithm GLS
repeats the following iteration until 𝑑 = 0. Let 𝐵 be the subset

of links 𝑎 ∈ 𝐴 with 𝑑 (𝑎) > 0. We apply the algorithm GMIS
to 𝐵 sorted in the ordering ≺ to output a triple (𝐼, 𝑔, 𝐵′). Let

ℓ = min
𝑎∈𝐵′

𝑑 (𝑎)

𝑔 (𝑎)
,

and add (𝐼, ℓ) to Π. For each 𝑎 ∈ 𝐵′, replace 𝑑 (𝑎) by 𝑑 (𝑎)−
ℓ𝑔 (𝑎). When 𝑑 = 0, the algorithm outputs Π. We refer to the

output Π as the first-fit fractional schedule of 𝑑 in the ordering
≺.

The next theorem gives an upper bound on the length of Π.

Theorem 3.1: The algorithm GLS has running time

𝑂

(
∣𝐴∣2 𝜆+ ∣𝐴∣ ∣𝐸∣max

𝑣∈𝑉
𝜏 (𝑣)

)
,

and the output schedule Π has length at most Δ≺ (𝑑).
Proof: Suppose that the algorithm runs in 𝑘 iterations.

For each 1 ≤ 𝑗 ≤ 𝑘, let 𝐵𝑗 be the subset 𝐵 (of links with

residue demands) at the beginning of the 𝑗-th iteration, and

(𝐼𝑗 , ℓ𝑗) ∈ ℐ𝜏,𝜆 ×ℝ+ be the pair selected in the 𝑗-th iteration.

Since at least one link gets satisfied in each iteration, the 𝑘
subsets 𝐵1, 𝐵2, ⋅ ⋅ ⋅ , 𝐵𝑘 are strictly decreasing. Hence,

𝑘 ≤ ∣𝐵1∣ ≤ ∣𝐴∣ .
Since each iteration has running time at most

𝑂

(
∣𝐴∣𝜆+ ∣𝐸∣max

𝑣∈𝑉
𝜏 (𝑣)

)
,

the total running time of the algorithm is

𝑂

(
∣𝐴∣2 𝜆+ ∣𝐴∣ ∣𝐸∣max

𝑣∈𝑉
𝜏 (𝑣)

)
.

So, the first part of the theorem holds.

Consider an arbitrary link 𝑎 ∈ 𝐵𝑘. Then, 𝑎 ∈ 𝐵𝑗 for each

1 ≤ 𝑗 ≤ 𝑘. For each 1 ≤ 𝑗 ≤ 𝑘, let 𝐴𝑗 be the set of links in

𝐵𝑗 preceding (and including) 𝑎, and denote 𝐼 ′𝑗 = 𝐼𝑗 ∩ 𝐴𝜏,𝜆
𝑗 .

Then, 𝐼 ′𝑗 is also a maximal independent set of 𝐴𝜏,𝜆
𝑗 . Let 𝑔′𝑗 be

the aggregation of 1𝐼′
𝑗 . By Lemma 2.3,

Γ
(
𝐴𝑗 , 𝑎; 𝑔

′
𝑗

) ≥ 1.

Since

𝑁≺𝐺 (𝑎) ⊇ 𝑁𝐺 (𝑎) ∩𝐴𝑗

we have

Γ
(
𝑁≺𝐺 (𝑎) , 𝑎; 𝑔′𝑗

) ≥ Γ
(
𝐴𝑗 , 𝑎; 𝑔

′
𝑗

) ≥ 1.
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Note that for each link 𝑏 ∈ 𝑁≺𝐺 (𝑎),

𝑑 (𝑏) =
∑𝑘

𝑗=1ℓ𝑗𝑔
′
𝑗 (𝑏) .

Thus,

Δ≺ (𝑑) ≥ Γ
(
𝑁≺𝐺 (𝑎) , 𝑎; 𝑑

)
=

∑
𝑏∈𝑁≺

𝐺 (𝑎)𝑐 (𝑏, 𝑎) 𝑑 (𝑏)

=
∑

𝑏∈𝑁≺
𝐺 (𝑎)𝑐 (𝑏, 𝑎)

∑𝑘
𝑗=1ℓ𝑗𝑔

′
𝑗 (𝑏)

=
∑𝑘

𝑗=1ℓ𝑗
∑

𝑏∈𝑁≺
𝐺 (𝑎)𝑐 (𝑏, 𝑎) 𝑔

′
𝑗 (𝑏)

=
∑𝑘

𝑗=1ℓ𝑗Γ
(
𝑁≺𝐺 (𝑎) , 𝑎; 𝑔′𝑗

) ≥
𝑘∑

𝑗=1

ℓ𝑗 .

So, the second part of the theorem holds.

Finally, we are ready to describe our approximation algo-

rithm for SWLS with the traffic demands given on the node-

level links. Let 𝑑 ∈ ℝ
𝐴
+ be the input link demand function.

Our algorithm consists of two steps:

∙ Step 1: Compute the smallest-last ordering ≺ of (𝐺, 𝑑).
∙ Step 2: Apply the algorithm GLS to compute a first-fit

fractional schedule of 𝑑 in the ordering ≺.

By Theorem 3.1 and Theorem 2.5, the output link schedule

has length at most Δ∗ (𝑑). By Corollary 2.9, it achieves the

following approximation bounds:

∙ 8 under the 802.11 interference model with uniform

interference radii;

∙ 20 under the 802.11 interference model with arbitrary

interference radii;

∙ 2
(⌈
𝜋/ arcsin 𝜑−1

2𝜑

⌉
+ 1

)
under the protocol interference

model in which the interference radius of the sender of

each link is at least 𝜑 times the link length for some

𝜑 > 1.

The running time of Step 1 is 𝑂 (𝐸), and by Theorem 3.1 the

running time of the second step is

𝑂

(
∣𝐴∣2 𝜆+ ∣𝐴∣ ∣𝐸∣max

𝑣∈𝑉
𝜏 (𝑣)

)
.

Thus, the total running time is

𝑂

(
∣𝐴∣2 𝜆+ ∣𝐴∣ ∣𝐸∣max

𝑣∈𝑉
𝜏 (𝑣)

)
,

which grows linearly with the number of channels and the

maximum number of radios of all nodes.

IV. POLYNOMIAL APPROXIMATE CAPACITY SUBREGIONS

Consider an instance of MC-MR wireless network specified

in Section II. Its capacity region is defined to be

𝑃 =
{
𝑑 ∈ ℝ

𝐴
+ : 𝜒∗ (𝑑) ≤ 1

}
.

In general, the membership of the capacity region 𝑃 is

NP-complete. A subregion 𝑄 of 𝑃 is called a polynomial
𝜇-approximate capacity subregion for some 𝜇 ≥ 1 if it

satisfies the following three conditions: (1) 𝑄 has an explicit

representation by a polynomial number of linear inequalities or

equalities, (2) there is a polynomial algorithm which produces

a fractional schedule of length at most one for any 𝑑 ∈ 𝑄,

and (3) 𝑄 is a 𝜇-approximation of 𝑃 i.e., 𝑃 ⊆ 𝜇𝑄. The first

condition ensures the membership of 𝑄 is polynomial, the

second condition implies that 𝑄 ⊆ 𝑃 , and the third condition

ensures that 𝑄 is “close” to 𝑃 . In this section, we present two

polynomial capacity subregions directly on 𝐴.

Let 𝐺 be the concise conflict graph of the MC-MR wireless

network. For any link ordering ≺ of 𝐴, its backward capacity
subregion is defined to be

𝑄≺ =
{
𝑑 ∈ ℝ

𝐴
+ : Δ≺𝐺 (𝑑) ≤ 1

}
.

Theorem 4.1: For any link ordering ≺ of 𝐴 with BLIN 𝜇,

𝑄≺ is a polynomial (𝜇+ 2)-approximation capacity subre-

gion.

Proof: Clearly, 𝑄≺ is defined by ∣𝐴∣ linear inequalities.

By Theorem 3.1, for any 𝑑 ∈ 𝑄, the algorithm GLS in the

ordering ≺ would produce a fractional link schedule of length

at most Δ≺ (𝐺, 𝑑) ≤ 1. In addition, for any 𝑑 ∈ 𝑃 , by Lemma

2.8,

Δ≺ (𝑑) ≤ (𝜇+ 2)𝜒∗ (𝑑) ≤ 𝜇+ 2,

which implies 𝑑 ∈ (𝜇+ 2)𝑄≺. Thus, 𝑃 ⊆ (𝜇+ 2)𝑄≺. So,

the theorem follows.

For any orientation 𝐷 of 𝐺, its inward capacity subregion
of 𝐺 is defined to be

𝑄𝐷 =
{
𝑑 ∈ ℝ

𝐴
+ : Δ𝑖𝑛

𝐷 (𝑑) ≤ 1/2
}
.

Theorem 4.2: For any orientation 𝐷 of 𝐺 with ILIN 𝜇, 𝑄𝐷

is a polynomial 2 (𝜇+ 2)-approximation capacity subregion.

Proof: Clearly, 𝑄𝐷 is defined by ∣𝐴∣ linear inequalities.

By Theorem 2.6, Δ∗ (𝑑) ≤ 1 for any 𝑑 ∈ 𝑄. By Theorem 3.1

and Theorem 2.5, for any 𝑑 ∈ 𝑄, the algorithm GLS in the

smallest-last ordering would produce a fractional link schedule

of length at most Δ∗ (𝑑) ≤ 1. In addition, for any 𝑑 ∈ 𝑃 , by

Lemma 2.8,

Δ𝑖𝑛
𝐷 (𝑑) ≤ (𝜇+ 2)𝜒∗ (𝑑) ≤ 𝜇+ 2,

which implies 𝑑 ∈ 2 (𝜇+ 2)𝑄𝐷. Thus, 𝑃 ⊆ 2 (𝜇+ 2)𝑄𝐷.

So, the theorem follows.

Theorem 4.1 and Theorem 4.2 imply the following specific

polynomial approximate capacity subregions:

∙ Under the 802.11 interference model with uniform inter-

ference radii, the backward capacity subregion of the lex-

icographic ordering of 𝐴 is a polynomial 8-approximate

capacity subregion.

∙ Under the 802.11 interference model with arbitrary in-

terference radii, the inward capacity subregion of the

orientation 𝐷 of 𝐺 described in [12] is a polynomial

20-approximate capacity subregion.

∙ Under the protocol interference model in which the

interference radius of the sender of each link is at least 𝜑
times the link length for some 𝜑 > 1, the inward capacity

subregion of the orientation 𝐷 of 𝐺 described in [10]

is a polynomial 2
(⌈
𝜋/ arcsin 𝜑−1

2𝜑

⌉
+ 1

)
-approximate

capacity subregion.
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V. RESTRICTED MULTIFLOW

In this section, we present scalable approximation algo-

rithms for MMF and MCMF. Consider an instance of MC-

MR wireless network specified in Section II. For each node

𝑣 ∈ 𝑉 , we use 𝛿𝑖𝑛 (𝑣) (respectively, 𝛿𝑜𝑢𝑡 (𝑣)) to denote the

set of links in 𝐴 entering (respectively, leaving) 𝑣. Consider

two distinct nodes 𝑠, 𝑡 ∈ 𝑉 . A vector 𝑓 ∈ ℝ
𝐴
+ is called a flow

from 𝑠 to 𝑡, or simply an 𝑠–𝑡 flow, if for each 𝑣 ∈ 𝑉 ∖ {𝑠, 𝑡},
𝑓
(
𝛿𝑜𝑢𝑡 (𝑣)

)
= 𝑓

(
𝛿𝑖𝑛 (𝑣)

)
.

This condition is called the flow conservation law: the amount

of flow entering a vertex 𝑣 ∕= 𝑠, 𝑡 should be equal to the

amount of flow leaving 𝑣. The value of a flow 𝑓 from 𝑠 to 𝑡
is, by definition:

𝑣𝑎𝑙 (𝑓) = 𝑓
(
𝛿𝑜𝑢𝑡 (𝑠)

)− 𝑓 (𝛿𝑖𝑛 (𝑠)) .
So, the value is the net amount of flow leaving 𝑠, which is

also equal to the net amount of flow entering 𝑡. Suppose that

we are given 𝑘 unicasts with 𝑠𝑖, 𝑡𝑖 being the source and sink,

respectively, for commodity 𝑖. We use ℱ𝑖 to denote the set of

𝑠𝑖–𝑡𝑖 flows. A 𝑘-flow is a sequence of flows ⟨𝑓1, 𝑓2, ⋅ ⋅ ⋅ , 𝑓𝑘⟩
with 𝑓𝑖 ∈ ℱ𝑖 for each 1 ≤ 𝑖 ≤ 𝑘.

Suppose that 𝑄 is a polynomial 𝜇-approximate capacity

subregion. A 𝑘-flow ⟨𝑓1, 𝑓2, ⋅ ⋅ ⋅ , 𝑓𝑘⟩ is said to be 𝑄-restricted
if

∑𝑘
𝑖=1 𝑓𝑖 ∈ 𝑄. The maximum 𝑄-restricted multiflow is

defined by the following LP

max
∑𝑘

𝑖=1 𝑣𝑎𝑙 (𝑓𝑖)
𝑠.𝑡. 𝑓𝑖 ∈ ℱ𝑖, ∀1 ≤ 𝑖 ≤ 𝑘;∑𝑘

𝑖=1 𝑓𝑖 ∈ 𝑄.
This LP is of polynomial size and we solve this 𝑄-restricted

LP in polynomial time to obtain a 𝑘-flow ⟨𝑓1, 𝑓2, ⋅ ⋅ ⋅ , 𝑓𝑘⟩.
Then we compute a fractional link schedule of length at

most one for
∑𝑘

𝑖=1 𝑓𝑖. Such link schedule is a 𝜇-approximate

solution. Similarly, the maximum concurrent 𝑄-restricted mul-

tiflow with demands 𝑑𝑖 for 1 ≤ 𝑖 ≤ 𝑘 is defined by the

following LP

max 𝜙
𝑠.𝑡. 𝑓𝑖 ∈ ℱ𝑖, ∀1 ≤ 𝑖 ≤ 𝑘;

𝑣𝑎𝑙 (𝑓𝑖) ≥ 𝜙𝑑𝑖, ∀1 ≤ 𝑖 ≤ 𝑘;∑𝑘
𝑖=1 𝑓𝑖 ∈ 𝑄.

We first solve this 𝑄-restricted LP of polynomial size in

polynomial time to obtain a 𝑘-flow ⟨𝑓1, 𝑓2, ⋅ ⋅ ⋅ , 𝑓𝑘⟩, and then

compute a fractional link schedule of length at most one for∑𝑘
𝑖=1 𝑓𝑖. This link schedule is a 𝜇-approximate solution.

We choose the polynomial approximate capacity subregion

𝑄 constructed in Section IV:

∙ Under the 802.11 interference model with uniform inter-

ference radii, 𝑄 is the backward capacity subregion of

the lexicographic ordering of 𝐴.

∙ Under the 802.11 interference model with arbitrary inter-

ference radii, 𝑄 is the inward capacity subregion of the

orientation 𝐷 of 𝐺 described in [12].

∙ Under the protocol interference model, 𝑄 is the inward

capacity subregion of the orientation 𝐷 of 𝐺 described

in [10].

In either case, the LP for the maximum 𝑄-restricted multiflow

has 𝑘 ∣𝐴∣ flow variables, and the LP for the maximum con-

current 𝑄-restricted multiflow has 𝑘 ∣𝐴∣ flow variables and an

additional variable 𝜙. These LP can be solved in 𝑂
(
(𝑘 ∣𝐴∣)3

)
time, which depends on neither the number of radios or nor

the number of channels. We apply the algorithm described in

Section III to compute a fractional link schedule of length at

most one for
∑𝑘

𝑖=1 𝑓𝑖, which takes

𝑂

(
∣𝐴∣2 𝜆+ ∣𝐴∣ (∣𝑉 ∣+ ∣𝐸∣)max

𝑣∈𝑉
𝜏 (𝑣)

)

time. Therefore, the overall running time is

𝑂

(
(𝑘 ∣𝐴∣)3 + ∣𝐴∣2 𝜆+ ∣𝐴∣ (∣𝑉 ∣+ ∣𝐸∣)max

𝑣∈𝑉
𝜏 (𝑣)

)
,

which grows linearly with 𝜆 and max𝑣∈𝑉 𝜏 (𝑣). The output

link schedule is an 8-approximation solution under the 802.11

interference model with uniform interference radii, a 20-

approximate solution under the 802.11 interference model with

arbitrary interference radii, and a 2
(⌈
𝜋/ arcsin 𝜑−1

2𝜑

⌉
+ 1

)
-

approximate solution under the protocol interference model in

which the interference radius of each node is at least 𝜑 times

its communication radius for some 𝜑 > 1.

We remark that our algorithms have the same approximation

bound as those developed in [11], but are significantly faster.

Indeed, the running time of the algorithms in [11] is at least

𝑂
((
𝑘
∣∣𝐴𝜏,𝜆

∣∣)3), where 𝐴𝜏,𝜆 is the number of replicated links

of all links in 𝐴. For the illustrative purpose, we consider the

uniform radio setting in which each node has 𝜏 radios. Then,∣∣𝐴𝜏,𝜆
∣∣ = 𝜆𝜏2 ∣𝐴∣, and

𝑂
((
𝑘
∣∣𝐴𝜏,𝜆

∣∣)3) = 𝜆3𝜏6𝑂 (
(𝑘 ∣𝐴∣)3

)
.

Thus, the running time of the algorithms in [11] grows with the

product of the cubic order of the number of channels and the

sixth order of the number of radios per node. In contrast, the

running time of our algorithm grows linearly with the number

of channels and the number of radios per node.

VI. RELATED WORKS

Wireless link scheduling in MC-MR multihop wireless net-

works have been studied recently by a few research works [1],

[2], [4], [5], [6], [8], [9]. Among these works, Lin and Rasool

[6] studied the queuing-theoretic aspects of link scheduling

in MC-MR multihop wireless networks under the 802.11

interference model with uniform interference/communication

radii. Alicherry et al. [1] proved an approximation bound

8𝜆/min𝑣∈𝑉 𝜏 (𝑣) on their approximation algorithms for max-

imum concurrent multiflow under the 802.11 interference

model with uniform interference radii. Han et al. [2] gave an

approximation algorithm for the maximum (concurrent) mul-

tiflow in MC-MR multihop wireless networks, which achieves

an approximation bound of 122 under the 802.11 interference

2013 Proceedings IEEE INFOCOM

2128



model with arbitrary interference/communication radii. Wan

et al. [11] developed approximation algorithms for maximum

(concurrent) multiflow in MC-MR wireless networks under

either 802.11 or protocol interference model. The approxima-

tion bounds of their algorithms are at most 8 under the 802.11

interference model with uniform interference radii, at most 20
under the 802.11 interference model with arbitrary interference

radii, and at most 2
(⌈
𝜋/ arcsin 𝜑−1

2𝜑

⌉
+ 1

)
under the protocol

interference model in which the interference radius of the

sender of each link is at least 𝜑 times the link length for

some 𝜑 > 1. In addition, if the number of channels 𝜆 is

bounded by a constant, they presented a PTAS under the

802.11 interference model or under the protocol interference

model with some additional mild conditions.

VII. CONCLUSION

In this paper, we introduced the concise conflict graph of

the node-level links in a MC-MR wireless network. Instead

of creating many replications at the radio-channel level of

all node-level links as in the fine-grained conflict graph [11],

the concise conflict graph simply assigns a weight to each

conflicting pair of links which captures the essential benefit

of multiple radios and multiple channels. We have explored

a number of fundamental structural properties of the concise

conflict graph. By exploring these properties, we developed a

first-fit link scheduling algorithm for SWLS whose running

time grows linearly with the number of channels and the

maximum number of radios at the individual nodes. We also

constructed two polynomial approximate capacity subregions

defined on the node-level links directly. By restricting to these

polynomial approximate capacity subregions, the maximum

(concurrent) multiflow can be approximated within the same

approximation bound as achieved in [11] but in a running

time growing linearly with the number of channels and the

maximum number of radios at individual nodes. In contrast,

the algorithms for maximum (concurrent) multiflow developed

in [11] have running time growing in the cubic order of the

number of channels and the sixth order of the maximum

number of radios at individual nodes. We expect that the

concise conflict graph and its structural properties established

in this paper have applications in the design and analyses of

other optimization problems in MC-MR wireless networks.
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