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Abstract—Static greedy link schedulings have much simpler
implementation than dynamic greedy link schedulings such as
Longest-queue-first (LQF) link scheduling. However, its stability
performance in multi-channel multi-radio (MC-MR) wireless
networks is largely under-explored. In this paper, we present
a stability subregion with closed form of a static greedy link
scheduling in MC-MR wireless networks under the 802.11 inter-
ference model. By adopting some special static link orderings,
the stability subregion is within a constant factor of the stable
capacity region of the network. We also obtain constant lower
bounds on the throughput efficiency ratios of the static greedy
link schedulings in some special static link orderings.

Keywords—Stability, multi-channel multi-radio, link scheduling.

I. INTRODUCTION

With the rapid technology advances, many off-the-shelf

wireless transceivers (i.e., radios) are capable of operating

on multiple channels. For example, the IEEE 802.11 b/g

standard and IEEE 802.11a standard provide 3 and 12 channels

respectively, and MICA2 sensor motes support more than 50

channels. The rapidly diminishing prices of the radios has also

made it feasible to equip a wireless node with multiple radios.

Providing each node with one or more multi-channel radios of-

fers a promising avenue for enhancing the network capacity by

simultaneously exploiting multiple non-overlapping channels

through different radio interfaces and mitigating interferences

through proper channel assignment. In this paper, we take a

queuing-theoretic study of wireless link scheduling in multi-

channel multi-radio (MC-MR) wireless networks under the

802.11 interference model. A wireless link scheduling algo-

rithm takes as an input a set of communication links together

with their backlogs of packets waiting for transmission, and

outputs a set of packets which can be transmitted successfully

at the same time.

We assume that time is slotted. For each t ∈ N, the t-th
time slot is the time interval (t − 1, t]. Any packet arriving

in a slot is assumed to arrive at the end of the slot, and may

only be transmitted in the subsequent slots. In addition, the

packet arrivals are assumed to be mutually independent and

temporally i.i.d. processes with arrival rate vector α. Consider

a wireless link scheduling algorithm A. In each time-slot, a

set of backlogged packets are selected to be transmitted using

the algorithm A. Let X (t) (respectively, Y (t)) denote the

vector of cumulative number of packets arriving (respectively,

transmitted) in the first t time slots, and Z (t) denote the vector

of number of packets queued at the very end of time slot t.
Then,

Z (t) = Z (0) +X (t)− Y (t) .

The network is said to be stable if the Markov chain (Z (t))
is positive recurrent. The stability region of the wireless link

scheduling algorithm A, denoted by Λ, is the set of arrival

rate vectors α such that the network is stable. Let P be the

maximum stability region of the network, which consists of

arrival rate vectors such that there exists a scheduling policy

stabilizing the network. The efficiency ratio of the wireless link

scheduling algorithm A is defined to be

sup {σ ∈ R+ : σP ⊆ Λ} .

The seminal work of Tassiulas and Ephremides [13] pro-

vided a scheduler with efficiency ratio equal to one. However,

this optimal scheduler has exponential running time in general.

Thus, a class of greedy link scheduling (GLS) algorithms that

trade-off throughput efficiency for implementation simplicity

have been proposed in single-channel single-radio (SC-SR)

wireless networks [2], [4], [5], [6], [10], [19], [20] as well

as in MC-MR wireless networks [9], [1], [18]. Consider a

link ordering ≺. The algorithm GLS in ≺ schedules the

transmissions by all communication links along the ordering ≺
in the following greedy manner: Each link transmits as many

packets as possible from its queue using the radios at its two

endpoints which have not been used by any preceding links

and the channels which have not been used by any preced-

ing conflicting links. Among the class of GLS algorithms,
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there is a further trade-off between throughput efficiency and

simplicity A dynamic GLS adopts a link ordering ≺ which

may vary with the queue lengths of the links; and a static
GLS adopts a link ordering ≺ which does not vary with

the queue lengths of the links. A renowned dynamic GLS
is the Longest-Queue-First (LQF) scheduling, which adopts

the link ordering in the decreasing order of queue lengths.

A dynamic GLS requires the expensive recomputation of

the link ordering in each time-slot, and in return it may

achieve better throughput efficiency; on the other hand, a

static GLS only needs a single pre-computation of the link

ordering and therefore enjoys much simpler implementation.

The stability of the LQF scheduling in both SC-SR wireless

networks [4], [5], [6], [16] and MC-MR wireless networks

[18] is now well understood. However, the stability of static

GLS algorithms in both SC-SR wireless networks and MC-

MR wireless networks has been under-studied. As the result,

the quantitative characterization of the trade-off between the

throughput efficiency and implementation simplicity of GLS
algorithms is still missing.

Contributions of this paper: The first main contribution

of this paper is a stability subregion of a static GLS with

closed form. Such stability subregion is shown to be within a

constant factor of the maximum stability region of the network

if some special static link orderings are adopted. In addition,

it can be checked in polynomial time whether a given vector

of packet arrival rates lies in this stability subregion. This

computational tractability is particularly favorable for cross-

layer optimization, where one needs to allocate the link rates

efficiently while still ensuring the network stability under a

static GLS. The second main contribution of this paper is the

discovery of constant lower bounds on the throughput effi-

ciency ratios of the static GLS in some special link orderings.

By comparing the stable capacity subregion and the throughput

efficiency ratios of the static GLS against those of the LQF
scheduling, we derive the quantitative trade-off between the

throughput efficiency and implementation simplicity of GLS
algorithms. Based on such quantitative trade-off, the static GLS

is advocated in most networking settings.

Related works: The throughput efficiency ratio of the LQF
scheduling in SC-SR was fully characterized by Joo et al.

[5], [6]. Built upon the prior works by Dimakis and Walrand

[4] which presented sufficient conditions for LQF to achieve

100% throughput, Joo et al. [5], [6] proved that the throughput

efficiency ratio of LQF is exactly the local pooling factor
(LPF) of the conflict graph of the communication links. The

LPF is a pure graph-theoretic parameter. Thus, the works by

Joo et al. [5], [6] built an elegant bridge between a queuing-

theoretic parameter and a graph-theoretic parameter. Under the

802.11 interference model with uniform interference radii, the

LPF is shown to be at least 1/6 in [6]. Sparked by the works

in [6], Leconte el al. [7] and Li el al. [8] presented some

properties of LPF. Leconte el al. [7] derived tighter lower

bounds on LPF in networks of size at most 28 under the 802.11

interference model with uniform interference radii. Li el al.

[8] gave an alternative definition of LPF and also introduced

a refined notion of LPF. Wan et al. [16] further proved

that the LPF is at least 1/16 under the 802.11 interference

model with arbitrary interference radii. However, it remains

computationally intractable to decide whether a given vector of

packet arrival rates meets the so-called local-pooling condition.

The stability of the LQF scheduling in MC-MR wireless

networks has been well-studied in [9], [1], [18]. Lin and

Rasool [9] derived a lower bound 1/10 on the throughput

efficiency ratio of the LQF scheduling under the 802.11

interference model with uniform interference/communication

radii. Brzezinski et al. [1] considered the variant of the LQF
scheduling with (temporarily) static channel assignment and

the only interference assumed was the primary interference, but

no analytical bounds on the throughput efficiency ratio were

provided. Recently, a stability subregion of LQF with closed

form was given in [18]. Such stability subregion is shown to be

within a constant factor of the maximum stability region of the

network. In addition, constant lower bounds on the throughput

efficiency ratios of the LQF scheduling were derived in

[18]. Specifically, the throughput efficiency ratio of the LQF
scheduling is at least 1/8 under the 802.11 interference model

with uniform interference radii, at least 1/20 under the 802.11

interference model with arbitrary interference radii.

In SC-SR wireless networks under the 802.11 interfer-

ence model with uniform interference radii, the throughput

efficiency ratio of a static GLS in an arbitrary link ordering

was shown to be at least 1/8 in [2], [19], [20]. The technical

approach in [2], [19], [20] is quite different from the approach

followed in this paper. In fact, the lower bound 1/8 can be

derived in a simpler manner by using the fact that any static

GLS is actually a 8-approximation algorithm for Maximum-
Weight Independent Set under the 802.11 interference model

with uniform interference radii. Furthermore, the work in this

paper implies a stronger lower bound 1/6 on the the throughput

efficiency ratio of a static GLS under the same networking

setting.

The remainder of this paper is organized as follows. Section

II introduces some basic results from functional analysis and

probability theory. Section III defines the stability region of

a MC-MR wireless network. Section IV presents a stability

subregion of a static GLS. Section V derives the lower

bounds on the throughput efficiency ratios of the static GLS
in some special static link orderings. scheduling. Finally, we

conclude this paper in Section VI by comparing the stability

performances of the static GLS in some special static link

orderings and the LQF scheduling.
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II. PRELIMINARIES

Let I be an interval in the real line R. A function f : I → R

is absolutely continuous on I if for every ε > 0, there is a

δ > 0 such that whenever a finite sequence of pairwise disjoint

sub-intervals [sk, tk] of I satisfies∑
k
|sk − tk| < δ,

then ∑
k
|f(sk)− f(tk)| < ε.

If f is absolutely continuous, then f has a derivative f ′ almost

everywhere; the points at which f is differential are called

the regular points of f . The following property of absolutely

continuous functions is implicitly used in [3].

Lemma 2.1: Let f be an absolutely continuous non-

negative function on R+ and κ be a positive constant. Suppose

that for every almost every regular point t, f ′(t) ≤ −κ
whenever f(t) > 0. Then, f is non-increasing, and once it

reaches zero it stays zero forever. Moreover, f(t) = 0 for

all t ≥ f(0)/κ.

A function f on R+ is said to be Lipschitz continuous
with Lipschitz constant C (or simply C-Lipschitz continuous)
for some constant C > 0 if for any s, t ∈ R+,

|f(s)− f(t)| ≤ C |s− t| .
Lipschitz continuous functions are absolutely continuous. A

function f which takes values in k-dimensional Euclidean

space is said to be absolutely (respectively, Lipschitz) con-

tinuous if each of its component is absolutely (respectively,

Lipschitz) continuous. For any vector x in an Euclidean

Space, ‖x‖∞ and ‖x‖1 denote the maximum norm (also called

uniform norm) and the Manhattan norm of x respectively.

Let (fn) be a sequence of functions on R+ and let f be

a continuous function on R+. We say that fn → f uniformly
on compact sets, or simply fn → f u.o.c., if for each t > 0,

sup
0≤s≤t

|fn (s)− f (s)| → 0.

The following lemma was stated in Lemma 4.1 of [3].

Lemma 2.2: Let (fn) be a sequence of non-decreasing

real-valued functions on R+, and f be a continuous function

on R+. Assume that (fn) converges pointwise to f . Then the

convergence is u.o.c.

The following theorem on the convergence of random

variables is stated in Theorem 2.2.3 of [12].

Theorem 2.3: Suppose that a sequence of random variables

(ξn) converge to a random variable ξ in probability.

1) If ξn is uniformly integrable, then E [|ξ|] < ∞ and

limn→∞E [ξn] = E [ξ].
2) If ξn ≥ 0, E [ξ] < ∞, and limn→∞E [ξn] = E [ξ],

then ξn is uniformly integrable.

III. NETWORK STABILITY REGION

Consider an instance of MC-MR multihop wireless net-

work with a set V of networking nodes and a set A of node-

level communication links. Each node v has τ (v) radios,

and there are λ non-overlapping channels. In the fine-grained

network representation [15] of the MC-MR wireless network,

each communication link is encoded by an ordered quintuple
specifying the transmitting node, the receiver node, the radio

at the transmitting node, the radio at the receiving node, and

the channel. Specifically, for each node-level link (u, v) in A,

we make λ · τu · τv replications (u, v, i, j, k) for 1 ≤ i ≤ τu,

1 ≤ j ≤ τv , and 1 ≤ k ≤ λ. A replication (u, v, i, j, k) always

utilizes the i-th radio at u and the j-th radio at v over the k-th

channel. For each subset B of A, we use Bτ,λ to denote the set

of all replications of the links in B. In particular, Aτ,λ is the

set of all replicated links of the links in A. A subset I of Aτ,λ

can transmit at the same time if and only if (1) all replication

links in I are radio-disjoint, in other words, no pair share a

common radio, and (2) for each channel k, all the replication

links in I transmitting over channel k are conflict-free. Let

Iτ,λ denote the collection of the subsets of Aτ,λ which can

transmit successfully at the same time. For each I ∈ Iτ,λ, its

service rate is the vector d ∈ R
A
+ given by

da =
∣∣∣Ij ∩ {a}τ,λ

∣∣∣
for each a ∈ A.

A set

Π =
{
(Ij , 
j) ∈ Iτ,λ × R+ : 1 ≤ j ≤ m

}
is called a (fractional) link schedule of some d ∈ R

A
+ if

da =
m∑

j=1


j

∣∣∣Ij ∩ {a}τ,λ
∣∣∣

for each a ∈ A. The two values m and
∑m

j=1 
j are referred

to as the size and length (or latency) of Π respectively. For

any d ∈ R
A
+, the minimum latency χ∗ (d) of d is defined as

the minimum length of all fractional link schedules of d. The

stability region of the MC-MR wireless network is

P =
{
d ∈ R

A
+ : χ

∗ (d) < 1
}
.

Consider a link a ∈ A. An independent set I ∈ Iτ,λ is said

to be a-tight if each link e ∈ {a}τ,λ \ I has a conflict with
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some link in I ∩N≺
G (a)

τ,λ
. We use Φa to denote the convex

hull of service rates of the a-tight independent sets Iτ,λ. By

Lemma 2.4 in [21], for any a ∈ A and d ∈ Φa,

Γ
(
N≺

G (a) , a; d
) ≥ 1.

IV. STABILITY SUBREGION

Consider an instance of MC-MR wireless network specified

in Section III. Two links in A are said to have a conflict if

they cannot transmit at the same time over the same channel.

Furthermore, a conflicting pair of distinct links in A are said

to have primary conflict if there share one common end, and

secondary conflict otherwise. For the sake of convenience,

each link is said to have a self-conflict with itself. The concise
conflict graph [21] of the MC-MR wireless network is the

edge-weighted graph G on A in which there is an edge between

each conflicting pair of links (a, b) whose weight denoted by

c (a, b), is defined as follows:

• If b = a (i.e., self-conflict), then

ca,b = 1−
(
1− 1

τu

)(
1− 1

τv

)(
1− 1

λ

)

where u and v are the two endpoints of a.

• If a and b have a common endpoint u (i.e., a and b
have a primary conflict), then

ca,b = 1−
(
1− 1

τu

)(
1− 1

λ

)
.

• If a and b have the secondary conflict, then

ca,b =
1
λ
.

Note that c (a, b) = c (b, a). Let I denote the collection of the

independent sets in G. In other words, I is the collection of

the subsets of A which can transmit successfully at the same

time over the same channel. Note that G can be regarded

as a generalization of the conventional conflict graph of the

underlying SC-SR wireless network by adding a self-loop

at each link and assigning each edge a weight specified by

the function c. Thus, I is essentially the collection of the

independent sets of links in the underlying SC-SR wireless

network.

For any link a ∈ A, NG (a) denotes the set of neighbors of

a in G. Since G has a self-loop at each vertex, a is a neighbor

to itself, and hence a ∈ NG (a). Thus, NG (a) consists of all

links in A (including itself) having conflict with a. For any

link a, any subset B of links, and any d ∈ R
A
+, define

Γ (B, a; d) =
∑

b∈NG(a)∩B

ca,bdb.

Consider a link ordering ≺ of A. For any link a ∈ A, N≺
G (a)

denotes the set of neighbors of a in G preceding a in the

ordering ≺ plus a itself. For any d ∈ R
A
+, the value

max
a∈A

Γ
(
N≺

G (a) , a; d
)

is referred to as d-weighted inductivity of ≺ and is denoted by

Δ≺ (d). Let

Q≺ =
{
d ∈ R

A
+ : Δ

≺ (d) < 1
}
.

Theorem 4.1: Q≺ is a stability subregion of the greedy

link scheduling in ≺.

We shall prove Theorem 4.1 by applying the Malyshev-
Menshikov Criterion [11] for ergodicity of discrete-time

countable-state Markov chains. For any n ∈ N, we denote by

Z(n) (t) (respectively, X(n) (t), Y (n) (t)) the vector of queue

length (cumulative number of arriving packets, cumulative

number of transmitted packets) in a system at the end of time-

slot t with its initial total queue length
∥∥Z(n) (0)∥∥

1
= n. Let

T =

⎡
⎢⎢⎢

|A|∑
j=1

1

(1−Δ≺ (α))j

⎤
⎥⎥⎥ .

By the Malyshev-Menshikov Criterion [11], Theorem 4.1

follows immediately from the theorem below.

Theorem 4.2: For any α ∈ Q≺,

lim
n→∞E

[∥∥∥∥Z
(n) (nT )
n

∥∥∥∥
1

]
= 0.

The proof of Theorem 4.2 utilizes Theorem 2.3. By the

strong law of large numbers,∥∥∥∥X
(n) (nT )
n

∥∥∥∥
1

= T

∥∥∥∥X
(n) (nT )
nT

∥∥∥∥
1

→ T ‖α‖1
almost surely, and

E
[∥∥∥∥X

(n) (nT )
n

∥∥∥∥
1

]
= T ·E

[∥∥∥∥X
(n) (nT )
nT

∥∥∥∥
1

]

= T ‖α‖1 .

By Theorem 2.3, the sequence
(∥∥∥X(n)(nT )

n

∥∥∥
1

)
is uniformly

integrable. Since∥∥∥∥Z
(n) (nT )
n

∥∥∥∥
1

≤
∥∥∥∥X

(n) (nT )
n

∥∥∥∥
1

,

the sequence
(∥∥∥Z(n)(nT )

n

∥∥∥
1

)
is also uniformly integrable.

Again, by Theorem 2.3, Theorem 4.2 would hold if∥∥∥∥Z
(n) (nT )
n

∥∥∥∥
1

→ 0
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in probability. We will actually prove a stronger result that∥∥∥∥Z
(n) (nT )
n

∥∥∥∥
1

→ 0

almost surely. Consider a sample path (i.e. realization) ω of(
Z(n) (0) : n ∈ N

)
∪

(
X(n) (t) : n, t ∈ N

)
.

It is is said to be well-behaved if

lim
t→∞

X(n) (t, ω)
t

= α.

By the strong law of large numbers, every sample path is

almost surely well-behaved. We will prove that for any well-

behaved sample path ω,∥∥∥∥Z
(n) (nT, ω)

n

∥∥∥∥
1

→ 0,

from which we can conclude that∥∥∥∥Z
(n) (nT )
n

∥∥∥∥
1

→ 0

almost surely, and hence Theorem 4.2 holds.

Fix a well-behaved sample path ω. Denote X(n) (t, ω)
(respectively, Y (n) (t, ω), Z(n) (t, ω)) by x(n) (t) (respectively,

y(n) (t), z(n) (t)). Then, all of them are deterministic. In order

to show that ∥∥∥∥z
(n) (nT )
n

∥∥∥∥
1

→ 0,

it is sufficient to show that for any infinite increasing sequence

S of positive integers, there is an infinite subsequence S′ of

S along which ∥∥∥∥z
(n) (nT )
n

∥∥∥∥
1

→ 0.

So, we further fix an infinite increasing sequence S of positive

integers. For convenience, we define x(n) (0) and y(n) (0)
to be the vector of zeros. We extend x(n) (t) (respectively,

y(n) (t), z(n) (t)) to all non-negative real numbers by linear
interpolation. Then, for any t ≥ 0 and any n ∈ N,

z(n) (nt)
n

=
z(n) (0)
n

+
x(n) (nt)

n
− y(n) (nt)

n
.

The following property of the sequence
(
x(n) (t)

)
was proved

in [18].

Lemma 4.3: For any t ≥ 0, limn
x(n)(nt)

n = αt.

For each t ∈ N, let I(n) (t) ∈ Iτ,λ be the set of replicated

links which are scheduled to transmit in the t-th time slot.

Let d(n) (t) ∈ R
A
+ be the aggregation of 1I(n)(t). The average

service rate in a time interval [t1, t2] is defined to be

y(n) (t1, t2) =
y(n) (t2)− y(n) (t1)

t2 − t1
.

It has the following properties, which were proved in [18].

Lemma 4.4: Consider any 0 ≤ t1 < t2.

1) For any s = (1− ε) t1 + εt2 for some ε ∈ [0, 1],
y(n) (t1, t2) = εy(n) (t1, s) + (1− ε) y(n) (s, t2) .

2) y(n) (t1, t2) is a convex combination of{
d(n) (t) : �t1+ 1 ≤ t ≤ �t2� , t ∈ N

}
.

3)
∥∥y(n) (t1, t2)∥∥∞ ≤ ‖τ‖∞.

Note that for any 0 ≤ t1 < t2,

y(n)(nt2)
n − y(n)(nt1)

n

t2 − t1

=
y(n) (nt2)− y(n) (nt1)

nt2 − nt1
= y(n) (nt1, nt2) .

By the third part of Lemma 4.4,
y(n)(nt)

n is ‖τ‖∞-Lipschitz

continuous, and hence is equicontinuous. By the Arzela-Ascoli

theorem, there is an infinite subsequence S1 of S along which
y(n)(nt)

n converges to some function β (t). In addition, β (t) is

also ‖τ‖∞-Lipschitz continuous. Since∥∥∥∥z
(n) (0)
n

∥∥∥∥
1

= 1

for any n ∈ N, there is an infinite subsequence S′ of S1 along

which
z(n)(0)

n converges. Therefore, along the sequence S′,
z(n)(0)

n ,
x(n)(nt)

n and
y(n)(nt)

n all converge. Since both
x(n)(nt)

n

and
y(n)(nt)

n are increasing function of t for each n, they

converge u.o.c along S′ to αt and β (t) respectively by Lemma

2.2. As

z(n) (nt)
n

=
z(n) (0)
n

+
x(n) (nt)

n
− y(n) (nt)

n
,

z(n)(nt)
n also converges u.o.c. along S′ to some function γ (t).

Since ∥∥∥∥z
(n) (0)
n

∥∥∥∥
1

= 1,

‖γ (0)‖1 = 1. In addition,

γ (t) = γ (0) + αt− β (t) .

Clearly, γ (t) is also Lipschitz continuous with Lipschitz

constant ‖α‖∞ + ‖τ‖∞.

A time t ∈ R+ is said to be a regular point if all

components of γ (t) are differentiable at t. As γ (t) is Lipschitz

continuous, almost every time t ∈ R+ is a regular point. Since

β (t) = γ (t)− γ (0)− αt,
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β (t) is also differentiable at any regular point t and

γ′ (t) = α− β′ (t) .

In the next, we derive the properties of β′ (t).

Lemma 4.5: Consider a link a ∈ A. For any regular point

t > 0 with γa (t) > 0, β′ (t) ∈ Φa.

The proof of Lemma 4.5 is quite involved, and so are

relegated to Appendix. Let t0 = 0, and for each 1 ≤ i ≤ |A|
let

ti =
i∑

j=1

1

(1−Δ≺ (α))j
.

Lemma 4.6: For each 1 ≤ i ≤ |A|, γai
(t) = 0 whenever

t ≥ ti.

Proof: We prove the lemma by contradiction. Assume to

the contrary the lemma is false, and let i be the smallest index

between 1 and |A| such that γai
(t) > 0 for some t ≥ ti.

Consider any regular point t > ti−1 with γai
(t) > 0. By

Lemma 4.5, β′ (t) ∈ ΦN≺
G (ai) and hence

Γ
(
N≺

G (ai) , ai;β′ (t)
) ≥ 1.

Thus,

Γ
(
N≺

G (ai) , ai; γ′ (t)
)

= Γ
(
N≺

G (ai) , ai;α− β′ (t)
)

= Γ
(
N≺

G (ai) , ai;α
)− Γ (

N≺
G (ai) , ai;β′ (t)

)
≤ Δ≺ (α)− 1.

On the other hand, by the choice of i,

Γ
(
N≺

G (ai) , ai; γ′ (t)
)

=
∑

b∈N≺
G (ai)

cai,bγ
′
b (t)

= cai,aiγ
′
ai
(t) .

Therefore,

γ′
ai
(t) ≤ Δ≺ (α)− 1

cai,ai

< 0.

By Lemma 2.1 we have that γai (t) = 0 for any

t ≥ ti−1 +
γai
(ti−1)

1−Δ≺(α)
cai,ai

= ti−1 +
cai,ai

1−Δ≺
i (α)

γai
(ti−1) .

However, since

γai (ti−1) = γai (0) + αaiti−1 − βai (ti−1)
≤ γai

(0) + αai
ti−1

≤ 1 + αai
ti−1,

we have

ti−1 +
cai,ai

1−Δ≺ (α)
γai
(ti−1)

≤ ti−1 +
cai,ai

1−Δ≺ (α)
(1 + αaiti−1)

=
1−Δ≺ (α) + cai,ai

αai

1−Δ≺ (α)
ti−1 +

cai,ai

1−Δ≺ (α)

≤ 1
1−Δ≺ (α)

ti−1 +
1

1−Δ≺ (α)
= ti,

where the second inequality following from the fact that

cai,ai
αai

≤ Δ≺ (α)

and

cai,ai
≤ 1.

Thus, γai (t) = 0 for any t ≥ ti, which is a contradiction. So,

the lemma holds.

Lemma 4.6 yields that γ (t) = 0 for t ≥ t|A|. Since T ≥
t|A|, we have ∥∥∥∥z

(n) (nT )
n

∥∥∥∥
1

→ 0

along the infinite sequence S′. This completes the proof of

Theorem 4.2.

V. THROUGHPUT EFFICIENCY RATIO

In this section, we derive the lower bounds on the through-

put efficiency ratio of a static GLS. Given a link ordering ≺ of

A, its backward local independence number (BLIN) is defined

to be

max
a∈A

max
{|I| : I ⊆ N≺

G (a) , I ∈ I
}
.

Theorem 5.1: Consider a link ordering ≺ with BLIN μ.

Then Q≺ ⊇ 1
μ+2P . In addition, for SC-SR wireless networks,

Q≺ ⊇ 1
μP .

Proof: Consider any d ∈ P . By the first part of Lemma

2.7 in [21],

Δ≺ (d) ≤ (μ+ 2)χ∗ (d) < μ+ 2.

Thus, d ∈ (μ+ 2)Q≺. Hence, P ⊆ (μ+ 2)Q≺, which

implies that Q≺ ⊇ 1
μ+2P.

Next, we consider the special SC-SR setting. Consider any

d ∈ P . By Corollary 5.2 in [14],

Δ≺ (d) ≤ μχ∗ (d) < μ.

Thus, d ∈ μQ≺. Hence, P ⊆ μQ≺, which implies that Q≺ ⊇
1
μP.
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Now, we apply the general Theorem 5.1 to two special

static link orderings under the 802.11 interference model. The

lexicographic ordering sorts all links in the lexicographic order

of their left endpoints. The interference radius of a link is

defined to be the larger one of the interference radii of its

endpoints, and the interference radius decreasing ordering
sorts all links in descending order of the interference radius.

Since BLIN only depends on the topology of G rather than the

edge weight function c, the following properties which hold

in the convectional conflict graph of the underlying SC-SR

wireless network also hold in the G:

• With uniform interference radii, the lexicographic or-

dering of A has BLIN at most 6 [6].

• With arbitrary interference radii, the interference ra-

dius decreasing ordering of A has BLIN at most 23
[14].

Theorem 4.1 and Theorem 5.1 immediately implies the

following two corollaries.

Corollary 5.2: Under the 802.11 interference model with

uniform interference radii, the throughput efficiency ratio of

the static GLS in lexicographic ordering is at least 1/8 in

MC-MR wireless networks and at least 1/6 in SC-SR wireless

networks.

Corollary 5.3: Under the 802.11 interference model with

arbitrary interference radii, the throughput efficiency ratio of

the static GLS in interference radius decreasing ordering is at

least 1/25 in MC-MR wireless networks and at least 1/23 in

SC-SR wireless networks.

VI. DISCUSSIONS

The static GLS in either the lexicographic ordering or the

interference radius decreasing ordering has much implemen-

tation than the LQF scheduling. In this section, we compare

their stability performances.

For any d ∈ R
A
+, let Δ∗ (d) denote the smallest d-weighted

inductivity of all possible link orderings of A. It was shown

in [18] that

Q∗ =
{
d ∈ R

A
+ : Δ

∗ (d) < 1
}
.

is a stability subregion of the LQF scheduling. Consider any

static link ordering ≺ of A. Since

Δ∗ (d) ≤ Δ≺ (d)

for any d ∈ R
A
+, we have Q∗ ⊇ Q≺. Thus, the stability

subregion Q≺ of the static GLS in the link ordering ≺ is also a

stability subregion of the LQF scheduling. On the other hand,

the throughput efficiency ratio of the LQF scheduling under

the 802.11 interference model has the following best-known

lower bounds:

• With uniform interference radii, the throughput effi-

ciency ratio of the LQF scheduling is at least 1/8 in

MC-MR wireless networks [18] and exactly 1/6 in

SC-SR wireless networks [6].

• With arbitrary interference radii, the throughput effi-

ciency ratio of the LQF scheduling is at least 1/20 in

MC-MR wireless networks and at least 1/16 in SC-SR

wireless networks [18].

Thus, with uniform interference radii both the LQF scheduling

and the static GLS in lexicographic ordering have the same

best-known lower bounds on the throughput efficiency ratio

by Corollary 5.2. With arbitrary interference radii, the LQF
scheduling only has slightly better throughput efficiency ratio

than the static GLS in interference radius decreasing ordering

by Corollary 5.3. Therefore, with uniform (respectively, arbi-

trary) interference radii we advocate the static GLS in lexico-

graphic ordering (respectively, interference radius decreasing

ordering).
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APPENDIX

In this appendix, we prove Lemma 4.5. Fix a regular point

t > 0 with γa (t) > 0. Consider any ε ∈ (0, 1). Then, there

exists δ > 0 such that for any s ∈ (t, t+ δ],

γa (s) >
2
3
γa (t) ,

and ∥∥∥∥β (s)− β (t)
s− t

− β′ (t)
∥∥∥∥

∞
≤ ε.

Let ε1 = ε/ ‖τ‖∞. By the u.o.c. convergence, there exists a

sufficiently large n ∈ S′ such that

n ≥ max
{
1
ε1δ

,
3

γa (t)
‖τ‖∞

}

and for any s ∈ [t, t+ δ],∥∥∥∥y
(n) (ns)
n

− β (s)
∥∥∥∥

∞
<
ε

2
δ

∣∣∣∣∣
z
(n)
a (ns)
n

− γa (s)

∣∣∣∣∣ <
1
3
γa (t) .

We make the following two claims.

Claim 6.1:
∥∥y(n) (n (t+ ε1δ) , n (t+ δ))− β′ (t)

∥∥
∞ ≤

3ε.

Proof: We first show that∥∥∥y(n) (nt, n (t+ δ))− β′ (t)
∥∥∥

∞
≤ 2ε,

Since∥∥∥y(n) (nt, n (t+ δ))− (β (t+ δ)− β (t))
∥∥∥

∞

=

∥∥∥∥∥
y(n) (n (t+ δ))− y

(n)
l (nt)

n
− (β (t+ δ)− β (t))

∥∥∥∥∥
∞

≤
∥∥∥∥y
(n) (n (t+ δ))

n
− β (t+ δ)

∥∥∥∥
∞
+

∥∥∥∥y
(n) (nt)
n

− β (t)
∥∥∥∥

∞
< εδ,

we have∥∥∥∥y(n) (nt, n (t+ δ))− β (t+ δ)− β (t)
δ

∥∥∥∥
∞

=
∥∥∥∥y
(n) (n (t+ δ))− y(n) (nt)

nδ
− β (t+ δ)− β (t)

δ

∥∥∥∥
∞

< ε.

Hence, ∥∥∥y(n) (nt, n (t+ δ))− β′ (t)
∥∥∥

∞

≤
∥∥∥∥y(n) (nt, n (t+ δ))− β (t+ δ)− β (t)

δ

∥∥∥∥
∞

+
∥∥∥∥β (t+ δ)− β (t)

δ
− β′ (t)

∥∥∥∥
∞

<2ε.

Now, we show that∥∥∥y(n) (nt, n (t+ δ))− y(n) (n (t+ ε1δ) , n (t+ δ))
∥∥∥

∞
≤ ε.

Since

n (t+ ε1δ) = nt+ ε1 (n (t+ δ)− nt) ,

by the first part of Lemma 4.4 we have

y(n) (nt, n (t+ δ))

=ε1y(n) (nt, n (t+ ε1δ))+

(1− ε1) y(n) (n (t+ ε1δ) , n (t+ δ)) .
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Hence,

y(n) (nt, n (t+ δ))− y(n) (n (t+ ε1δ) , n (t+ δ))

= ε1

(
y(n) (nt, n (t+ ε1δ))− y(n) (n (t+ ε1δ) , n (t+ δ))

)
.

By the first part of Lemma 4.4,∥∥∥y(n) (nt, n (t+ δ))− y(n) (n (t+ ε1δ) , n (t+ δ))
∥∥∥

∞

≤ ε1max
{ ∥∥y(n) (nt, n (t+ ε1δ))

∥∥
∞ ,∥∥y(n) (n (t+ ε1δ) , n (t+ δ))

∥∥
∞

}

≤ ε1 ‖τ‖∞
= ε.

The two inequalities shown above yield the inequality in

the lemma immediately.

Claim 6.2: y(n) (n (t+ ε1δ) , n (t+ δ)) ∈ Φa.

Proof: By the second part of Lemma 4.4,

y(n) (n (t+ ε1δ) , n (t+ δ)) is a convex combination of{
d(n) (j) : �n (t+ ε1δ)+ 1 ≤ j ≤ �n (t+ δ)�

}
.

Thus, it sufficient to show that I(n) (j) is a-tight for any integer

j between �n (t+ ε1δ)+ 1 and �n (t+ δ)�.
We first show that for any s ∈ [t, t+ δ],

z(n)a (ns) > ‖τ‖∞ .

Indeed, since ∣∣∣∣∣
z
(n)
a (ns)
n

− γa (s)

∣∣∣∣∣ <
1
3
γa (t) .

Therefore,

z
(n)
a (ns)
n

> γa (s)− 13γa (t) >
1
3
γa (t) ,

which implies

z(n)a (ns) >
1
3
γa (t)n ≥ ‖τ‖∞ .

So, the desired inequality holds.

Consider any integer j between �n (t+ ε1δ) + 1 and

�n (t+ δ)�. Since

�n (t+ ε1δ) − nt

> n (t+ ε1δ)− 1− nt

= nε1δ − 1
≥ 0

and

�n (t+ δ)� − 1 < n (t+ δ) ,

we have

nt ≤ �n (t+ ε1δ) ≤ j − 1 ≤ �n (t+ δ)� − 1 < n (t+ δ)

Thus, at the end of the (j − 1)-th times-slot, the queue length

of the link a is is greater than ‖τ‖∞. Thus, I(n) (j) is a-tight.

Since Φa is compact, the above two claims together with

fact that ε can be chosen arbitrarily small implies the correct-

ness of Lemma 4.5.
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