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Gruia Călinescu ∗

Peng-Jun Wan
Dept. of Computer Science, Illinois Institute of Technology, Chicago, IL 60616

E-mail:{calinescu, wan}@cs.iit.edu

Abstract

SONET (Synchronous Optical NETworks) add-drop
multiplexers (ADMs) are the dominant cost factor in the
WDM(Wavelength Division Multiplexing)/SONET rings.
The number of SONET ADMs required by a set of traffic
streams is determined by the routing and wavelength
assignment of the traffic streams. Previous works took as
input the traffic streams with routings given a priori and
developed various heuristics for wavelength assignment to
minimize the SONET ADM costs. This paper contributes
mainly in two aspects. First, in addition to the traffic
streams with pre-specified routing, this paper also studies
minimizing the ADM requirement by traffic streams without
given routings, a problem which is shown to be NP-hard.
Second, new heuristics are proposed and analyzed for
both the prespecified routing and the non-prespecified
routing versions. The Preprocessed Iterative Matching
heuristic has approximation ratio in between 4/3 and
3/2. A local-improvement algorithm has approximation
ratio exactly 3/2. An algorithm based on Eulerian tour
decomposition has approximation ratio exactly 3/2 for the
non-prespecified routing version.

1. Introduction

WDM/SONET rings form a very attractive network ar-
chitecture that is being deployed by a growing number of
telecom carriers. In this network architecture, each wave-
length channel carries a high-speed (e.g., OC-48) SONET
ring [4]. The key terminating equipments are optical add-
drop multiplexers (OADMs) and SONET add-drop multi-
plexers (ADMs). Each node is equipped with one OADM.
The OADM can selectively drop wavelengths at a node.
Thus if a wavelength does not carry any traffic from or to a
particular node, the OADM allows that wavelength to opti-
cally bypass that node rather than being electronically termi-

∗Work performed at DIMACS and supported by a DIMACS postdoc-
toral fellowship

nated. Consequently, in each SONET ring a SONET ADM
is required at a node if and only if it carries some traffic
terminating at this node. Therefore, the SONET ADMs re-
quired by a set of traffic streams is determined by their rout-
ing and the wavelength assignment. As the SONET ADMs
are the dominant cost factor in the WDM/SONET rings, it is
essential to find an efficient routing and wavelength assign-
ment to a given set of traffic streams such that the total ADM
cost is minimal. This optimization problem is referred to as
minimum ADM cost problem.

A number of previous works [2, 3, 5] studied the mini-
mum ADM cost problem in which each traffic stream has
a predetermined routing given by a lightpath. As the light-
paths can be treated as circular arcs over the ring, this spe-
cial version of minimum ADM cost problem is reduced to
the following minimization problem:

• Instance: a set of circular-arcs A along a ring.

• Solution: a partition of A, Π = {A1, A2, · · · , Aw},
such that for any 1 ≤ i ≤ w all arcs in each Ai are
non-intersecting.

• Cost: the cost of each set of arcs Ai is the number of
different nodes of the ring that are the endpoints of the
arcs inAi (note that a node which is the endpoint of two
arcs of Ai is only counted once towards this number),
and the cost of the partition Π is the sum of the costs of
Ai for all 1 ≤ i ≤ w.

The minimum cost over all proper solutions is called
the minimum ADM cost of A.

We refer to this special version as the arc-version mini-
mum ADM cost problem. It was proven in [5] that this arc-
version minimization problem is NP-hard. Several heuris-
tics have been proposed in [2, 5]. Most of them have approx-
imation ratio at least 3/2, while the best previously proved
ratio is 3+e

1+e
= 1.537 . . . [5]. Note that an approxima-

tion ratio of 2 is trivial: optimum is at least the number
of arcs, and any solution uses at most twice the number of
arcs. Lemma 4 from [9] (see Lemma 3) shows that any non-
trivial heuristic has an approximation ratio of at most 1.75.
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In this paper we present two algorithms for the minimum
ADM cost problem: Preprocessed Iterative Matching and a
local-improvement algorithm. We prove that Preprocessed
Iterative Matching has approximation ratio in between 4/3
and 3/2. Without a proof of the approximation ratio, the
algorithm is described in the survey paper [9], where it is
called Closed Segment First, and it is also mentioned in
the conclusion section of [5]. We also prove that the new
local-improvement algorithm has approximation ratio ex-
actly 3/2. We point out that the number of wavelengths used
by any of these heuristics is at most twice the maximum link
load of A.

This paper also addresses the minimum ADM cost prob-
lem in which the routing of each traffic stream is part of the
solution instead of part of the input. Our algorithm and anal-
ysis applies to both bidirectional line-switched rings with
two fibers (BLSR/2) and bidirectional line-switched rings
with four fibers (BLSR/4) [4]. For simplicity, we assume
that each traffic stream is symmetrically duplex and its two
portions in opposite directions must be routed along the
same path (in opposite directions). Under this assumption,
we can treat the two working fiber rings as one (undirected)
ring, and each traffic stream as a (undirected) chord. Thus
this general minimum ADM cost problem can be stated as
the following minimization problem:

• Instance: a set of chords C along a ring.

• Solution: a proper partition of C , Π =
{C1, C2, · · · , Cw}, such that for any 1 ≤ i ≤ w
all chords in each Ci can be routed as non-intersecting
arcs over the ring.

• Cost: the cost of each Ci is the number of different
nodes of the ring that are the endpoints of the chords
in Ci, and the cost of the partition Π is the sum of the
costs of Ci for all 1 ≤ i ≤ w. The minimum cost over
all proper solutions is called the minimum ADM cost
of C .

We refer to this general version as the chord-version min-
imum ADM cost problem. First, we claim the NP-hardness
of this integrated problem, and point out that any nontrivial
heuristic has an approximation ratio of at most 1.75 (again,
approximation ratio of 2 is trivial). Several previously pro-
posed heuristics, including minimum-load routing [7, 10],
minimum-wavelength routing [6], Edge-Avoidance routing
and Shortest-Path routing [1], fail to beat the 1.75 ratio.
Even after the preprocessing by pairing up identical chords,
their approximation ratios is still at least 5

3
≈ 1.67.

Preprocessed Iterative Matching and the local-
improvement algorithm can be used, with the same
performance ratios, for the chords-version minimum ADM
cost problem. We also propose an algorithm based on Eule-
rian tour decomposition, and prove it has an approximation

ratio of exactly 3/2. Eulerian tour decomposition can also
be applied to the arc version, but has approximation ratio
exactly 1.75.

The rest of this paper is laid out as follows. In Section 2,
we introduce some basic terminology and problem formu-
lations. In Section 3 we present the proof of NP-hardness
of the chord-version minimum ADM cost problem. In Sec-
tion 4, Section 5, and Section 6, we describe and analyze our
three new algorithms.

2. Terminology and Formulation

2.1. Ring, Arc, Chord

We assume that a ring network consists of n nodes num-
bered clockwise by 0, 1, · · · , n−1. It is oriented clockwise
and is treated as a directed graph. All arithmetic involving
nodes is performed implicitly using modulo n operations.
The link from the node i to node i+1 in the ring is referred
to as link i.

An (clockwise) arc a over a ring is represented by an or-
dered pair (t (a) , h (a)), where t (a) is the tail of a andh (a)
is the head of a. Two arcs are said to be intersecting (or over-
lapping) if they contain a common link of the ring, and ad-
jacent if they are not intersecting but share at least one end-
point.

A chord in a ring is specified by an unordered pair (i, j)
where i and j are the two endpoints of the chord. Routing
a chord means selecting from its two endpoints a tail and a
head, thus replacing the chord by an arc. Two chords are said
to be adjacent if they have at least one common endpoint,
and be identical if they have the same endpoints. Note that
two adjacent but not identical pair of chords have a unique
routing without intersection.

2.2. Chains of Arcs or Chords

To avoid confusion, we recall some graph theory con-
cepts. A walk in a graph G is a sequence W :=
(v0, e1, v1, e2, v2, · · · , e�, v�), where v0, v1, · · · , v� are ver-
tices of G, e1, e2, , · · · , e� are edges G, and ei is an edge
joining vi−1 and vi for i = 1, · · · , �. The walkW is closed
if n > 0 and v0 = vn, and open otherwise. If W is open,
the vertex v0 is the tail of W and the vertex v� is its head.
A trail is a walk with all its edges distinct; a path is a open
walk with all its vertices distinct; a circuit is a closed trail of
positive length whose vertices are all distinct. An Eulerian
tour in a graph is a closed trail which includes every edge.
It is well known that a graph is Eulerian if and only if it is
connected and every vertex has even degree.

LetA be any set of arcs over a ring. It induces naturally a
directed graphG (A) with the nodes of the ring as its vertex
set and A as its edge set. A trail in G (A) is also called a
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trail of arcs inA. A trail of arcs induces a (clockwise) walk
over the ring starting from its tail to its head. A trail of arcs
is said to be a chain of arcs if any pair of consecutive arcs
are non-overlapping. A chain of arcs is said to be valid if all
arcs in this chain are non-overlapping.

Let C be any set of chords. It induces naturally an undi-
rected graph G (C) with the nodes of the ring as its vertex
set and C as its edge set. A trail in G (C) is also called as a
trail of chords in C . A trail of chords is said to be a chain
of chords if either itself or its reverse induces a (clockwise)
walk over the ring in which the two arcs corresponding to
two consecutive chords are non-overlapping. A routing of
a chain of chords is the (clockwise) walk induced by either
itself or its reverse in which two arcs corresponding to con-
secutive chords are non-overlapping. Note that if a chain of
chords is a path of at least two chords or a circuit of at least
three chords, it has a unique routing. A chain of a single
chord or two identical chords can have two different rout-
ings. A chain of chords is said to be valid if it has a rout-
ing in which all arcs corresponding to the chords are non-
overlapping.

For simplicity, we also refer to the length of a chain (of
arcs or chords) as its size, and the number of vertices in a
chain as its cost. Thus the cost of a closed chain is exactly
its size, and the cost of an open chain is one plus its size. Let
P be a collection of chains. The cost of P is defined as the
sum of the costs of all chains in P, which equals to the total
number of arcs in the chains in P plus the total number of
open chains in P. The fit graph of P, denoted by F (P), is
a undirected graph in which the vertex set is P, there is an
edge between two chains P1 and P2 if and only if P1 and P2

can be merged into a larger valid chain.

For both arc-version and chord version of the minimum
ADM cost problem, we can restrict the solutions to parti-
tions of the input arcs or chords into valid chains, referred to
as valid chain generations. This restriction does not change
the optimum value, but may requires larger wavelength re-
quirement. The wavelength requirement by any solutioncan
be further reduced by treating each chain as an arc and ap-
plying Tucker’s algorithm for circular-arc coloring [8]. For
the arc-version, this processing can reduce the number of re-
quired wavelengths within twice the minimum. Indeed, sup-
pose that the load of the original arcs is l (the load of a link
is the number of arcs using that link, and the load of a set
of arcs is the maximum load of a link) and the number of
(valid) closed chains is k. Then the load of the open chains
is l − k. The Tucker’s algorithm for circular-arc coloring
guarantees that the number of wavelengths used by the open
chains is at most 2 (l− k) − 1. Thus the total number of
wavelengths is at most k+2 (l− k)−1 = 2l−k−1, while
the minimum number of wavelengths required is at least l.

2.3. Deficiency of Arcs or Chords

Let A be any set of arcs over a ring. For any node i of
the ring, let σA (i) denote the total number of arcs inAwith
node i as the head, and τA (i) denote the total number of arcs
inAwith node i as the tail. The deficiency ofA, denoted by
d (A), is defined by

d(A) =
1
2

n−1∑
i=0

|σA (i) − τA (i)| .

Since each node i requires at least max{σA (i) , τA (i)}
ADMs, the total number of ADMs required by A is at least

n−1∑
i=0

max{σA (i) , τA (i)}

=
n−1∑
i=0

σA (i) + τA (i) + |σA (i) − τA (i)|
2

=
n−1∑
i=0

σA (i) + τA (i) + |δA (i)|
2

=
∑n−1

i=0 (σA (i) + τA (i))
2

+
∑n−1

i=0 |δA (i)|
2

= |A|+ d(A).

So |A|+ d(A) is a lower bound on the minimum ADM cost
required by A. This fact was first noticed by [2].

Let C be any set of chords. For any node i of the ring, let
degC (i) denote the total number of chords inC that contain
node i as one endpoint. It is well known the number of nodes
with odd degree is even. The deficiency of C , denoted by
d (C), is defined as the half of the number of nodes with odd

degree. Since each node i requires at least
⌈

degC(i)
2

⌉
ADMs,

the total number of ADMs required by C is at least

1
2

n−1∑
i=0

degC (i) + d (C) = |C|+ d (C) .

So |C|+d (C) is a lower bound on the minimum ADM cost
required by C .

3. NP-Hardness

The NP-hardness of the arc-version minimum ADM cost
problem follows from the result proved in [5] that:

Theorem 1 [5] It is NP-hard to decide whether the mini-
mum ADM cost of a set of arcs A is equal to |A| or not.

In this section, we prove the NP-hardness of the chord-
version minimum ADM cost problem .
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Theorem 2 It is NP-hard to decide whether the minimum
ADM cost of an arbitrary set of chords C is equal to |C| or
not.

Proof. The reduction is from the decision problem from
Theorem 1. Let A be any set of arcs over a ringR. We ori-
ent the ring and each circular arcs in the clockwise direc-
tion. For each arc a ∈ A, we add a unique node va in the
ringRwithin the arc a and create two chords, (t (a) , va) and
(va, h (a)), as illustrated in Figure 1. We useR′ andC to de-
note the obtained ring and set of chords respectively. From
the construction,

|R′| = |R|+ |A| ,
|C| = 2 |A| .

From Theorem 1, it is sufficient to show that the minimum
ADM cost of C is equal to |C| = 2 |A| if and only if the
minimum ADM cost of a set of A is equal to |A| . The if
part is obvious. So we prove the only if part. Assume that
opt(C) = |C|, then C can be partitioned into closed valid
chains. Each such partition requires that the two chords cre-
ated from each arc a ∈ A be in the same valid closed chain
and therefore must be routed along the arc a. By replacing
these two chords with the arc a for each a ∈ A, we obtain
a partition of A such the arcs in each group of the partition
form a closed valid chain.

va
h(a)t(a)

a

Figure 1. Replace each arc by two chords: the
filled circles are the endpoints of the arc, and
the empty cycle is the new node inserted.

Because of NP-hardness of both versions of the minimum
ADM cost problem, we will develop approximation algo-
rithms in the next, instead of seeking optimal solutions. We
use OPT to denote an optimum solution and opt to denote
the optimum cost.

The next lemma (Lemma 4 from [9]) shows that any non-
trivial heuristic has an approximation ratio of at most 1.75
for the arc version. The same argument applies to the chord
version.

Lemma 3 ([9]) If any pair of chains inP cannot be merged
into a larger valid chain, the cost of P is at most 7

4 · opt.

4. The Preprocessed Iterative Matching Algo-
rithm

In this section, we propose the Preprocessed Iterative
Matching (PIM) algorithm, which runs in two phases:

1. Preprocessing Phase: repeatedly take valid closed
chains out of the remaining arcs until no more closed
chain can be obtained from the remaining arcs.

2. Matching Phase: While the fit graph F (P) of P has
nonempty edge set, we find a maximum matchingM in
F (P) and then merge each matched pair of chains of
arcs inM into a larger chain. When F (P) has empty
edge set, P is output as the valid chain generation.

The following procedure is used by the Preprocessing
Phase to obtain a closed valid chain containing a specified
arc a, if there is any, from a set of arcs S. We build a directed
acyclic graph (DAG) that consists of only those arcs in S
that do not overlap with a. Obviously there is a path from
h(a) to t(a) in the DAG if and only if there is a closed valid
chain in S that contains a. By using breadth-first search in
the DAG, we can obtain a path, if there is any, from the from
h(a) to t(a). Once this path is obtained, we merge it with a
to obtain a closed valid chain. For a link e, let Ae denote the
set of arcs that contain the link e. After picking any link e,
and setting i← 1, the Preprocessing Phase runs as follows:

• WhileAe is nonempty: pick any a ∈ Ae, and setAe ←
Ae \ {a}; ifA has a valid closed chain P containing a,
set Pi ← P , A← A \ P , and i← i+ 1.

It is obvious that the algorithm has polynomial run-time.
In the next, we show that its approximation ratio of is at most
1.5.

Lemma 4 The approximation ratio of PIM is at most 3
2 .

Proof. For the simplicity of description, we call the arcs
appearing in the closed valid chains obtained in the Prepro-
cessing Phase as blue arcs, and the others as red arcs. We
use B and R to denote the set of blue arcs and the set of red
arcs respectively. Then in any closed (valid) chain inOPT ,
at least one circular arc is blue. From OPT , we remove all
blue arcs and obtain a collection of red (valid) chains. Note
that the number of red chains obtained from a closed chain
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P is at most the number of blue arcs in P ; the number of red
chains obtained from an open chain P is at most the num-
ber of blue arcs in P plus one. Thus the total number of red
chains is at most |B| plus the total number of open chains,
and consequently is at most |B| + opt − |A| = opt − |R|.
Let k be the number of odd red chains, and note that

k ≤ opt− |R| . (1)

From any red chain P , a matching of cardinality
⌊
|P |
2

⌋
can

be obtained. Overall, from the red chains we can gener-
ate a matching of cardinality |R|−k

2
. Thus the cardinality of

any maximum matching obtained in the first iteration in the
Matching Phase is at least |R|−k

2
, and consequently after this

first iteration, the total number of remaining open chains is
at most

|R| − |R| − k
2

=
|R|+ k

2
.

So after the first maximum matching in the Matching Phase,
using equation 1, the total ADM cost of the output of PIM
is at most:

|A|+ |R|+ k
2

≤ |A|+ |R|+ opt − |R|
2

= |A|+ opt
2
≤ opt+ opt

2

≤ 3
2
· opt.

Therefore the approximation ratio of PIM is at most 3
2 .

For completeness we include the followingexample from
[9], showing that the approximation ratio of PIM is at least
4/3:

Example 5 ([9]) Let n = 6, andA = A1 ∪A2 ∪A3 where
A1 = {(0, 2) , (2, 5) , (5, 0)}, A2 = {(0, 3) , (3, 4) , (4, 0)},
A3 = {(1, 2) , (2, 4) , (4, 1)}.

Since the three arcs in Ai form a closed valid chain
for any 1 ≤ i ≤ 3, opt = |A| = 9. If the
preprocessing takes out the following closed valid chain
{(0, 2) , (2, 4) , (4, 0)} , then the remaining 6 arcs do not
contain any closed valid chain. Since the three arcs
(0, 3) and (2, 5) and (4, 1) are pairwise intersecting, at
least three open valid chains must be used by the remain-
ing six arcs. One (optimal) solution is the following:
{(2, 5) , (5, 0)} , {(4, 1) , (1, 2)} , {(0, 3) , (3, 4)} . Thus the
total ADM cost of all these valid chains is 12 = 4

3
· opt.

Thus we have the following theorem:

Theorem 6 The approximation ratio of PIM is between 4
3

and 3
2 .

4.1. PIM for the Chord-Version

The Preprocessed Iterative Matching (PIM) for chords
is adapted from the PIM algorithm for arcs. The algorithm
is described, without proofs, in [9], where it is called chord-
version Closed Chain First. The chord-version PIM also
runs in two phases:

1. Preprocessing Phase: greedily take valid closed chains
out of the remaining chords until no more closed chain
can be obtained from the remaining chords.

2. Matching Phase: While the fit graph F (P) of P has
nonempty edge set, we find a maximum matchingM in
F (P) and then merge each matched pair of chains of
arcs inM into a larger chain. When F (P) has empty
edge set, P is output as the valid chain generation.

The following procedure is used by the Preprocessing
Phase to obtain a closed valid chain containing a specified
chord c, if there is any, from a set of chords S. Let c− be
the circular arc between the two endpoints of c that passes
through the link between node n− 1 and node 0, and let c+

be the arc complementary to c−. Let S+
c (S−c respectively)

be the set of chords in S − {c} whose two endpoints are
both in c+ (c− respectively). Let G+

c (G−
c respectively) be

the directed graph with the nodes in c+ (c− respectively) as
its vertices and directed edges obtained from orienting the
chords in S+

c to not use the the link between node n−1 and
node 0, (orienting the chords in S−c to use the link between
noden−1 and node 0, respectively). There is a closed valid
chain in S that contains c if and only if either there is a path
between the two endpoints of c inG+

c , or there is a path be-
tween the two endpoints of c inG−

c . After constructingG+
c

andG−
c , such a path, if there is any, can be found by breadth-

first search. Once this path is obtained, we add c to it to ob-
tain a closed valid chain.

Following the argument in Lemma 4, we can prove that
the approximation ratio of PIM for chords is at most 1.5. In-
deed, first note that the proof of Lemma 4 only uses one iter-
ation of matching. For this iteration, the fit graphF has a set
of chords as vertices and has an edge in between two chords
if they share an endpoint. Note that any two chords which
share an endpoint can be routed into one valid chain. Fur-
ther iterations, in which one can ’fit’ chains with chords, are
possible, but not necessary for the 3/2 approximation ratio.
Second, any closed valid chain ofOPT must contain a blue
chord, or otherwise this chain would have been found by the
algorithm in the Preprocessing Phase.

Replacing each arc in Example 5 with a chord between
the same endpoints leads to an instance for which the PIM
for chords may produce a solution of 4

3
times the optimum.

So we have the following theorem.
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Theorem 7 The approximation ratio of PIM for chords is
between 4

3
and 3

2
.

5. A Local-Improvement Algorithm

In this section we describe a simple local-improvement
algorithm, and prove it has approximation ratio 3/2.

Let P denote any valid partition of A into valid chains.
The first arc and the last arc of an open chain P of length at
least two are called the end arcs of P . We color the arcs in
P as follows: each arc in a 1-chain with red color, each end-
arc with green color, and all other arcs with blue color. This
coloring is referred to as P-coloring. Repeat the following
procedure:

• Repeatedly merge any pair of open chains which can
be merged into a larger valid chain.

• If there is a valid closed chain P which consists of
green arcs and at least one red arc, remove all arcs in
P from their original chains and add P to P;

• Else if there is a valid open chain P which consists of
green arcs and a pair of red arcs as its end arcs, remove
all arcs in P from their original chains and add P toP;

• Else exit.

Note that each operation in the first three bullet items re-
duce the number of open chains by at least one. Thus the
algorithm terminates in linear number of iterations. The out-
put partitionP has the following three properties:

1. Any pair of open chains cannot be merged into a larger
valid chain.

2. Each red arc cannot form a closed chain together with
green arcs in P.

3. Each pair of red arcs cannot be joined by green arcs in
P into a valid chain.

A partition satisfying these three properties is said to
canonical. In the remaining we show that the cost of any
canonical partitionP is at most 1.5 times opt.

We distribute the cost of P to arcs as follows: Each
red arc costs 2, each green arc costs 1.5, and each blue arc
costs 1. It is sufficient to show that the cost of all arcs in
an closed (open, respectively) chain P in OPT is at most
1.5 |P | (1.5 (|P |+ 1), respectively).

LetP be any chain of optimum. Let i and j be the number
of red arcs and blue arcs inP respectively. Note that all these
red arcs cannot be consecutive in P from Property 1. Then
the total cost of the arcs of P is

2i+ j + 1.5 (|P | − i− j) = 1.5 |P |+ 0.5 (i− j) .

We first assume that P is closed. It is sufficient to show
that j ≥ i. This is true when i = 0. If i = 1, then j ≥ 1 for
otherwise it violates the Property 2. If i > 1, then j ≥ i for
otherwise at least one pairs of the red arcs can be joined by
green arcs, which violates Property 3.

Now we assume that P is open. It is sufficient to show
that j ≥ i−1 (actually, we only have to show that j ≥ i−3).
This is true when i = 0 or 1. If i > 1, then j ≥ i − 1 for
otherwise at least one pairs of the red arcs can be joined by
green arcs, which violates Property 3.

We also have an example for which the local-
improvement algorithm stops with a solution of cost
exactly 3/2 the optimum solution. Consider six arcs:
(0, 1), (1, 2), (2, 0), (4, 1), (1, 3), (3, 4). Optimum has
cost six, while, if breaking ties the wrong way, the
local-improvement algorithm selects the three chains:
{(0, 1), (1, 3)}, {(3, 4), (4, 1)} and {(1, 2), (2, 0)}, of total
cost nine.

In conclusion, we have:

Theorem 8 The approximation ratio of the local-
improvement algorithm is 3/2.

5.1. The Local-Improvement Algorithm for the
Chord-Version

In this subsection, we show that the local-improvement
can be adapted to the chord-version problem, with the same
bounds (and basically, same proofs) on the approximation
ratio.

We describe how to implement each operation of the al-
gorithm when applied to chords. The algorithms maintains
a collection of already routed chains, plus the collection of
single chords.

Any two non-identical chords which share an endpoint
can be routed in a unique way as to form a valid chain. If
a valid chain and a chord share an endpoint, they can be
merged in a valid chain if and only if the other endpoint of
the chord is not in the interior of the chain. Thus we can de-
termine easily if merging two chains, two chords, or a chain
with a chord, is possible in the current solution. This takes
care of the first step of the algorithm.

A valid closed chain which consists of a red chord c and
one or more green or red chords can be found, if it exists,
by the methods used in the preprocessing step of the PIM
algorithm.

A valid open chain which consists of green chords and
a pair of red chords as its end arcs can also be found, as de-
scribed below. For any pair of non-identical red chords (and
by this stage there are no identical red chords, since they
would have been merged in the first step), there is at most
one way to route them such that the two obtained arcs do
not overlap. Also, the green chords can be routed in at most
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one way to not overlap the two arcs obtained from the red
chords. This unique routing reduces the chords to arcs, and
therefore the methods used for arcs can be applied.

6. Eulerian Tour Decomposition for the Chord-
Version Problem

In this section we propose the following Eulerian Tour
Decomposition (ETD) heuristic, for the chord-version min-
imum ADM cost problem. A similar technique can be ap-
plied to the arc version, but has approximation ratio 1.75.
Without loss of generality, we assume that G (C) is con-
nected, for otherwise we can apply the algorithm to each
connected component separately. We consider two cases.

In the first case, some nodes in the ring have odd degree.
The algorithm ETD runs in the following four steps:

1. Step 1: Divide the set of nodes with odd degree into
disjoint pairs. Add one fake chord between the two
nodes in each pair. Let C ′ be the set of fake chords.
Then |C ′| = d (C) and the graph G (C ∪ C ′) is Eule-
rian. Find an Eulerian tour of G (C ∪ C ′).

2. Step 2: Remove all fake chords from the Eulerian tour
to obtain d (C) trails of G (C).

3. Step 3: Split each trail into valid chains by walking
along the trail from the first chord and generating a
valid chain right before overlap occurs;

4. Step 4: Repeatedly merge any pair of open valid chains
into a larger valid chain until no more merging can oc-
cur.

In the second case, all nodes in the ring have even degree.
Thus the graphG (C) is Eulerian and has an Eulerian tour. If
|C| is even, we apply Step 3 and Step 4 in the first case to any
Eulerian tour ofG (C). If |C| is odd, we obtain an Eulerian
tour of G (C) whose first three chords form a valid chain,
if there is any, as follows. Fix a pair of adjacent but non-
identical chords c1 and c2. Let (u, v) denote the (clockwise)
arc induced by the unique routing of the 2-chain consisting
of c1 and c2. Without of loss of generality, we assume that u
is the an endpoint of c1 and v is the an endpoint of c2. If there
is a chord cwith one endpoint beingu and the other endpoint
being v or inside the arc (v, u), then we can obtain a desired
Eulerian tour whose first three chords are c, c1, and c2 se-
quentially. Otherwise if there is a chord cwith one endpoint
being v and the other endpoint being inside the arc (v, u),
then we can obtain a desired Eulerian tour whose first three
chords are c1, c2, and c. sequentially. Otherwise, we repeat
the previous procedure to other unselected pair of adjacent
but non-identical chords. Eventually, we either obtain a de-
sired Eulerian tour, or conclude that any three chords cannot

form a valid chain. In the former situation, we apply Step 3
and Step 4 in the first case to the obtained Eulerian tour. In
the latter situation, we apply Step 3 and Step 4 in the first
case to any Eulerian tour.

Lemma 9 The approximation ratio of ETD is at most 1.5.

Proof. We first consider the first case, i.e. d (C) ≥ 1.
Step 2 generates d (C) trails. Let P be any such trail. Since
each pair of consecutive chords in P can form a valid chain,
all valid chains except the last one split fromP at Step 3 con-

tains at least two chords. Thus at most
⌈
|P |
2

⌉
chains are split

from P . So, in total, at most |C|+d(C)
2

chains are generated
at Step 3, and costs at most

|C|+ |C|+ d (C)
2

=
3 |C|+ d (C)

2

≤ 3
2

(|C|+ d (C))

≤ 3
2
· opt.

This solves the first case, when d (C) ≥ 1.
In the next we consider the second case, i.e. d (C) = 0.

If |C| is even, then following the same argument above, at
most |C|

2 chains are produced. So the total cost is at most

|C|+ |C|
2

=
3
2
|C| ≤ 3

2
· opt.

So we now assume that |C| is odd. If some three chords form
a valid chain, let k ≥ 3 be the number of chords in the first
valid chain split from the obtained Eulerian tour. Then again

from the previous argument, at most 1+
⌈
|C|−k

2

⌉
chains are

produced. So the total cost is at most

|C|+ 1 +
⌈
|C| − k

2

⌉
≤ |C|+ 1 +

|C| − k + 1
2

=
3 |C| − k + 3

2
≤ 3

2
|C|

≤ 3
2
· opt.

If any three chords inC cannot form a valid chain, we prove
by contradiction that opt > |C|. Assume to the contrary.
Then in any optimal solution, each valid chain is closed, and
therefore must be a closed 2-chain. This implies that |C| is
even, which is a contradiction. Thus opt ≥ |C|+ 1. Since
exactly |C|+1

2 chains are generated, the total cost is at most

|C|+ |C|+ 1
2

=
3 |C|+ 1

2
<

3
2

(|C|+ 1) ≤ 3
2
· opt.

Therefore, in all cases, the lemma is true.
The next example shows that the approximation ratio of

ETD is at least 1.5.
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Example 10 Let n = 2 (2k + 1) for some k > 1, and C
consist of the following 3n

2
chords

{
ci =

(
2i, 2i+

n

2

)
| 0 ≤ i < n

2

}
∪{

c′i =
(
2i+

n

2
, 2i+

n

2
+ 1

)
| 0 ≤ i < n

2

}
∪{

c′′i =
(
2i+

n

2
+ 1, 2i

)
| 0 ≤ i < n

2

}
.

Note that for any 0 ≤ i < n, the three chords ci, c′i, c
′′
i form

a closed valid chain. So opt = |C| = 3n
2 = 3 (2k + 1).

As d (C) = 0 and |C| is odd, the algorithm ETD tries to
find an Eulerian tour in which the first three chords form a
valid chain. The algorithm, if breaking ties the wrong way,
produces the following Eulerian tour

c′k,c
′′
k, c

′′
2k, c

′′
k−1, c

′′
2k−1, · · · , c′′1 , c′′k+1, c

′′
0,

c0, c
′
0, ck+1, c

′
k+1, c1, c

′
1, ck+2, c

′
k+2, · · · ,

ck−1, c
′
k−1, c2k, c

′
2k, ck.

At Step 3, the following valid chains are generated:

• one open valid 3-chain{c′k, c′′k, c′′2k} ,

• k − 1 open valid 2-chains
{{
c′′i , c

′′
i+k

}
| 1 ≤ i < k

}
,

• one closed 3-chain {c′′0 , c0, c′0} ,

• 2k − 1 open valid 2-chains
{{ci, c′i} | 1 ≤ i ≤ 2k, i �= k} .

• one open valid 1-chain {ck} .

So, in total, 3k open chains and one closed chain are ob-
tained. These chains costs

|C|+ 3k = 3 (2k + 1) + 3k = 9k + 3 =
3
2
· opt− 3

2
.

Thus the approximation ratio of ETD is at least 3
2 .

From Lemma 9 and Example 10, we have the following
theorem.

Theorem 11 The approximation ratio of ETD is exactly
1.5.
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