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Abstract 

This paper presents a new practical approximation algo- 
rithm for wavelength assignment to splitable lightpaths over 
WDM rings, with the objective of minimizing the number of 
SONET ADMs. Allowing the splitting of traffic streams can 
significantly reduce the number of required ADMs. 

Moreover, while finding the best assignment is proved to 
be NP-Hard, the problem seems easier to approximate than 
the variation when traffic streams cannot be split. In the 
worst case, the output of the new polynomial-time algorithm 
is at most 25% more than the optimum solution. This result 
is significantly better than the best known approximation ra- 
tio for non-splitable traffic streams. 

Keywords: wavelength division multiplexing (WDM), 
optical networks, SONET, add-drop multiplexer (ADM), 
WADM, grooming, approximation algorithm. 

1 Introduction 

WDM self-healing ring (SHR) networks are being de- 
ployed by a growing number of telecom carriers to sup- 
port multiple high-level SONET/SDH rings [7] over a sin- 
gle physical fiber optical ring. One of the most fundamen- 
tal network design problems for WDM networks is the as- 
signment of wavelengths to a given set of traffic streams. 
While most of the previous works attempt to minimize the 
number of wavelengths required or the amount of blocking 
for the given set of traffic streams [l, 5,9 ,  10, 31, it was ar- 
gued in [4,6] that unless the wavelength limit is exceeded, 
the first-order optimization goal should be to minimize the 
overall network cost which is dominated by the number of 
required SONET add/drop multiplexers (ADMs) instead of 
the number of wavelengths. In a WDM S H R ,  each (logical) 
SONET ring requires a SONET ADM at each node inside 
it and no ADM at any other node outside it due to the opti- 
cal bypass capability of optical add-drop multiplexers. Thus 
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the SONET ADM cost of a SONET ring is equal to the size 
of this SONET ring, i.e., the number of nodes it contains. 
The total SONET ADM cost is then the sum of the costs of 
all SONET rings. Alternatively, the SONET ADM cost of a 
node is equal to the number of SONET rings that contain this 
node, and the total ADM cost is the sum of the costs of all 
nodes. It was shown in [6] that minimizing the number of 
SONET ADMs is intrinsically different from the minimiz- 
ing the number of wavelengths, and there exist cases where 
the two minima cannot be simultaneously achieved. 

Recently, many works [4, 81 studied the wavelength as- 
signment to lightpaths over WDM rings to minimize the 
SONET ADMs. In each fiber ring, a traffic stream can be 
represented as a (directed) circular arc over the fiber ring, 
and an instance of ADM-minimization problem is a set A of 
circular arcs. Depending on the implementation, the circu- 
lar arcs are or are not be allowed to be split [6]. If splitting is 
not allowed, a valid wavelength assignment corresponds to 
a partition of A into groups of non-overlapping circular arcs 
(a set of circular arcs are said to be non-overlapping if the in- 
teriors of any pair of arcs have empty intersection). If split- 
ting is allowed, then a valid wavelength assignment consists 
of a choice of splitting each arc of A, thus obtaining A', and 
then a partition of A' into groups of non-overlapping circular 
arcs. In either case, each group of non-overlapping circular 
arcs can be carried in a wavelength and thus form a logical 
SONET ring. Finding an optimal solution without splits was 
shown to be "-Hard in [8] and a number of polynomial- 
time approximations algorithms were proposed in both [4] 
and [SI. The best known worst-case approximation ratio for 
non-splitable arcs is 1.5 ([2]), or in other words the output 
of the algorithm presented by [2] is proved to have cost at 
most 50% more than the optimum solution. 

Following the same argument as in [8], this paper shows 
that finding an optimal solution with splits is also "-Hard. 
In [4] it was first argued that splitting lightpaths has the po- 
tential to significantly reduce the number of ADMs. Split- 
ting is achieved by placing two ADMs and electrically trans- 
ferring the data between two wavelengths. A simple exam- 
ple presented in this paper shows that splitting can reduce 
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the number of ADMs by 33%. Wavelength assignment with 
splitting also tends to use a lower number of wavelengths. 
Based on the results of this paper, we also believe it is eas- 
ier to approximate the optimum placement when lightpaths 
are splitable. The higher port and cross-connect costs asso- 
ciated with splitting will probably be much smaller than the 
savings achieved by allowing splitting lightpaths. 

The two heuristics proposed in [4] (Cut-First and Assign- 
First) have worst-case examples when their output is 50% 
bigger than the optimum solution. Three transformations 
(Merging, Combining and Splitting) proposed by [4] can 
be used after any algorithm to attempt to further reduce the 
number of ADMs. These transformations do improve the 
performance of the Cut-First and Assign-First on the previ- 
ous worst-case examples. However, it is probably impossi- 
ble to analyze precisely the effect of the three transforma- 
tions. 

This paper introduces a new polynomial-time approx- 
imation algorithm for wavelength assignment to splitable 
lightpaths over WDM rings, with the objective of minimiz- 
ing the number of SONET ADMs. The algorithm combines 
greedy ideas with Eulerian rounding, a technique similar to 
the Cut-First heuristic of [4]. The worst-case approxima- 
tion ratio of the algorithm is proved to be at most 1.25. The 
three transformations of [4] can also be used after our new 
algorithm, providing practical improvements. An example 
shows that the new algorithm could produce an output us- 
ing 11 % more ADMs than the optimum solution. The three 
transformations of [4] do not help in this example. 

This paper is organized as follows: in Section 2, we 
present the formal definition of the problem of assigning 
wavelengths to splitable lightpaths over WDM rings, with 
the objective of minimizing the number of SONET ADMs. 
The potential for improvement over non-splitable lightpaths 
is quantified. The proof that the problem is NP-Hard is 
sketched. In Section 3 we present the new approximational- 
gorithm and prove that its approximation ratio is in between 
10/9 and 1.25. We also propose some practical improve- 
ments to the algorithm. We conclude with Section 4. 

2 Preliminaries 

Assume that the WDM self-healing ring consists of n 
nodes numbered clockwise: O,1, . . . , n - 1. All arithmetic 
involving nodes is performed implicitly using modulo n op- 
erations. The link from the node i to node i + 1 in the ring 
is referred to as link i. Each lightpath corresponds to a cir- 
cular arc (or simply arc). A circular arc a is represented by 
(o(a), t ( a ) ) ,  where o(a) is the originof a and t ( a )  is the ter- 
mination of a. 

Two arcs overzap if their interiors have a nonempty in- 
tersection. A sequence of circular arcs is called a chain if 
the termination of each circular arc, except the last one, is 

the origin of the subsequent circular arc. If no two arcs in 
a chain overlap, the chain is called valid. If the termination 
of the last circular arc is the also the origin of the first circu- 
lar arc, the chain is called closed, otherwise it is called open. 
The length of a chain is the number of arcs in the chain. The 
length of the chain C is also denoted by IC/. The cost of a 
valid chain is the number the nodes in the chain. For a closed 
chain, the length and cost coincide, while for an open chain, 
the cost is one more than the length. 

Splitting a lightpath corresponds to the following defini- 
tion for splitting arcs: the arc a is replaced by several arcs 
a1,a2,. . . , ak  such that o(a) = o(al), t ( a )  = t(arc), and 
t (ai)  = o(ai+l) for any 1 5 i < 5. To make notation sim- 
ple, replacing an arc by itself is also a split, called a nsplit. 
An arc which is the result of an nsplit is called original. A 
split which is not a nsplit is called a realsplit. An arc which 
results from a realsplit is calledfrugment. 

Any wavelength assignment, with or without splits, gen- 
erates naturally a set of disjoint valid chains. The ADM cost 
of this wavelength assignment is simply the sum of the costs 
of these valid chains. 

The problem of wavelength assignment to splitable light- 
paths over WDM rings, with the objective of minimizing the 
number of SONET ADMs can be formalized as follows: the 
input is a set of arcs A. Each arc of A must be split, obtain- 
ing a set of arcs B. A feasible solution consists of a choice 
of splitting each arc of A (thus obtaining B) and a partition 
of B into valid chains. The cost of the solution is the sum of 
the costs of these valid chains. 

This problem is NP-Hard, as sketched in the following. 
Optimum equals IAl if and only if A can be partitioned into 
valid closed chains. Indeed, any realsplit or any open chain 
will result in a solution of cost strictly bigger than [Al. The 
“-Hardness proof of [8] implies that answering the ques- 
tion if such a “perfect” partition exists is NP-Hard. 

As each arc of A can be nsplit (and therefore B = A), the 
optimum with splits is at most the optimum without splits. 
In [4] an example in which optimum with splits is 25% 
lower than optimum without splits is presented. In fact, op- 
timum with splits could be 33% lower than optimum with- 
out splits, as shown by the following example: n = 3, 
A = {a~ ,a2 , a~} ,wi tha l  = (0,2)(herewewritea = ( i , j )  
instead of the more complete o(a) = i and t ( a )  = j), 
a3 = (2, l), and a3 = ( 1 , O ) .  The optimum without splits is 
6,  while with splits a solution of cost 4 can be obtained by 
splitting a2 into a; = (2,O) and a” = (0,l). Then a1 and 
U; form one closed chain, and a” and a3 form another. 

Actually, the example above is extreme, in the sense that 
any solution with splits can be converted, by simply putting 
alone in a chain any arc which is split, into a solution without 
splits of cost at most 50% bigger. But how the two costs of 
optimum relate is not as interesting as how the best solutions 
we can find relate. 
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More preliminary definitions must be introduced before 
presenting the algorithm. Given a set of arcs S,  the surplus 
of a node i with respect to S is defined as follows: 

surs(i) = I{s E s : t ( s )  = i}l - I{. E s : o(s) = i}l. 

Note that the surplus might be negative and in fact 
surs(i) = 0. An open chain P = (ul ,  u2,. . . , ulc) 

in S such that surs(o(u1)) < 0 and surs(t(uk) > 0 is 
called tight with respect to S,  or simply tight, when S is 
understood as being a current set of arcs. The deficiency of 
a node i is d e f s  (i) = 3 I surs (i) I. The deficiency of a set 
of arcs S is def( S )  = defs (i). Then, as observed in 
[4], IS1 + def(S) is a lower bound on the minimum ADM 
cost required by S. 

For the purpose of the proof, we use arcs which are not in 
A. Such an auxiliary arc is called a fake, and has an origin 
and a termination like any other arc. We divide the set of 
arcs in two: red arcs and blue arcs. An arc is red if it does 
contain the link n- 1, and blue otherwise. Given a set of arcs 
S,  the blue number of S ,  denoted by b(S), is the number of 
blue arcs in S. Sometimes we write b(u) instead of b({u}). 
Note that any valid closed chain has blue number one, while 
a valid open chain has blue number at most one. 

3 The Algorithm 

We start by describing the last and most interesting phase 
of the algorithm, Euleriun rounding. Let S be a set of arcs. 
We consider two cases. In the first case, de f  ( S )  > 0. We 
first add a set of def ( S )  fake arcs F such that def(S U 
F )  = 0. This can be easily done by adding one by one 
fake arcs with the origin being a node of positive surplus and 
the termination being a node of negative surplus, thus each 
fake arc decreasing the deficiency by one. Now the directed 
graph with edges S U F is Eulerian. Choosing any Eulerian 
tour and then removing all fake arcs results in def(S) open 
chains. For every invalid (open) chain P, break it into valid 
chains as follows (see Figure 1): for each circular arc a in P 
that passes through o (P) ,  the origin of P, split it into two 
arcs 

U’ = (0 ( U ) ,  0 ( P ) )  , U” = (0 ( P )  , t ( U ) ) .  

After these splittings, the invalid chain P is then be decom- 
posed into valid chains by walking along P from o ( P )  and 
output a valid chain whenever reaching o (P) .  

In the second case, def ( S )  = 0, and thus the directed 
graph with edges S is Eulerian. Choose any Eulerian tour. 
Let i be any node which is the origin of some arc. For 
any circular arc U in the oriented Eulerian tour that passes 
through i, split it into two arcs 

U’ = (0 ( U )  , i) , U” = (i, t (U)) . 

After these splittings, the oriented Eulerian tour is then be 
decomposed into valid (closed) chains by walking along 
the oriented Eulerian tour from node i and output a valid 
(closed) chain whenever reaching node i. 

Figure 1. Eulerian rounding. Arcs are split 
into two fragments when they pass through 
node o(P):  the dashed fragment closes a 
chain, while the dotted fragment starts an- 
other chain. 

Lemma 3.1 The solution produced from Euleriun rounding 
for S has cost ut most I SI + b( S )  + def (5’). 

Proof. We first consider the case that def ( S )  > 0. Let P 
be any invalid chain. Note that among all valid chains gen- 
erated by Eulerian rounding from P, exactly one is open and 
all others are closed. Since the chain P must pass through 
the link n - 1 each time before passing through o(P),  the 
number of splits is at most b(P). So the total cost of these 
valid chains generated from P is at most IPI + b(P) + 1. 
Since there are total def ( S )  open chains, the total cost of 
all valid chains is at most IS1 + b(S) + d e f ( S ) .  

Now we consider the case that def (S) = 0. In this case, 
all valid chains are closed, and the number of splits is at most 
b(P). So the total cost of these valid chains is at most IS1 + 
b(S). W 

Using the machinery developed before, we proposed the 
following approximation algorithm for Wavelength Assign- 
ment in WDM Rings with Splitable Lightpaths: 

0 The input is a set of arcs A. 

0 Phase 1: While A contains a valid closed chain P 
of length two, nsplit the arcs in P, output the valid 
(closed) chain consisting of the two arcs, and set A t 
A\ P. 
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0 Phase 2: While A contains a valid closed chain P 
of length three, nsplit the arcs in P ,  output the valid 
(closed) chain consisting of the three arcs, and set A t 
A\P. 

0 Phase 3: While such an arc exists, select a E A such 
that a is blue and such the chain (a)  is tight. Nsplit a, 
output the valid (open) chain consisting of a, and set 
A +- A \ {a}. 

0 Phase 4: While such a pair of arcs exists, select 
a l ,  a2 E A such that ( a l ,  a2) is a tight valid chain, 
and one of a l ,  a2 is blue. Nsplit a1 and a2, output the 
valid (open) chain consisting of the two arcs, and set 
A +- A \ {ai, ~ 2 ) .  

0 Phase 5:  Do the Eulerian rounding of A. 

The last phase is the most interesting one. If optimum is 
“perfect”, (has only valid closed chains and no splits), Eu- 
lerian rounding cannot guarantee a good ratio. This is the 
reason why we use the first two phases, which achieve good 
results when there are many short valid closed chains. The 
third and fourth phase produce open chains, but decrease 
the deficiency. Since in any solution, the number of open 
chains is at least the deficiency, it makes sense to reduce de- 
ficiency. We also insist on reducing the number of blue arcs 
while reducing deficiency in phases three and four, to ob- 
tain a good Eulerian rounding in the fifth phase according to 
Lemma 3.1. 

Before the proof that the algorithm has approximation 
guarantee 1.25, we introduce some notation. For a set of 
arcs A, we use opt(A) to denote the value of the optimum 
solution to Wavelength Assignment in WDM Rings with 
Splitable Lightpaths which has A as the input. If A is un- 
derstood, we use only opt. 

The first phase is very intuitive. Indeed, let B be the set 
of arcs nsplit and then assigned to valid chains during the 
first phase. Then there is always an optimum solution which 
assigns to valid chains the arcs of B exactly the way our al- 
gorithm does. This fact follows from the following lemma: 

Lemma 3.2 Let A be a set of arcs and a l ,  a2 be two arcs of 
A which form a valid closed chain. Then opt (A)  = opt(A\ 
{al, a2)) + 2. 

Proof. We omit the proof for this extended abstract. W 

that no two arcs of the input form a valid closed chain. 

Theorem 3.3 The algorithm above has performance ratio 
at most 1.25. 

Based on the lemma above, in the following we assume 

Proof. First we present a general overview of the proof. We 
fix OPT, an optimum solution, and based on OPT we give 

credit to arcs of A. Recall that A is the input. Also, each 
node i gets d e f A  (i) credit. The exact initialcredit allocation 
scheme is described later. 

Before the algorithm starts, as shown in Lemma 3.4, the 
total credit is at most 1.25opt. During the execution of 
phases two, three and four of the algorithm, as the algorithm 
selects arcs, puts them in valid chains and outputs the chains, 
(during these phases we only nsplit), we take the credit from 
these arcs, and in phases three and four, also from the nodes 
whose deficiency decreases. We use this credit taken to 
cover the cost of the valid chains the algorithm produces and 
to give some extra credit to some other arcs, according to a 
credit transfer scheme to be described later. 

Finally, by the time we get to the fifth phase, the total 
credit remaining covers the cost of the output of Eulerian 
rounding. 

We start the proof somehow backwards, discussing this 
last phase. This would give the motivation for all the pre- 
vious steps. Let S be the set of remaining arcs after phase 
four. Assume each node i has de f s ( i )  and each arc a E S 
has 1 + b(a) credit. In total, we have d e f ( S )  + IS1 + b(S)  
credit and therefore, by Lemma 3.1, we can cover the cost of 
the Eulerian rounding. All the remaining discussion is about 
how to make sure that at the end of phase four, each remain- 
ing arc a has 1 + b(a) credit and each node i has de f s ( i )  
credit. We now describe the initial credit allocation. For a 
set of arcs S, we define OPTs to be the restriction of OPT 
to the set of arcs S. Each node i gets d e f A ( i )  credit. Every 
red arc receives 1 credit. Blue arcs receive credit according 
to their position in OPT, as given by the following scheme. 

0 Initialize S to be the initial set of arcs, A. 

0 Phase 1: As long as possible, do the following: if in 
OPTs there is a (valid) tight (with respect to S), open 
chain P = (a ) ,  where a is blue and nsplit, then a re- 
ceives 1.5 credit. Remove a from S. 

0 Phase 2: As long as possible, do the following: if in 
OPTs there is a valid tight (with respect to S), open 
chain P = (a l ,  az),  where either a1 or a2 is blue, and 
both are nsplit, the blue arc receives 1.75 credit. Re- 
move from S the arcs of P. 

0 Phase 3: As long as possible, do the following: if in 
OPTs there is a (valid) closed chain P = (a l ,  a2, a3), 
where a l ,  a2 and a3 are nsplit, the blue arc in P re- 
ceives 1.75 credit. Remove from S the arcs of P. 

0 Every remaining blue arc receives 2 credit. 

Lemma 3.4 The total initial credit is at most 1.25opt. 

Proof. The proof is based on considering many cases. Due 
to space limitations, we only describe two cases. We con- 
sider the chains of OPT one by one. We start with the chains 

219 

Authorized licensed use limited to: CityU. Downloaded on May 22,2010 at 09:18:21 UTC from IEEE Xplore.  Restrictions apply. 



used in the first three phases of the credit allocation scheme 
above, in the order they are used. Then we continue with the 
remaining chains of optimum, in some order to be described 
later. 

Take an open chain of OPT as described in the first phase 
of the scheme. For the arc a, OPT incurs a cost of 2. We give 
1.5 credit to a, 0.5 credit to o( a ) ,  and 0.5 credit to t (a) .  Alto- 
gether, we give 1.25 times the cost of this chain in OPT. Note 
that after removing each such arc a from S,  bothdefs(t(a)) 
and def s (o (a ) )  drop by 0.5. 

Take an open chain of OPT as described in the second 
phase of the scheme. For the chain P = (a l ,  a2), OPT in- 
curs a cost of 3. We give 1 credit to the red arc, 1.75 credit 
to the blue arc, 0.5 credit to t(a2) and 0.5 credit to o(a1). 
Altogether, we give 3.75 credit, which is 1.25 times the cost 
of this chain in OPT. Note that after removing the arcs from 
P from S, both def s ( t (a2 ) )  and defs(o(a1)) drop by 0.5. 

The remaining cases appear in the joumal version of this 
paper. m. 

We continue with the proof of Theorem 3.3. But first 
some definitions. If a blue arc has 2 credit, it is happy, other- 
wise it is unhappy. As our credit transfer scheme only takes 
credit from an arc when the arc is put (in phases 2,3, and4 of 
the algorithm) in a valid chain (which is then output), happy 
arcs stay happy as long as they are in the current set of arcs. 
By the initial credit allocation scheme, we have three types 
of unhappy arcs: 

Blue arcs given 1.5 credit during the first phase of the 
initial credit allocation scheme. These arcs are called 
unhappy singles. 

Blue arcs given 1.75 credit in the second phase of the 
initial credit allocation scheme. The two arcs from the 
same open chain of OPT are called partners, and they 
form an unhappy pair. 

Blue arcs given 1.75 credit in the third phase of the ini- 
tial credit allocation scheme. The three arcs from the 
same closed chain of OPT are called partners, and they 
form an unhappy triple. 

For a node i, define dep(i)  to be the number of unhappy 
singles a with .(a) = i plus the number of unhappy pairs 
( a l )  a2) with o(a1) = i. As arcs are made happy or assigned 
to valid chains (which are then output), dep(i) is decreas- 
ing during the execution of the algorithm. Similarly, for a 
node i, define arr(i)  to be the number of unhappy singles 
a with t ( a )  = i plus the number of unhappy pairs ( a l ,  u2) 
with t (a2)  = i. As arcs are made happy or assigned to valid 
chains (which are then output), arr(i) is decreasing during 
the execution of the algorithm. 

Our credit transfer scheme maintains the following de- 
purr invariant during the execution of the algorithm (that is, 

with respect to the current set of arcs): for any node i, if 
arr(i)  > 0, then arr(i) 5 sur(i), and if dep(i) > 0, then 
dep(i) 5 -sur(i). 

To maintain the deparr invariant, our credit transfer 
scheme ensures that whenever (during phases three or four) 
we choose an open chain, and we increase the surplus of a 
node i with dep(i) > 0, we also decrease dep(i) by either 
making a unhappy single happy or by making the blue arc of 
an unhappy pair happy. Similarly, whenever (during phases 
three or four) we choose an open chain, and we decrease the 
surplus of a node i with arr(i) > 0, we also decrease arr(i) 
by either making a unhappy single happy or by making the 
blue arc of an unhappy pair happy. 

Our credit transfer scheme, as we will see, also makes 
sure that whenever an arc from an unhappy pair or from an 
unhappy triple is selected and used by the algorithm, any 
remaining blue arc from the pair or triple receives enough 
credit to become happy. 

Phase two of the algorithm is designed to eliminate the 
unhappy triples. Please note that no surplus is changed, and 
therefore there is no need to worry about arrivals or depar- 
tures. 

Our credit transfer scheme is as follows: Let P = 
(a1 , a2, a3) be a closed chain selected in phase two of the al- 
gorithm, and assume that a1 is the blue arc. The cost of P in 
the output of our algorithm is 3. The blue arc a1 has at least 
1.5 credit, and therefore the total credit on these three arcs 
is at least 3.5. We use 3 credit to cover the output, give to 
the unhappy partner (if it exists) of a2 0.25 credit, and give 
to the unhappy partner (if it exists) of a3 0.25 credit, thus 
making happy any remaining unhappy arc which had one of 
its partners selected. No unhappy triple remains at the end 
of the second phase. 

We defer the description of the credit transfer scheme for 
the third and fourth phases of the algorithm to the joumal 
version of this paper. 

Obvious practical improvements are: after Phase 4, but 
before the Eulerian rounding, insert three other phases: 

0 Phase 4.1. While A contains a valid closed chain P, 
find one with minimum number of arcs. Nsplit the arcs 
in P ,  output P ,  and set A c A \ P. 

0 Phase 4.2 While A contains a tight valid chain P = 
( a l , .  . . ) ah) ,  nsplit the arcs in P, output P ,  and set 
A + A \ P .  

0 Phase 4.3 While A contains a closed chain P ,  find one 
with b(P) minimum. The Floyd-Warshall algorithm on 
the graph with vertex set N and arc set A finds this min- 
imum. Do an Eulerian rounding on P (producing b(P) 
closed chains). Then set A t A \ P. 

And after Eulerian rounding, the three transformations 
(Merging, Combining and Splitting) proposed by [4] should 
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also be applied, if possible. There is nothing special about 
the link n - 1 deciding which arc is blue and which one is 
not. If enough computing time is available, one should try 
running the algorithm using each of the remaining links of 
the ring to decide which arc is blue and which one is not. 

We are not able to prove a better approximation ra- 
tio based on these improvements. The worst exam- 
ple (for which the practical improvements also do not 
help) we have is the following: n = 6 and A = 
{ai, a2, a3, bi ,  bz,  b3, ci, c2, c3}, with ai = (0,2), a2 = 
(2,5), a3 = (5, O ) ,  bi = (2,4), b2 = (4, I), b3 = (I ,2>, 
c1 = (4,0), c2 = (0,3), and c3 = (3,4). If unlucky, the al- 
gorithmproduces a solutionof cost 10 (see Figure 2), while 
optimum is 9. 

Figure 2. The algorithm selects the closed 
chain (al, bl, cl). Eulerian rounding then 
splits one arc in two (azr for example) and pro- 
duces a solution of cost 10. Optimum uses 
the closed chains (al, a2, a3),  (b l ,  b2, and 
(cl, c2, c3) of total cost 9. 

4 Conclusions 

This paper presents a new approximation algorithm for 
the NP-Hard problem of wavelength assignment to splitable 
lightpaths over WDM rings, with the objective of minimiz- 
ing the number of SONET ADMs. The approximation ratio 
of the algorithm is proved to be in between 10/9 and 1.25, 
and it will be interesting to find the exact worst-case behav- 
ior of the algorithm. 

We implemented the algorithm in C++ and run it on sev- 
eral randomly generated instances, with at most 160 nodes 
and 7000 arcs. The code is available upon request. Not be- 
ing able to compute the optimum, we used as lower bound 
the number of arcs plus the deficiency. The output of the 
algorithm was between 7% and 15% more than the lower 

bound. We also implemented the more natural variation 
which uses Phases 4.1 and 4.3 before Phase 3. This natu- 
ral variation, for which we could not prove a good approx- 
imation ratio, gave slightly better results on about half the 
instances. 
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