
Maximizing System’s Total Accrued Utility Value
for Parallel and Time-Sensitive Applications

Shuhui Li, Miao Song, Peng-jun Wan, Shangping Ren
Department of Computer Science

Illinois Institute of Technology

Email:{sli38,msong8}@hawk.iit.edu, {wan, ren}@iit.edu

Abstract—For a time-sensitive application, the usefulness or
the quality of the application’s end result depends on the
time when the result is delivered, or when the application
is completed. A Time Utility Function (TUF) is often used
to represent the dependency between an application’s accrued
value and its completion time. For parallel and time-sensitive
applications, each application has multiple tasks that must be
executed concurrently in order to produce a result. Therefore,
their execution occupies resources in two dimensions: spatial,
i.e., the number of processing units needed to support concurrent
tasks, and temporal, i.e., time duration needed to complete the
application. Because of the parallelism and time-sensitive features
of the applications, the execution interference among parallel and
time-sensitive applications can be both in spatial and temporal
domains. In this paper, we first introduce a metric to measure
the spatial-temporal interference on applications’ accrued values.
Second, based on the metric, we develop a scheduling algo-
rithm, i.e., the Discounting Spatial-Temporal Interference (DSTI)
scheduling algorithm, to maximize system’s total accrued utility
value for a given set of parallel and time-sensitive applications.
Our simulation results show that the proposed DSTI algorithm
results in close to optimal solutions and also has clear advantage
over existing approaches in the literature in terms of system total
accrued utility values and profitable application ratio. It accrues
up to 164%, 150%, and 97% more system value, and up to 21%,
35%, and 18% higher profitable application ratio than the Gang
EDF, the FCFS with backfilling, and the 0-1 Knapsack based
scheduling algorithms, respectively.

I. INTRODUCTION

Many parallel applications are time-sensitive. Examples of

these applications include threat detection applications in air

defense systems [1], radar tracking applications [2], [3], and

weather forecasting applications [4], to name a few. These

applications not only involve multiple concurrent tasks, the

usefulness or the quality of their end results also depends on

the time when the results are delivered, or when the applica-

tions are completed [5]. Take the threat detection application

as an example, clearly, the earlier the threat is detected, the

higher value the application provides [1].

For time-sensitive applications, a Time Utility Function

(TUF) [6], [7] is often used to represent the dependency

between an application’s accrued value and its completion

time. Different applications may have different time utility

functions to indicate their different time sensitivity. For ex-

ample, a video surveillance application may be more sensitive

to its completion time than a weather forecasting application.

In this case, the TUF for the video surveillance application will

have a higher value than the TUF of the weather forecasting

application.

Another aspect of a parallel and time-sensitive application is

that every concurrent task of the application exclusively occu-

pies a processing unit [8]. Hence, the execution of a parallel

and time-sensitive application occupies system resources in

two dimensions: spatial, i.e., the number of processing units

needed (which is the same as the number of concurrent tasks),

and temporal, i.e., the time interval needed to complete the ap-

plication’s execution. Under limited resources, the competition

among applications in either dimension may delay some appli-

cations’ completion time and result in utility value decreases.

In order to maximize the system’s total accrued utility value

for a given set of applications, scheduling decisions have to

be made about applications’ execution orders.

Scheduling problem on a single processor and multiple

processors for a set of sequential applications has been studied

for many years in real-time community [9]–[12]. However,

as summarized in [12], in real-time scheduling community,

each application is abstracted as a single task and task is

the smallest scheduling unit, i.e., there is no parallelism

within an application. As a result, scheduling decisions only

resolve temporal conflict among applications. However, for

parallel and time-sensitive applications, the execution of one

application can have both spatial and temporal influence on

the remaining applications. As different applications may have

different number of concurrent tasks and have different execu-

tion time, their execution influence on other applications in the

spatial and temporal domain may be different. Furthermore,

as different application’s sensitivity to their completion times,

i.e., their TUF functions, may be different, the application

execution order could significantly impact the system’s total

accrued utility value.

Many researchers have looked into the problem of schedul-

ing parallel applications, i.e., simultaneous use of multiple

processors for an individual application. For instance, the

First Come First Serve with backfilling (bFCFS) scheduling

algorithm [13] is a commonly used approach for scheduling

parallel applications on multiprocessors when applications

are not time-sensitive and scheduling fairness and system

utilization are the only concerns.

Kato et al. [14] have introduced the Gang EDF scheduling

algorithm to schedule parallel applications with deadline con-

straints. The Gang EDF scheduling algorithm applies the EDF

978-1-4799-7575-4/14/$31.00 ©2014 IEEE

policy to Gang scheduling to explore the real-time deadline

guarantee of parallel application systems. Lakshmanan et

al. [15] and Saifullah et al. [3] have studied the problem

of scheduling parallel applications on multiprocessors. These

studies have all focused on the schedulability analysis of a

given set of applications on a given set of resources, rather

than optimizing system accrued value under given resources.

Kwon et al. extended the EDF scheduling policy to max-

imize the utility value of parallel applications with given

deadlines [16]. However, their work is based on the assumption

that all applications have the same TUFs, and all applications

have the same release time. These assumptions may be too

restrictive for a real world system.

Although for given system resources and applications’ util-

ity values, the solution of the 0-1 Knapsack problem [17]

can be applied to obtain the maximum system total accrued

utility value at a time when a scheduling decision has to

be made. However, the application value used in the 0-1

Knapsack problem is a constant and does not reflect possible

change at later time. Hence, the scheduling decision made

at its scheduling time points may not be the best choice for

maximizing system’s total accrued utility value.

In this paper, we focus on scheduling parallel and time-

sensitive applications. Our goal is to maximize the system’s

total accrued utility value for a given application set. To

achieve the goal, we first introduce a metric to measure the

spatial-temporal interference among applications with respect

to accrued values. Second, based on the metric, we develop

a scheduling algorithm, i.e., the Discounting Spatial-Temporal

Interference (DSTI) scheduling algorithm, to maximize sys-

tem’s total accrued utility value.

The rest of the paper is organized as follows. In Section II,

we define the parallel and time-sensitive application model

and introduce terms used in the paper. Based on the model, we

formulate the system accrued utility value maximization prob-

lem. The calculation of spatial-temporal interference among

parallel and time-sensitive applications is given in Section III.

Section IV presents the Discounting Spatial-Temporal Interfer-

ence (DSTI) scheduling algorithm. Experimental studies and

result comparisons are discussed in Section V. We conclude

the paper in Section VI.

II. PROBLEM FORMULATION

In this section, we first introduce the models and as-

sumptions used in the paper. We then formulate the system

total accrued utility value maximization problem the paper to

address.

Resource Model (R): in the system, there is a set
of M homogeneous and independent processing units, i.e.,

R = {R1, R2, · · · , RM}. At any time, each processing unit
can only process one task. The execution of tasks is non-

preemptive. We also assume that the system operates in

discrete time domain [18], [19].

Parallel and Time-Sensitive Application (A): a parallel
and time-sensitive application A is defined by a quadruple, i.e.,
A = (r, e,m,G(t)), where r and e are the application’s release

time and execution time, respectively; m is the total number
of tasks that must be executed concurrently on different

processing units; G(t) is the application completion time utility
function. It is a non-increasing function. The time utility
function represents the accrued value when the application

finishes. As an application cannot finish before r + e, i.e.,
t ≥ r + e, hence, G(t) ≤ G(r + e).
Though any non-increasing function can serve as time-

sensitive application’s completion time utility function, for

simplification of discussion and illustration purposes, we as-

sume that G(t) is a linear function. However, it is worth
pointing out that the work presented in the paper is not based

on this assumption, rather, it is only based on the requirement

that G(t) is non-increasing.
In particular, we assume that

G(t) =
{
−a(t− t0) r + e ≤ t ≤ t0
0 t > t0

(1)

As G(t) is non-increasing, it intersects with the x-axis. The
first time point d where d = G−1(0) is called non-profit-
bearing time point. For the completion time utility function
defined in (1) G(t0) = 0, the non-profit-bearing time point is
d = t0. Fig. 1 depicts G(t) defined in (1).

t

a× t0

G(t)

d = t0r + er

Fig. 1: Application completion time utility function

Depending on the number of concurrent tasks an applica-

tion contains, parallel and time-sensitive applications can be

categorized into two categories [16], i.e., wide applications
when m > M/2 and narrow applications when m ≤ M/2.
It is worth highlighting that if a parallel application starts its

execution at time s, it means that all its parallel tasks start at
time s on m different processing units.
As each wide parallel and time-sensitive application requires

more than half of the system processing units, hence, no

more than one application can be executed simultaneously by

the system. Therefore, the system total accrued utility value

maximization problem for wide parallel and time-sensitive
applications degenerates to a uniprocessor system utility max-

imization problem [16]. Existing scheduling algorithms, such

as the Generic Utility Scheduling (GUS) algorithm introduced

by Li et al. [20], the Profit and Penalty Aware (PP-aware)

scheduling algorithm [21] and the Prediction-based Highest

Gain Density First (PHGDF) scheduling algorithm [22] pro-

posed by Li et al., can be applied to solve the problem.

Therefore, the focus of the paper is on scheduling narrow

parallel and time-sensitive applications. The problem to be

addressed is defined below:

Problem 1: Given a set of M homogeneous, independent,

and non-preemptive processing units R = {R1, R2, · · · , RM}
and a set of parallel and time-sensitive applications Γ =
{A1,A2, · · · ,AN} where ∀Ai ∈ Γ, Ai = (ri, ei,mi,Gi(t)),
and mi ≤ M/2, develop a scheduling algorithm to decide
(Ai, si), i.e., the start time (si) for each application Ai ∈ Γ,
such that

max
∑
Ai∈Γ

Gi(si + ei) (2)

subject to

∀Ai ∈ Γ, mi +
∑

∀Ak ∈ Γ ∧ sk ≤ si < sk + ek

mk ≤M (3)

�
We present a solution to the problem in the following

sections.

III. SPATIAL-TEMPORAL INTERFERENCE AMONG

PARALLEL AND TIME-SENSITIVE APPLICATIONS

Before we formally define application execution interfer-

ence and calculate the interference impact on system’s total

accrued utility value, we use an example to explain the

intuition behind these two concepts.

A. Example

Example 1: Assume a system has M = 6 homogeneous,
independent, and non-preemptive processing units and three

independent narrow parallel and time-sensitive applications,

i.e., Γ = {A1,A2,A3} where
• A1 = (0, 3, 2,−7(t− 5))
• A2 = (1, 1, 2,−6(t− 5))
• A3 = (1, 3, 3,−5(t− 6))

For the given three applications, their non-profit-bearing time

points are d1 = 5, d2 = 5, and d3 = 6, respectively.

P1

P2

P3

P4

P5

P6

0 1 2 3 4 5 t

A1 A3A2

Fig. 2: (A1, 0), (A2, 1), (A3, 2)

At time t = 0, application A1 starts its execution. As m1 =
2, only four processing units are available in the system for
other applications after time 0.
At time t = 1, A2 and A3 are released and they need

two and three processing units, respectively. If we schedule

(A2, 1) (as show in Fig. 2), A3’s start time is delayed and it

can only be scheduled at time 2. As a result its completion

time increases and its utility value contributed to the system

decreases.

Clearly, the execution of A1 at time 0 may interfere with the
execution of A2 and A3 at time 1; and the execution of either
A2 or A3 may interfere with the A3 or A2. The probability of

whether such interference will happen depends on the available

resource in the system, the resource consumed by applications

that have started, and the resource needed by applications to

be executed.

At time 1, as A3 needs more resources than A2, it is more

likely that A1 will interfere with A3’s execution than interfere

with A2. We can calculate the probability based on available,

consumed, and needed resources. For instance, at time 1, as
A2 needs 2 processing units, the probability that it is interfered
by (A1, 0) is

2
6−2 =

1
2 . Similarly, the probability of A3 being

interfered by (A1, 0) is
3

6−2 =
3
4 . However, the probability

only measures the possibility of spatial interference among

parallel applications.

The duration of possible interference is another concern.

For instance, if we schedule A2 at time 1 and A3 at time

2, application A2 will not interfere with the execution of A3

as by the time application A3 is to start, the A2 has already

finished. But if we schedule A3 at time 1, we cannot schedule
A2 on A3’s processing units until time 4, i.e., the interference
duration is 3 time units.
When considering application execution interference, as

different applications have different completion time utility

functions, we have to take into account not only the possibility

of potential interference and the duration of the interference,

but also the severity of the interference with respect to system

total accrued utility values for all applications.

Assume the given three applications are scheduled as

(A1, 0), (A2, 1), (A3, 2). As (A3, 2) is the last one to start,
it does not interfere with any other applications. Therefore, its

utility value is its original completion time utility value, i.e.,

G3(2 + 3) = 5.
However, for (A2, 1), as it starts before (A3, 2), it may

interfere with A3. But, as mentioned before, since A2’s

execution duration is [1, 2], it does not interfere with (A3, 2)’s
utility value contributed to the system. Hence, (A2, 1)’s utility
value for the system is G2(1 + 1) = 18.
For (A1, 0), as its execution interval is [0, 3], it interferes

with both (A2, 1) and (A3, 2)’s utility value to the system.
Hence, its accrued value has to be adjusted to reflect other
applications’ utility reductions caused by its interference:

G1(0 + 3)− 1

2
× G2(1 + 1)− 3

4
× G3(2 + 3)

= 14− 1

2
× 18− 3

4
× 5

= 1.25

We observe that even taking into consideration of po-

tential A2’s and A3’s utility reduction, (A1, 0) can still
bring utility value of 1.25 to the system. Therefore,

(A1, 0), (A2, 1), (A3, 2) is a schedule with three profitable
applications.

�

B. Calculating Spatial-Temporal Interference

From Example 1, we have observed that the interference of

one application on the other depends on both interfering and

interfered applications processor demand and time demand.

We introduce the interference factor C((Ai, sj), (Ak, sl))
metric to measure the potential that (Ai, sj) has interference
on (Ak, sl). We consider two cases, i.e., interference between
two different applications and interference within the same

application but with various start times.

Case 1: interference between two different applications, i.e.,
(Ai, sj) on (Ak, sl), where i �= k. In this case, the interfer-
ence only exists within the execution interval of interfering

application, i.e., Ai.
C((Ai, sj), (Ak, sl)) = mk

M −mi (4)

where i �= k ∧ sj ≤ sl < sj + ei.
Case 2: interference of (Ai, sj) on (Ai, sl), where sj ≤ sl.

C((Ai, sj), (Ai, sl)) = 1 (5)

where sj ≤ sl.
Combining these two cases, we have the following defini-

tion:
Interference Factor: given (Ai, sj) and (Ak, sl), the

potential interference factor of (Ai, sj) on (Ak, sl), i.e.,
C((Ai, sj), (Ak, sl)) is:

C((Ai, sj), (Ak, sl)
)
=

⎧⎪⎨
⎪⎩

mk
M−mi

i �= k ∧ sj ≤ sl < sj + ei

1 i = k ∧ sj ≤ sl
0 otherwise

(6)

It is worth pointing out that C((Ai, sj), (Ak, sl)) may not
necessarily be the same as C((Ak, sl), (Ai, sj)).
C. Adjusting Application Accrued Utility Value by Discount-
ing Potential Interference

The interference factor indicates the potential that the exe-

cution of an application Ai may postpone the execution of
another application Aj , and hence causes application Aj’s
accrued utility value to decrease. Therefore when we calculate

application Ai’s accrued value, we have to take into consid-
eration of potential decreases of other applications’ accrued

values caused by the execution of application Ai.
An application which starts within time interval [r, d − e]

will bring utility value to the system as it will complete before

its non-profit-bearing point. Therefore, each application (A)
may have several possible profitable start time candidates

(A, s), where r ≤ s ≤ d − e. For a given application set
Γ = {A1,A2, · · · ,AN}, we can order their possible
profitable start time candidates (A, s) based on the

descending order of s, and obtain an ordered set S =
{(A′1, s′1), · · · (A′i, s′i), (A′j , s′j), · · · , (A′k, s′k) · · · , (A′L, s′L)},
where s′i ≥ s′j if i < j. If A′i = A′k, then (A′i, s′i) and
(A′k, s′k) belong to same application but with different start
times.
Let f be a mapping between A′ in the ordered set S and

the index in the application set Γ. Let En−1 denote an ordered
subset of S which may be interfered by (A′n, s′n). We can

adjust the application’s accrued utility value recursively as
following for 1 < n ≤ L:

Ḡf(A′
1)
(s′1) =Gf(A′

1)
(s′1 + ef(A′

1)
)

Ḡf(A′
n)(s

′
n) =Gf(A′

n)(s
′
n + ef(A′

n))

−
∑

∀(A′
t,s

′
t)∈En−1

C((A′
n, s

′
n), (A′

t, s
′
t)
) · Ḡf(A′

t)
(s′t)

(7)

and

E0 = ∅

En−1 =

{
{(A′

n−1, s
′
n−1)} ∪ En−2 if Ḡf(A′

n−1)
(s′n−1) > 0

En−2 otherwise
(8)

After iterating the ordered set S, the ordered set E contains
only the applications with start time points at which executing

the applications will contribute utility value to the system.

We use an example to explain the process for adjusting

application’s accrued utility value.

Example 2: Consider the three applications as given in
Example 1.

The possible start time interval for A1 is [0, 2], A2 is [1, 4]
and A3 is [1, 3]. For each possible start time s, we calculate
adjusted utility, i.e., Ḡ(s). Only if Ḡ(s) > 0, we consider
(A, s) as a profitable candidate.
In order to calculate Ḡ(s) for application A, we have to

have the order set S and form En−1 as defined in Eq. (8). In
this example, we have possible (3 + 4 + 3 = 10) different
start time for the three applications, i.e., (A1, 0), (A1, 1),
(A1, 2), (A2, 1), (A2, 2), (A2, 3), (A2, 4), (A3, 1), (A3, 2),
and (A3, 3). As S is ordered set based on application start
times, we have

S = {(A2, 4), (A3, 3), (A2, 3), (A3, 2), (A2, 2),

(A1, 2), (A3, 1), (A2, 1), (A1, 1), (A1, 0)}
Based on recursive processing of adjusted utility value (7)

and (8), we have Ḡ2(4) = G2(4 + 1) = 0, and E1 = E0 = ∅;
therefore Ḡ3(3) = G3(3+3) = 0 and hence E2 = E1 = ∅. As
Ḡ2(3) = G2(3+1) = 6 > 0, we have E3 = {(A2, 3)}∪E2 ={(A2, 3)}. For (A3, 2), its adjusted utility is

Ḡ3(2) = G3(2 + 3)− C((A3, 2), (A2, 3)
) · Ḡ2(3)

= 5− 2

3
× 6

= 1 > 0

therefore, E4 = {(A3, 2)} ∪ E3 = {(A3, 2), (A2, 3)}.
Continue the process, we have six profitable candidates as

shown in Fig. 3 and (A1, 0) with Ḡ1(0) = 6.6875 is the earliest
application. �

(A2, 3)

(A3, 2)

(A2, 1)

(A3, 1)

(A2, 2)

(A1, 0)

Fig. 3: Profitable candidates

Once we have the profitable candidates, our next step is to

decide the start time for each application from the profitable

candidates.

IV. DISCOUNTING SPATIAL-TEMPORAL INTERFERENCE

SCHEDULING ALGORITHM FOR MAXIMIZING SYSTEM

TOTAL ACCRUED UTILITY VALUE

From the previous section, we are able to obtain the

profitable candidates for starting given applications. To fully

utilize the processing units, we greedily schedule from the

earliest start time. Continue Example 2, based on profitable

candidates shown in Fig. 3, (A1, 0) is chosen for the schedule;
so is (A2, 1). As system capacity is not enough for (A3, 1), the
candidate of (A3, 1) is removed. After checking all profitable
candidates in ascending start time order, we have schedule(
(A1, 0), (A2, 1), (A3, 2)

)
.

From the example, we can construct a schedule for a given

set of parallel and time-sensitive applications based on their

execution spatial-temporal interference in the following three

steps:

Step 1: form the original candidate set S. For a given set of
applications, the size of S is known a prior.
Step 2: decide profitable candidate set E. As finding E is an
iterative process, hence, until the process completes, we do not

know the size of the E. To accommodate the dynamic growth
of E, we can use stack structure to store the elements of E.
Step 3: decide a schedule for a given application set based on
the profitable candidate stack E.
Algorithm 1 gives the details of the DSTI algorithm.

Algorithm 1: DSTI SCHEDULING(R,Γ)
1: set S = E = Γ′ = ∅;
2: for Ai ∈ Γ do
3: S ← S ∪ {(Ai, ri), · · · , (Ai, di − ei)};
4: end for
5: sort S in descending order of start time s;
6: for j = 1 to |S| do
7: calculate Ḡi(sj)
8: if Ḡi(sj) > 0 then
9: push(E, (Ai, sj));
10: end if
11: end for
12: while !empty(E) do
13: (Ai, sj) = pop(E);
14: if (Ai /∈ Γ′) ∧ (mi +

∑
∀(Ak, sl) ∈ Γ′∧
sl ≤ sj < sl + ek

mk ≤M)

then
15: add (Ai, sj) to Γ′
16: end if
17: end while
18: return Γ′

where line 2 to line 5 in Algorithm 1 implements the first

step, i.e., finding the original candidate set S and ordering the

elements in descending order of the start times. The for loop
from line 6 to line 11 implements the second step, i.e., finding

the profitable candidate. It calculates the adjusted application

accrued utility, and pushes the profitable (Ai, sj) into the stack
E. Line 12 to line 17 implements the third step which checks
whether application Ai is already in the schedule and whether
the system’s capacity is enough for (Ai, sj). If the application
is not in the schedule and there is enough capacity in the

system, then it is added into the schedule Γ′. Otherwise, the
candidate is ignored.
The time complexity of step 2 is O(|S|), where |S| =∑N
i=1 (di − ei − ri + 1), i.e., the size of the original candidate

set for the schedule, and N is the number of applications

to be scheduled. Line 5 takes O(|S| lg |S|) time. Hence, the
complexity of the algorithm is O(|S| lg |S|).
For algorithm 1, we have the following property:
Theorem 1: The schedule Γ′ generated by Algorithm 1

satisfies that the system utility value of the schedule is no less

than the summation of adjusted utility value of the candidates

in profitable candidate set E, i.e,

G(Γ′) ≥ Ḡ(E)
where G(Γ′) =

∑
∀(Ai,sj)∈Γ′

Gi(sj + ei), and Ḡ(E) =

∑
∀(Ak,sl)∈E

Ḡk(sl).

Proof: As Γ′ is selected from E, i.e., Γ′ ⊆ E, therefore
∀(Ai, sj) ∈ Γ′, we have (Ai, sj) ∈ E.
Let E�(Ai,sj) denote the set which is right after (Ai, sj) is

pushed into E, and E�(Ak,sl) denote the set which is from top

to bottom until (Ak, sl) in E as shown in Fig. 4. Depending
on (Ai, sj) and (Ak, sl), it is possible that E�(Ai,sj) ∩
E�(Ak,sl) �= ∅. If (Am, sn) ∈ E�(Ai,sj), (Am, sn) may be
interfered by (Ai, sj). If (Am, sn) ∈ E�(Ak,sl), (Am, sn)
may interfere with (Ak, sl).

Fig. 4: Profitable candidates set E

By definition of G(Γ′), we have
G(Γ′) =

∑
∀(Ai,sj)∈Γ′

Gi(sj + ei) (9)

Based on Eq. (7) and Eq. (8), we expand the right-hand side
of Eq. (9) and have

G(Γ′) =
∑

∀(Ai,sj)∈Γ′

∑
∀(Ak,sl)∈E�(Ai,sj)

C((Ai, sj), (Ak, sl)
) · Ḡk(sl)

(10)

Eq. (10) exams every element (Ai, sj) in Γ′ and finds
all elements in E that may be interfered by (Ai, sj), i.e.,
∀(Ak, sl) ∈ E�(Ai,sj). To have the same result, we can
also iterates through every element (Ak, sl) in E and find
all elements in Γ′ which may interfere with (Ak, sl), i.e.,∀(Ai, sj) ∈ Γ′ ∩ E�(Ak,sl). Therefore, the value of G(Γ′)
can also be calculated as below:

G(Γ′) =
∑

∀(Ak,sl)∈E

∑
∀(Ai,sj)∈Γ′∩E�(Ak,sl)

C((Ai, sj), (Ak, sl)
) · Ḡk(sl)

=
∑

∀(Ak,sl)∈E
Ḡk(sl)

∑
∀(Ai,sj)∈Γ′∩E�(Ak,sl)

C((Ai, sj), (Ak, sl)
)

(11)

As Γ′ ⊆ E, hence, for each element (Ak, sl) in E, it may or
may not belong to Γ′, i.e., ∀(Ak, sl) ∈ E, either (Ak, sl) ∈ Γ′
or (Ak, sl) /∈ Γ′.
Case 1: (Ak, sl) ∈ Γ′. Based on the definition of interference
factor Eq. (6), we have. C((Ak, sl), (Ak, sl)) = 1. Therefore,
the following inequality holds:∑

∀(Ai,sj)∈Γ′∩E�(Ak,sl)

C((Ai, sj), (Ak, sl)) ≥ 1
Case 2: (Ak, sl) /∈ Γ′. According to the selection of Γ′,
the reason of (Ak, sl) /∈ Γ′ is that the available processing
units is not enough for (Ak, sl), i.e., the interference from the
applications in the schedule is no less than 1, i.e.,∑

∀(Ai,sj)∈Γ′∩E�(Ak,sl)

C((Ai, sj), (Ak, sl)) ≥ 1
Therefore, combining these two cases in Eq. (11), we have

G(Γ′) ≥
∑

∀(Ak,sl)∈E
Ḡk(sl) = Ḡ(E)

�
It is worth pointing out that in the algorithm, when we sort

S in descending order based on the start time s, the ties are
broken randomly. We have experimentally studied if different

tie breaker will impact the DSTI’s performance. In particular,

we have used three different tie-break rules, i.e., (1) break the

ties arbitrarily; (2) candidate with smaller gradient of G(t),
i.e., a, is ordered first; (3) candidate with larger gradient of
G(t) is ordered first. Our experimental results demonstrate that
the difference of the three rules is less than 1%. Due to page
limited, the experiment is omitted.

V. EXPERIMENTAL RESULTS

In this section, we empirically evaluate the proposed DSTI

algorithm by comparing it with the optimal solution obtained

with brute-force search for small application sets, and com-

paring it with three existing approaches in the literature for

large application sets, i.e., the Gang EDF scheduling [14], the

FCFS with backfilling scheduling [13], and the 0-1 Knapsack

based scheduling [17] approaches. The comparisons are from

two perspectives, namely, the system total accrued utility value

and the profitable application ratio.

Before giving the experiment settings, we first introduce

terms which will be used in the experiments:

Profitable Application Ratio (γ): the total number of
applications being successfully completed with positive utility

value versus the total number of applications submitted to the

system.

Maximum Application Demand Density (δmax):
given a parallel and time-sensitive application set

Γ = {A1,A2, · · · ,AN}, where Ai = (ri, ei,mi,Gi(t)),
the maximum application demand density of the application

set δmax is defined as

δmax = maxAi∈Γ
{ ei
di − ri } (12)

Average System Load (ω): average system load ω is
defined as the product of the application arrival rate λ and
the maximum application demand density of the application

set δmax, i.e., ω = λ× δmax.
A. Experiment Setting

The experiments are conducted on a simulator we have

developed. In our experiments, the parallel and time-sensitive

applications, i.e., A = (r, e,m,G(t)), are generated as follow-
ing:

• Number of tasks m is randomly generated based on

uniform distribution in the range of [1,M/2] for a given
M , which is set as 12 for small application sets and 40
for large application sets;

• Release time r is randomly generated based on Poisson
distribution with a given λ which is a varying parameter
in our evaluation;

• Execution time e is randomly generated based on uniform
distribution within [1, δmax × (d − r)] for a given δmax
which is a varying parameter in our evaluation;

• Non-profit-bearing time point of G, i.e., d, is set as d =
r+D, where D is randomly generated based on uniform
distribution within [10, 30];

• The gradient of G, i.e., a, is randomly generated based
on uniform distribution in the range of [4, 10];

B. Performance Comparison with the Optimal Solutions

In this set of experiments, we use brute-force search to find

the optimal schedule that results in the maximal system total

accrued utility value and use it as a comparison base. We

then apply the DSTI algorithm to the same application sets

and obtain the corresponding system utility value. In these

experiments, we assume that there are 12 processing units in
the system, i.e., M = 12. We randomly generate application
sets with 10 applications and repeat for 100 times. The average
values are used in the evaluation.

In the first experiment, we set λ = 3 and let δmax change
from 1/6 to 1 with a step size of 1/6. Fig. 5(a) shows
the system total accrued utility value obtained by the DSTI

algorithm normalized to the optimal solution.

For the second experiment, we set δmax = 0.5 and let λ
change from 1 to 6 with a step size of 1. Fig. 5(b) shows

1/6 1/3 1/2 2/3 5/6 1
92%

94%

96%

98%

100%

δ
max

N
o
rm

a
liz

e
d
 t
o
 O

p
ti
m

a
l
S

y
s
te

m
 A

c
c
ru

e
d
 U

ti
lit

y
 V

a
lu

e

(a) Under different δmax

1 2 3 4 5 6
92%

94%

96%

98%

100%

λ

N
o
rm

a
liz

e
d
 t
o
 O

p
ti
m

a
l
S

y
s
te

m
 A

c
c
ru

e
d
 U

ti
lit

y
 V

a
lu

e

(b) Under different λ

0.5 1 1.5 2 2.5 3
92%

94%

96%

98%

100%

ω

N
o
rm

a
liz

e
d
 t
o
 O

p
ti
m

a
l
S

y
s
te

m
 A

c
c
ru

e
d
 U

ti
lit

y
 V

a
lu

e

(c) Under different ω

Fig. 5: Comparison with the optimal solution for small application sets

the system total accrued utility value obtained by the DSTI

algorithm normalized to the optimal solution.

For the third experiment, we increase average system load,

i.e., ω, from light load (ω = 0.5) to overload (ω = 3) with a
step size of 0.5. To do so, we randomly generate δmax within
(0, 1] and set λ = ω/δmax. Fig. 5(c) shows the system total
accrued utility value normalized to the optimal solution.

These three experiments use different ways to vary average

system load and the results clearly show that when the average

system load is low, system total accrued utility value obtained

by the DSTI algorithm is close to the optimal. Although the

deviation between the DSTI algorithm and the optimal brute-

force solution increases when average system load increases

slightly, the difference is less than 7.5% in the worst case.

C. Performance Comparison with Gang-EDF, FCFS with
backfilling, and 0-1 Knapsack Based Approaches

This set of experiments is to compare the DSTI with

three existing scheduling approaches for parallel applications,

i.e., the Gang EDF, the FCFS with backfilling, and the 0-

1 Knapsack based approach. In these experiments, we set

M = 40. We randomly generate 100 applications for an
application set and repeat for 500 times. The average values
are used in plotting the figures.

1) System Utility Value Comparison: We vary the value
of δmax, λ, and ω, and obtain system accrued utility value,
the results are depicted in Fig. 6(a), Fig. 6(b), and Fig. 6(c),

respectively.

From Fig. 6(a), Fig. 6(b), and Fig. 6(c), it can be seen that

the DSTI algorithm always outperforms the other three algo-

rithms. It can obtain up to 164%, 150%, and 97% more system
utility value than the Gang EDF, the FCFS with backfilling,

and the 0-1 Knapsack based approaches, respectively.

2) Profitable Application Ratio: If an application finishes
before its non-profit-bearing point, it is profitable. Fig. 7(a),

Fig. 7(b), and Fig. 7(c) show the profitable application ratio

under different algorithms with different settings.

In Fig. 7(a), when δmax = 1/6, where the maximum appli-
cation demand density is below 17%, and most applications
can finish before their non-profit-bearing time point. In this

case, the Gang EDF performs better than the DSTI algorithm.

However, when δmax is above 17%, the DSTI outperforms the
Gang EDF scheduling algorithm. The results also show that the

performances of the FCFS with backfilling algorithms always

below the DSTI algorithms.

Profitable application ratio is related to system accrued util-

ity value. The more applications that are finished before their

non-profit-bearing point, the higher the profitable application

ratio. Both the DSTI and the 0-1 Knapsack based algorithms

try to maximize application utility value, so both algorithms

have a higher application profitable ratio than the Gang EDF

and the FCFS with backfilling. When the average system load

is low, i.e., the resource competition among applications is

low, the 0-1 Knapsack based algorithm has a higher profitable

application ratio than the DSTI algorithm (about 10 percent).

As average system load increases, the potential interference

among applications increases, the DSTI algorithm, which takes

into consideration of the interference, once again outperforms

the other three scheduling approaches. It can obtain up to

21%, 35%, and 18% higher profitable application ratio than the
Gang EDF, the FCFS with backfilling, and the 0-1 Knapsack

based approaches, respectively.

VI. CONCLUSION

For parallel and time-sensitive applications, each application

has multiple tasks that must be executed concurrently in order
to produce a result. Therefore, their execution occupies re-

sources in two dimensions: spatial, i.e., the number of process-

ing units needed to support concurrent tasks, and temporal, i.e.,

time duration needed to complete the application. Because of

the parallelism and time-sensitive features of the applications,

the execution interference among parallel and time-sensitive

applications can be both in spatial and temporal domains. In

this paper, we have presented a scheduling approach aiming to

maximize system’s total accrued utility value. The scheduling

algorithm, i.e., the DSTI algorithm, takes into consideration of

spatial-temporal interference among parallel and time-sensitive

applications, and start applications at the time when it can

still bring values to the system even after their potential

interference to other applications is discounted. Our simulation

results show that the proposed DSTI algorithm results in close

to optimal solutions and also has clear advantage over existing

approaches in the literature in terms of system total accrued

utility values and profitable application ratio. It accrues up to

164%, 150%, and 97% more system value, and up to 21%,

35%, and 18% higher profitable application ratio than the

1/6 1/3 1/2 2/3 5/6 1
0

2000

4000

6000

8000

10000

δ
max

S
y
s
te

m
 A

c
c
ru

e
d
 U

ti
lit

y
 V

a
lu

e

DSTI
Knapsack
bFCFS
G−EDF

(a) Under different δmax

1 2 3 4 5 6
0

2000

4000

6000

8000

λ

S
y
s
te

m
 A

c
c
ru

e
d
 U

ti
lit

y
 V

a
lu

e DSTI
Knapsack
bFCFS
G−EDF

(b) Under different λ

0.5 1 1.5 2 2.5 3
0

2000

4000

6000

8000

ω

S
y
s
te

m
 A

c
c
ru

e
d
 U

ti
lit

y
 V

a
lu

e DSTI
Knapsack
bFCFS
G−EDF

(c) Under different ω

Fig. 6: System accrued utility value comparison

1/6 1/3 1/2 2/3 5/6 1
0%

20%

40%

60%

80%

100%

δ
max

P
ro

fi
ta

b
le

 A
p
p
lic

a
ti
o
n
 R

a
ti
o DSTI

Knapsack
bFCFS
G−EDF

(a) Under different δmax

1 2 3 4 5 6
0%

20%

40%

60%

80%

100%

λ

P
ro

fi
ta

b
le

 A
p
p
lic

a
ti
o
n
 R

a
ti
o DSTI

Knapsack
bFCFS
G−EDF

(b) Under different λ

0.5 1 1.5 2 2.5 3
0%

20%

40%

60%

80%

100%

ω

P
ro

fi
ta

b
le

 A
p
p
lic

a
ti
o
n
 R

a
ti
o DSTI

Knapsack
bFCFS
G−EDF

(c) Under different ω

Fig. 7: Profitable application ratio comparison

Gang EDF, the FCFS with backfilling, and the 0-1 Knapsack

based scheduling algorithms, respectively.
However, our current solution is based on the assumption

that all applications in the given application set are either

narrow applications, or wide applications. Our future work is
to study how to handle the case where there are both narrow

and wide applications in the application set.

ACKNOWLEDGMENT

This work is supported in part by NSF under awards CNS-

1018731, CNS-0746643(CAREER), and CNS-1035894.

REFERENCES

[1] L. R. Welch and S. Brandt, “Toward a realization of the value of
benefit in real-time systems,” in Parallel and Distributed Processing
Symposium., Proceedings 15th International, April 2001, pp. 962–969.

[2] D. Ferry, J. Li, M. Mahadevan, K. Agrawal, C. Gill, and C. Lu, “A real-
time scheduling service for parallel tasks,” in Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2013 IEEE 19th, April
2013, pp. 261–272.

[3] A. Saifullah, J. Li, K. Agrawal, C. Lu, and C. Gill, “Multi-core real-time
scheduling for generalized parallel task models,” Real-Time Systems,
vol. 49, no. 4, pp. 404–435, 2013.

[4] C. F. Mass and Y.-H. Kuo, “Regional real-time numerical weather
prediction: Current status and future potential,” Bulletin of the American
Meteorological Society, vol. 79, no. 2, pp. 253–263, 1998.

[5] Applications performance equals response time, not resource utilization.
[Online]. Available: http://www.virtualizationpractice.com/applications-
performance-equals-response-time-not-resource-utilization-9916/

[6] C. D. Locke, “Best-effort decision making for real-time scheduling,”
Ph.D. dissertation, Carnegie-Mellon University, 1987.

[7] E. D. Jensen, C. D. Locke, and H. Tokuda, “A time-driven scheduling
model for real-time operating systems,” in Real-time Systems Sympo-
sium, 1985. RTSS 1985. 6th IEEE International, 1985, pp. 112–122.

[8] G. C. Buttazzo, G. Lipari, L. Abeni, and M. Caccamo, Soft real-time
systems: Predictability vs. Efficiency. Springer, 2006.

[9] M. Bertogna, M. Cirinei, and G. Lipari, “Improved schedulability
analysis of edf on multiprocessor platforms,” in Real-Time Systems,
2005. (ECRTS 2005). Proceedings. 17th Euromicro Conference on, July
2005, pp. 209–218.

[10] S. Baruah, “Techniques for multiprocessor global schedulability anal-
ysis,” in Real-Time Systems Symposium, 2007. RTSS 2007. 28th IEEE
International, Dec 2007, pp. 119–128.

[11] S. Baruah, V. Bonifaci, A. Marchetti-Spaccamela, and S. Stiller, “Im-
proved multiprocessor global schedulability analysis,” Real-Time Sys-
tems, vol. 46, no. 1, pp. 3–24, 2010.

[12] R. I. Davis and A. Burns, “A survey of hard real-time scheduling for
multiprocessor systems,” ACM Computing Surveys, vol. 43, no. 4, pp.
1–44, Oct 2011.

[13] D. G. Feitelson and A. M. Weil, “Utilization and predictability in
scheduling the ibm sp2 with backfilling,” in Parallel Processing Sym-
posium, 1998. IPPS/SPDP 1998. Proceedings of the First Merged
International ... and Symposium on Parallel and Distributed Processing
1998. IEEE, Mar 1998, pp. 542–546.

[14] S. Kato and Y. Ishikawa, “Gang edf scheduling of parallel task systems,”
in Real-Time Systems Symposium, 2009, RTSS 2009. 30th IEEE, Dec
2009, pp. 459–468.

[15] K. Lakshmanan, S. Kato, and R. Rajkumar, “Scheduling parallel real-
time tasks on multi-core processors,” in Real-Time Systems Symposium,
2010, RTSS 2010. 31st IEEE, Nov 2010, pp. 259–268.

[16] K. Oh-Heum and C. Kyung-Yong, “Scheduling parallel tasks with
individual deadlines,” Theoretical Computer Science, vol. 215, no. 1,
pp. 209–223, 1999.

[17] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein et al., Introduction
to algorithms. MIT press Cambridge, 2001, vol. 2.

[18] H. Kwakernaak and R. Sivan, Linear optimal control systems. Wiley-
interscience New York, 1972, vol. 1.

[19] X. Hua, Z. Li, H. Wu, and S. Ren, “Scheduling periodic tasks on multiple
periodic resources,” in Proceedings of the 4th International Conference
on Advanced Communications and Computation, 2014, pp. 35–40.

[20] P. Li, H. Wu, B. Ravindran, and E. Jensen, “A utility accrual scheduling
algorithm for real-time activities with mutual exclusion resource con-
straints,” Computers, IEEE Transactions on, vol. 55, no. 4, pp. 454–469,
April 2006.

[21] S. Li, S. Ren, Y. Yu, X. Wang, L. Wang, and G. Quan, “Profit and penalty
aware scheduling for real-time online services,” Industrial Informatics,
IEEE Transactions on, vol. 8, no. 1, pp. 78–89, Feb. 2012.

[22] S. Li, M. Song, Z. Li, S. Ren, and G. Quan, “Maximizing online
service profit for time-dependent applications,” in Proceedings of RTCSA
2013: International Conference on Embedded and Real-Time Computing
Systems and Applications, 2013, pp. 342–345.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

