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Abstract. Connected dominating set (CDS) has a wide range of appli-
cations in wireless ad hoc networks. A number of approximation algo-
rithms for constructing a small CDS in wireless ad hoc networks have
been proposed in the literature. The majority of these algorithms follow
a general two-phased approach. The first phase constructs a dominat-
ing set, and the second phase selects additional nodes to interconnect
the nodes in the dominating set. In the performance analyses of these
two-phased algorithms, the relation between the independence number
«a and the connected domination number ~. of a unit-disk graph plays
the key role. The best-known relation between them is a < 3?75 +1. In
this paper, we prove that o < 3.4306. + 4.8185. This relation leads to
tighter upper bounds on the approximation ratios of two approximation
algorithms proposed in the literature.

1 Introduction

Connected dominating set (CDS) has a wide range of applications in wireless ad
hoc networks (cf. a recent survey [3] and references therein). Consider a wireless
ad hoc network with undirected communication topology G = (V, E). A CDS of
G is a subset U C V satisfying that each node in V' \ U is adjacent to at least
one node in U and the subgraph of G induced by U is connected. A number of
distributed algorithms for constructing a small CDS in wireless ad hoc networks
have been proposed in the literature. The majority of these distributed algo-
rithms follow a general two-phased approach [T2IARITOITITZ]. The first phase
constructs a dominating set, and the nodes in the dominating set are called
dominators. The second phase selects additional nodes, called connectors, which
together with the dominators induce a connected topology. The algorithms in
[M2IARITOIT] differ in how to select the dominators and connectors. For ex-
ample, the algorithm in [2] selects the dominators using the Chvatal’s greedy
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algorithm [5] for Set Cover, the algorithms in [IIT0] select an arbitrary maximal
independent set (MIS) as the dominating set, and all the algorithms in [4ITTI12]
choose a special MIS with 2-hop separation property as the dominating set.

The approximation ratios of these two-phased algorithms [TI2/ISITOITT] have
been analyzed when the communication topology is a unit-disk graph (UDG). For
a wireless ad hoc network in which all nodes lie in a plane and have equal maximum
transmission radii normalized to one, its communication topology G = (V, E) is
often modelled by a UDG in which there is an edge between two nodes if and only if
their Euclidean distance is at most one. Except the algorithms in [2JT0] which have
logarithmic and linear approximations ratios respectively, all other algorithms in
[[4I8ITTIT2] have constant approximation ratios. The algorithm in [I] targets at
distributed construction of CDS in linear time and linear messages. With this ob-
jective, it trades the size of the CDS with the time complexity, and thus its approx-
imation ratio is a large constant (but less than 192). The analyses of the algorithms
in [4IRITTIT2] rely on the relation between the independence number (the size of a
maximum independent set) o and the connected domination number (the size of
a minimum connected dominating set) 7. of a connected UDG G. A loose relation
a < 47, + 1 was obtained in [I1], which implies an upper bound of 8 on the ap-
proximation ratios of both algorithms in [4ITT]. A refined relation o < 3.87.+ 1.2
was discovered in [I3]. With such a refined relation, the upper bound on the ap-
proximation ratios of both algorithms in [4I11] was reduced from 8 to 7.6, and an
upper bound of 5.8 +1n 5 & 7.41 on the approximation ratio of the algorithms in
[8] was derived (the bound 4.8+ 1n5 & 6. 41 in [§] was incorrect). The best-known
relation a < 33% + 1if G has at least two nodes was recently proven in [12]. As
a result, the upper bound on the approximation ratio of the algorithm in [I1] was
further reduced to 7:1,) in [12]. Another greedy approximation algorithm was also
proposed in [12] and its approximation ratio was proven to be bounded by 6 178.

In this paper, we first prove a further improved relation o < 3.4306+.+4.8185
in Section [Bl The proof for this bound employs an integrated area and length
argument, and involves some other interesting extreme geometric problems which
are studied in Section 2l Subsequently in Section [, we provide tighter analyses
of the approximation algorithm in [I1] and the other greedy algorithm in [T2].
We prove that the approximation ratio of the former algorithm is at most 6. 862
and the approximation ratio of the latter algorithm is at most 6.075.

We remark that a recent paper [7] claimed that for any connected UDG G,

o < 3.4537, + 8.291.

However, as discovered in [12], the proof for a key geometric extreme property
underlying such claim was missing, and such proof is far from being apparent or
easy. Such property is rigorously proved in Lemma Bl Consequently, the bound
claimed in [7] can be treated at most as a conjecture at the time of its publication
rather than a proven result.

In the remaining of this section, we introduce some terms and notations. For
any point v and any r > 0, we use disk, (u) to denote the closed disk of radius r
centered at u, and circle, (u) to denote the boundary circle of disk, (u). A path
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or a polygon is said to be inscribed in a circle if all its vertices lie on the circle.
The Lebesgue measure (or area) of a measurable set A C R? is denoted by |A|.
The topological boundary of a set A C R? is denoted by OA. For the simplicity
of presentation, the line segment between two points v and v and its length are
both denoted by uv by slightly abusing the notation, but the actual meaning
can be clearly told from the context.

2 Canonical Polygons and Inscribed Polygons

Suppose that s, o and ¢ are three points from the left to the right on a horizontal
line with 0os = 1 and ot = 0.5. For any pair of points u and v on circlel/\/g (0),
let wv be the arc in circle, /v3 (0) from u to v in the counterclockwise manner.
Denote by ¢ the radian of uv, and let k = [¢/ (7/3)]. We construct a path @ of
k edges from u to v with all vertices on uv as follows: If ¢ is an integer multiple
of 7, then all edges of @ are tangent to circleg 5 (0); otherwise, all edges except
the[k/2]-th edge are tangent to circle, , /3 (0) (we remark that in this case, the
[k/2]-th edge is disjoint from circley , /3 (0)). The path @ is referred to as the
canonical path inscribed in circle, , /5 (0) from u to v.

For any point u which lies on the right side the the vertical line through ¢, we
construct a polygon P as follows: let u; and us be the two points on circle, V3 (0)
such that the two line segments uiu and upu are tangent to circle, ; /5 (0) and
uy is above the line st. Then, P is surrounded by uju, usu and the canonical
path from u; to us. The polygon P is referred to as the canonical polygon of wu.
The point w is called the base vertex of P, and the angle § = arccos Q;U is called
the base angle of P. Note that if u is on the ray ot, then P is symmetric with
respect to the line ot, and the area of P N disk 5 (s) is a function of the base
angle 6, which is denoted by f (). In this section, we will derive the explicit
expression of f (6) and explore some useful properties of the function f (6). We
will also prove that for any canonical polygon P, |P Ndisky.5(s)| > f (0) where
0 is the base angle of P.

We first introduce a geometric function g on [0, 7] defined as follows. For any
6 € [0,7], let v be a point on circle; ), (0) satisfying that Ztov = 6 and v is
above st. Let w be the point on circley 5 (s) satisfying that vw is tangent to
circley /5 (0) and w lies to the right of v. Then, g (¢) is defined to be the area of
the region surrounded by arc tw and the three line segments ot, ov and vw (see
Figure[Il). The next lemma presents the explicit expressions of g (6) and its first
and second order derivatives.

Due to space limit, we omit some of the proofs in this version.

Lemma 1. Let 3 = 6 — arccos ' 2% Then,

g(0) = Zﬁ— isinﬁ—i— \26 sing,

g 0) = 15 _ 1.5 cos 3,



702 M. Li, P.-J. Wan, and F. Yao
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Fig. 1. Calucaltion of Zwst and g (6)
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Fig. 2. The curve of f on [0°,90°)
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In addition, g is increasing and convex on [0, 7], while both g' and g" are in-

creasing on [0, g]

It is easy to show that f(0) =2g(6) + h (0), where

0)
o o8] (e )30

Figure 2l is the curve of f on [0°,90°). We observe and will prove later that f
is increasing on [60 °, 90 °). However, on either of the two intervals [0 °, 30 °] and
[30°,60°], f is neither monotone, nor concave, and nor convex. Fortunately, on
either of these two intervals f has the following weak but still nice quasi-concave
property: f is said to be quasi-concave on an interval [a, b] C [0°,90 °) if for each
triple of increasing values 601,02, 05 in [a,b], f (02) > min{f (61), f (63)}.

T T

Lemma 2. f is quasi-concave on [07 76“] and [67 3

on [5,7)-

] respectively, and increasing
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Denote f (§) by o. Then,

V3 1 V8+2V3 31 9 14+V3
6 _2+ 1 + 3 — 4 arceos 3 ~ (0.855 053 28.

It is easy to verify that f(0) = v/3/2 and f(32°) < f(3) < f(34°). So, by
Lemma 2] we have the following corollary.

Corollary 1. The minimum of f on the interval[0°,90 °) (respectively, [32°,90 °)
and [34°,90°) ) is achieved at 30° (respectively, 32° and 60°).

Finally, we prove the following extreme property of the canonical polygons.
Lemma 3. For any canonical polygon P with base angle 0, |P Ndisky.5(s)| >
f(9).
Next, we prove the following lemma about inscribed polygons.
Lemma 4. Suppose that P is a polygon inscribed in circlel/\/3 (0) satisfying that
disko s (0) C P. Then,

|P| > V/3/2,

|P N disks(s)] > o.

3 Independence Number vs. Connected Domination
Number

In this section, we present an improved upper bound on the independence num-
ber in terms of the connected domination number.

Theorem 1. Let a and . be the independence number and connected domina-
tion number of a connected UDG G. Then,

a < 3.4306,. + 4.8185.

We prove the above theorem by an integrated area and length argument. Let U
be a minimum CDS of G, and define

2= diski5 (u).
uclU
Consider a maximum independent set I of G. We construct the Voronoi diagram
defined by I. For each o € I, we use Vor (0) to denote its Voronoi cell and call
the set Vor (o) N £2 as the truncated Voronoi cell of o. Clearly, |£2| is the total
area of truncated Voronoi cells of all nodes in I. We partition I into two subsets
I, and I, defined by

II:{oelzdiskl/\/3(o)C(2}7
L=1I\1I,.

Denote by a1 and s the size of I; and I respectively. The next lemma provides
a lower bound on each truncated Voronoi cell.
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Fig. 3. Any vertex of Vor (0) is apart from o by at least 1/v/3

Lemma 5. For each o in I (respectively, I ), the area of its truncated Voronot
cell is at least \/3/2 (respectively, o).

Proof. Since the pairwise distances of the points in I are at least one, the distance
between o and each side of Vor (o) is at least 0.5 and consequently disko.5 (0) C
Vor (0). Next, we show that no vertex of Vor (o) is inside disk, /3 (0). Let v
be a vertex of Vor (0), and e; and ez be the two sides of Vor (o) incident to v
(see figure[d)). Let o1 (respectively, o2) be the point which is symmetric to o with
respect to e; (respectively, es). Then, both o7 and o2 belong to I, and hence
the three sides of Aoojo, are all at least 2. Clearly, v is the center of Aoojo0s.
Since at least one of the three central angles of Aoojos is at most 120°, the
circumscribing radius of Aoojo0s is at least 1/\/3. Thus, ov > 1/\/3.

Let s be the node in the MCDS U closest to o. Then, o € disky (s). If
disk, .5 (0) € Vor (o), then [Vor (o) N 2| > |disk, /5 (0) N diski 5 (s)‘ > /3/2.
So, we assume disk, , /5 (0) is not fully contained in Vor (o). Then Vor (o) in-
tersects circle, /(o). We construct a polygon P C Vor (o) satisfying that P is
inscribed in circle, ; /5(0) and disko.5 (0) € P € Vor (o). Let Q be the sequence
of intersecting points between Vor (o) and circle, /5 (0) in the counterclockwise
order. For each pair of successive v and v in @, if Zuov < T, we add to P a
side between u and v; otherwise, we add to P a path inscribed in the arc from
u to v satisfying that each edge in this path is either tangent to or disjoint from
circle, I3 (0) (see Figure ). The resulting polygon P meets the requirement.
By Lemmafl |P| > v/3/2.

If 0o € I, then

P C Vor (o) Ndisk, /3 (0) € Vor (o) N £,

hence
[Vor (o) N 2] > |P| > V/3/2.

Now, we assume that o € I. Note that |P N disky 5 (s)| grows when moving o
away from s along a fixed radius of disk; 5 (s). By Lemmall |P N disky 5 (s)| > o.
Since

P Ndiskis(s) CVor(o)n {2,
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Fig. 4. Inserting operations

we have
[Vor (o) N 2] > |P Ndiskys(s)] > o.

We define

2 = U disky 5_1/y3 (V) -
velU

The next lemma gives an upper bound on the length of 9£2’.
Lemma 6. The length of 92’ is at most 2 (1 —1/v/3) as.
By Lemma B

|2] > \23041 + o0y = \2304— (ég —U) o,

< (e
O‘—\/g"‘ —\/3 2.
2 2

It is easy to prove by induction on ~, that

9 1 Vv8\ «
- - .
|2] < 9 ((’Vc 1) (arcsm3 + 9 > + 2) ,

and the length of of 92’ is at most

2 . 1 T
2(3— \/3> ((%—l)arcsmg_ \33 + 2).

2 (3 - \33> ((% —Darcsin, ', + g)
(0] <

- 2(1-&3)
_ V3T

1
9 ((’ya — 1) arcsin 5 *+ ;T) .
3= s

which implies

By Lemma [6]

705
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The three inequalities (), @) and @) imply altogether that « is at most
i1 V8
(e — 1) rmen <) T (vars (1o 7 ) V3T
Ye — <17 53>(\/3+7) Ty IRV 2
+ 2 arcsin 3_12 2

V3
~ 3.4305176,. + 4.8184688.

Thus, Theorem [ follows.

4 Tighter Approximation Ratios

In this section, we derive tighter bounds on the approximation ratio of the dis-
tributed algorithm proposed in [I1] and the other greedy algorithm proposed
in [I2]. For the convenience of presentation, we call them WAF and WWY
respectively. Let G = (V, E) be a unit-disk graph. We denote by « and ~. the
independence number and connected domination number of G respectively. For
any finite set S, we use |S| to denote the cardinality of S.

The CDS produced by the algorithm WAF consists of a maximal independent
set I and a set C of connectors. Specifically, let T' be an arbitrary rooted spanning
tree of G. The set I is selected in the first-fit manner in the breadth-first-search
ordering in T'. Let s be the neighbor of the root of T" which is adjacent to the
largest number of nodes in I. Then, C consists of s and the parents (in T') of the
nodes in I\ (s). It was proved in [I1] that TUC is a CDS and [T U C| < 8y, —1.
Later on, two progressively improved tighter bounds 7.6y, + 1.4 and 7})% were
obtained in [I3] and [12] respectively. The next theorem further improves the
bound on |1 U C].

Theorem 2. The CDS produced by the algorithm WAF has size at most 6.
8627, + 8.637.

Proof. Let I and C' be the set of nodes selected by the algorithm WAF in the
first phase and the second phase respectively. Since |C| < |I| — 1, we have

[TUC| <2 —1<2(3.43067, + 4.8185) — 1 < 6.8627, + 8.637.
So, the theorem follows.

In the next, we study the algorithm WWY. The first phase of this algorithm is
the same as the algorithm WAF, and we let I be the selected maximal indepen-
dent set. But the second phase selects the connectors in a more economic way.
For any subset U C V'\ I, let ¢ (U) be the number of connected components in
G[IUU]. Forany U CV\ I and any w € V' \ I, we define

Auwq(U) =qU) —q(Uu{z}).

The value A, q (U) is referred to as the gain of w with respect to U. The following
lemma was proved in [12].
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Lemma 7. Suppose that ¢ (U) > 1 for some U C V \ I. Then, there exists a
weV\{IUU) such that Nyq(U) > max {1, [q(U) /7.| — 1}.

The second phase of the algorithm WWY runs as follows. We use C' to denote
the sequence of selected connectors. Initially C' is empty. While ¢ (C) > 1, choose
anode w € V'\ (IUC) with mazimum gain with respect to C' and add w to C.
When ¢ (C) =1, then JTUC is a CDS. It was proved in [I2] that [T U C| < 6 §7e.
We derive a tighter bound on the output CDS in the theorem below.

Theorem 3. The CDS produced by the algorithm WWY has size at most 6.
0757, + 5.425.

Proof. Let I and C be the set of nodes selected by the algorithm WWY in the
first phase and the second phase respectively. If 4. = 1, then |I| < 5 and |C| < 1,
hence |TUC| < 6. Thus, the theorem holds trivially if v, = 1. If |I] < 3, + 2,
then [TUC| < 2|I] —1 < 69, + 3, and the theorem also holds. From now on, we
assume that v, > 2 and |I| > 3v. + 2.

We break C' into three contiguous (and possibly empty) subsequences Cy, Cs
and Cjs as follows. C] is the shortest prefix of C' satisfying that ¢ (C7) < 3.+ 2,
and C7 U5 is the shortest prefix of C satisfying that ¢ (C; U Cs) < 2.+ 1. We
can prove that

o
il < g s e O = Betd,
5 — e if ¢(C1) =37 +2;

; if g (Ch) <
<d 2.}
1= { g ifg(Ch) =

|C3] < 27, — 1.
From the first two inequalities, we have

[ e
< — .
‘Cl UCQ‘ S 5 9

Using the third inequality, we have

|I| Ve ‘I‘ 3
< — — = — 1.
So,
4111 3
I < .— 1
[TUCls o+ o7

4 3
<, (3.43067c +4.8185) + _7e — 1
<6.0757. + 5.425.

Thus, the theorem follows.
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5 Discussions

In this paper, we obtained a tighter relation between the independence number
and connected domination number of a connected UDG. We actually proved the
following stronger result on packing. Let V be a set of n nodes of a connected
dominating set, and I" be the unions of unit-disks centered at V. Then, we can
pack in I" at most 3.4306n + 4.8185 points whose pairwise distances are greater
than or equal to one. We'd like to emphasize that here we allow two points
packed in I' to have distance equal to one. On the other hand, a packing of
3n + 3 points in I" whose pairwise distances are greater than one was presented
in [T2]. It was also conjectured 3n+3 is the exact bound. Thus, there is still a gap
between the bound 3.4306n + 4.8185 derived in this paper and the conjectured
bound 3n + 3.
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