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Abstract 

Lightwave networks can be built by embedding virtual 
topologies over physical topologies. The  optical passive star 
enables such embeddings easily. The  Shuf le-net  and the De- 
Brui jn  graph are two popular virtual topologies proposed in 
the past for lightwave networks. Both however suffer f rom 
the lack of flexibility in scaling network sizes. I n  this paper, 
we present a generalization of the De-Bruijn network which 
overcomes the limitation of the strict relationships between 
the network size parameters seen in the Shuf le-net  and the 
De-Bruijn networks. A generalization f o r  the Shuf le-net  
is  also possible with this idea. W e  emphasize the support 
of T i m e  and Wavelength Division Multiplexed media access 
protocols f o r  such architectures and present several proper- 
ties of the proposed network with respect to  the same. 

1 Introduction 

Optical passive stars [4, 81 provide a simple medium 
to connect nodes in a local or metropolitan area net- 
work. Each node is connected to the star via a pair 
of unidirectional fibers. The light signals entering the 
star are evenly divided among all the outgoing fibers 
such that a transmission from any node is receivable 
by all the nodes in the network. Passive stars present 
the advantage of smaller power losses as compared to 
linear optical busses [2]. This leads to greater network 
sizes. Moreover, the operation of the network is com- 
pletely passive which provides greater reliability. The 
broadcast nature of the optical star can be exploited 
to build virtual topologies with smaller average delays 
[16]. Fig. 1 shows an optical passive star network with 
N nodes. 

Several multihop lightwave networks have been pro- 
posed which use different regular virtual topologies 
such as a re-circulating multistage p-Shuffle [6], the 
de Bruijn graph [13] and the Bus-Mesh [3]. Regular 
virtual topologies present several advantages includ- 
ing simple routing, predictable path lengths, balanced 
loads, enhanced maximum throughput and the abil- 
ity to cross embed other regular topologies. Multi- 
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Figure 1: A passive star connected network : R = 
receiver, T = transmitter 

hop lightwave networks based on regular virtual topolo- 
gies using TWDM schemes for media access offer the 
possibility of tapping the vast bandwidth of the fiber 
optic medium. Regular virtual topologies supported 
on optical passive stars are preferable because of the 
properties outlined above. Use of a small number of 
fixed wavelength devices further simplifies design and 
reduces costs. 

The previously proposed lightwave network topolo- 
gies such as the De-Bruijn graph [13] and the Shuffle- 
net [6] are not flexible enough to support networks 
of arbitrary sizes. These topologies severely constrain 
network sizes by imposing a strict relationship between 
their network size parameters. In this paper, we pro- 
pose a generalized De-Bruijn network topology to  elim- 
inate these size constraints. Both the De-Bruijn graph 
and the Shuffle-net can be viewed as specific instances 
of the proposed topology. We highlight several prop- 
erties of the generalized De-Bruijn network concerning 
support of a TWDM media access protocol for such 
networks. 

In section 2 we present a brief background on the De- 
Bruijn graph and the Shuffle-net lightwave networks. 
We present the generalized De-Bruijn topology in de- 
tail in section 3. Section 4 presents a TWDM media 
access protocol for the generalized De-Bruijn network. 
We highlight several design trade-offs and properties of 
TWDM protocols over the proposed topology. In sec- 
tion 5 we evaluate the performance of the generalized 
De-Bruijn and compare it with the Shuffle-net and the 
De-Bruijn graphs. We conclude in section 6 .  
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2 Background and Previous Work 

The Shuffle-net [6] and the De-Bruijn graph [13] are 
two popular regular topologies, proposed in the past 
for multihop lightwave networks. In both networks, M 
interconnections are provided where M << N .(N - l), 
i.e., a small subset of the set of interconnections needed 
for an N node graph to  be completely connected. Thus 
a packet may have to make multiple hops to  reach the 
destination. 

2.1 The Shuffle-net Multihop Network 
In the (p, k) Shuffle-net [6], N = k . pk nodes are 

arranged in k columns' of pk nodes each. Each column 
is connected to the next one by pk+l directed links 
in a fixed pshuffle pattern with the last column con- 
nected to the first one in a wrapped around fashion. 
Fig. 2 shows a Shuffle-net interconnected network with 
18 nodes where p = 3 and k = 2. In this figure, the first 
column is repeated on the right to show the wrapped 
around nature of the connection. 

Figure 2: An 18 node Shuffle-net with p = 3, k = 2 

If the nodes are numbered as shown in Fig. 2, then, 
the address of a node m, (0 5 m < k . pk), can be 
transformed into a 2-tuple, (c, r ) ,  where c, (0 5 c < k), 
denotes the column address and r ,  (0 5 T < pk), de- 
notes the row address of the node. We have ( c , ~ )  = 
( [FJ ,mmodpk) .  Lett ingj = ( i - p ) m o d p k ,  anode 
with row address i has p arcs directed to nodes with 
row addresses j ,  ( j  + l ) ,  . . . , (j + p - 1). The resulting 
interconnection pattern between two adjacent stages 
is called the pshuffle, being a generalization of the 
perfect-shuffle (p = 2) [9]. There are a total of k -pk+' 
links in a Shuffle-net, with p incoming and p outgoing 
links at each node. 

We observe the following : 

0 There is a strict relationship between the network 
size parameters, N,p and k, i.e., the number of 
nodes in the network, N ,  is always given by the 
relation N = IC pk. 

lThe terms column and stage are used interchangeably. 

a) b) 

Figure 3: a) A (3,2) De-Bruijn Graph b) A (2,3) De- 
Bruijn Graph 

0 The diameter of the network is 2k - 1 since a 
packet may have to make two passes through the 
network in order to reach all the nodes [6, lo]. 

0 If channel sharing is not allowed, i.e., if each link 
represents a different wavelength, then, the total 
number of wavelengths, W ,  employed is, k -pk+', 
or N -p. In this ca,se, p represents the number of 
transmitters and and the number of receivers at 
each node since each node transmits on p sepa- 
rate wavelengths and receives on p separate wave- 
lengths. 

0 If channel sharing is allowed, then using a single 
fixed wavelength transmitter and a single fixed 
wavelength receiver at each node, the total num- 
ber of wavelength,s, W ,  reduces to, k pk-', or 
NIP. In this case, if a node transmits on a wave- 
length Xi, then all the p nodes in the succeeding 
stage that are connected to the transmitting node 
should receive on wavelength Xi. Similarly, if a 
node receives on a wavelength Xj ,  then all the 
p nodes in the preceding stage connected to the 
receiving node must transmit on the same wave- 
length X j .  

2.2 The De-Bruijm Multihop Network 

The (p, k) De-Bruijn graph has N = pk nodes con- 
nected in a recirculating Shuffle-exchange pattern. A 
node with address i, 0 5; i < pk, has p arcs directed to 
nodes with addresses j, (j + l), . . . , (j  + p - l ) ,  where 
j = (i ep) mod pk. The interconnection function is thus 
the same as that in the Shuffle-net. However, there is 
only one stage in the De-Bruijn graph. In other words, 
if all stages in the (p, k) Shuffle-net represent the same 
set of nodes, then it is equivalent to  a (p, k) De-Bruijn 
graph. Figs. 3a) and b) show a (3,2) De-Bruijn graph 
and a (2,3) De-Bruijn graph respectively. 

We observe the following : 

e Once again, the relationship N = pk has to be 
maintained. Thus, the network size can only be 
a small set of numbers. 
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2.3 

The diameter of the network is k. 

With no channel sharing, the number of wave- 
lengths employed is pk+' = N . p .  As with the 
Shuffle-net, p denotes the number of transmitters 
and the number of receivers at each node. 

With channel sharing, if p channels use the same 
wavelength then pk-l  = N / p  wavelengths will be 
used. 

Motivation for the Proposed Topology 

Because of the strict relations between N , p  and k, 
the Shuffle-net and the De-Bruijn graph can only real- 
ize a small number of network sizes. In this paper, we 
propose a multihop network based on the generalized 
De-Bruijn interconnection that requires only the triv- 
ial condition, N 2 p .  Thus the size restriction is over- 
come. This network also has a diameter of [log, N I .  
We propose a single stage design with the generalized 
De-Bruijn interconnection. The idea can easily be ex- 
tended for a multistage network to yield a generalized 
Shuffle-net. The proposed network uses a simple rout- 
ing algorithm to  forward packets. The diameter and 
the average distance (in hops) of the proposed network 
is shown to be shorter than that of the Shuffle-net with 
the same p and N .  The importance and benefits of 
TWDM media access schemes have already been high- 
lighted. In this paper, we wish to focus on the support 
of a TWDM protocol for the generalized De-Bruijn net- 
work. 

3 The Generalized De-Bruijn Network 

3.1 Topology 

We briefly revisit the p-shuffle interconnection. Let 
N = pk nodes be interconnected in a pshuffle pat- 
tern. Let the address of a node in the network be rep- 
resented by a p-ary number, k-digits wide. We can 
write the address of a node a, (0 5 a < p k ) ,  as, < 

A node in the pshuffle interconnection network has p 
successors connected via p links. The p links are num- 
bered as 0,1,. . . , (p-1), which we shall call link indices. 
The p-shuffle interconnection for a node with address 
a is then described by the following p interconnection 
functions : 

ak- l ,ak-2 , . . . ,a2 ,a l ,aO > i  (0 5 a O , a l , * . * , a k - l  < P ) -  

Fi (<  ak-I.ak--2..-.ral."O >) =< ak-2.0k-3,...,al.Q01i >, (1) 

whcrc 0 < i < p and 0 5 aj < p, V j ,  0 5 j < k. 

In equation 1, i represents the link index. Thus, .Fi(a) 
represents the function describing the connection of 
node a to its i th successor (0 5 i < p ) .  The inter- 
connection functions in equation 1 can be generalized 
for any p 5 N as follows [7] : 

a) 

Figure 4: a) A (2,lO) generalized De-Bruijn graph b) 
A (3,lO) generalized De-bruijn graph 

Gi(a) = (a . p  + i) mod N ,  (2) 

where a and i are defined as before. Again, in equa- 
tion 2, i represents the link index for node a. Thus 
Gi(a) gives the address of the node connected to node 
a via its ith link. We call the network resulting from 
the interconnection function defined as equation 2, the 
generalized De-Bruijn network. It is seen that equa- 
tion l is a special case of equation 2 with N = pk. The 
generalized De-Bruijn network is thus characterized by 
only two network size parameters - N and p ,  for any p 
and N ,  as long as p 5 N which is trivially maintained. 
We can thus denote such networks as ( p ,  N )  networks. 
Figs. 4a) and b) show the (2,lO) and (3,lO) generalized 
De-Bruijn networks respectively. 

3.2 Routing Algorithm 

A simple shortest path routing algorithm for the 
generalized De-Bruijn network is presented in this sec- 
tion. Let N," denote the set of nodes which are reach- 
able from node a in exactly k hops. Let Gilri2,...,ik (a) be 
the composition Gik (Gik-l (. . . (Giz (Gil (a)))  . . .)). e.g. 

use the shorthand notation Gk(a)  to denote the com- 
posite function Gil,iz ,..., $,(a). We define Go(.) = a. 
Thus we have, N," = {blGk(a) = b } ,  for k 2 0. 

For example, from Fig. 4a) we note that node 2 can 
be reached from node 3 in two hops following the path' 
3 -+ 6 -+ 2. So, 6 E N i  and 2 E N:. From equation 2, 
we observe that Go(3) = (3 . 2 + 0) mod 10 = 6 and 
Go(6) = ( 6 .  2 + 0) mod 10 = 2. Thus, Go(Go(3)) = 
G0,0(3) = 2. This can be expanded as shown below : 

Gi&) = Gj(GZ(4) and = Gk(Gj(G&))). w e  

Go(Go(3)) = (Go(3) . 2 )  mod 10 
(((3 2) + 0) mod 10).  2 + 0) mod 10 
(((3 m2) + 0) . 2  + 0) mod 10 
( 3 .  22 + 0 . 2 l  + 0 2') mod 10 (3)  

= 
= 
= 

= 2. 

2We use the terms path and route interchangeably. 
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The part 0 . 2l + 0 . 2O in equation 3 represents the 
path from node 3 to node 2 in the example above. The 
coefficient of 2l determines the link index (i.e. i l )  in 
the first application of function G (i.e Gil) and the co- 
efficient of 2' determines the link index (i.e. i2) in the 
second (recursive) application of G (i.e., G i z ) ,  on the 
node address 3. 

If b E N t ,  then 3 a k-hop path from node a to node 
b, a + bl + b2 + ... + bk-1 + bk = b. We note 
that bk = Gk((a)  and bk = Gik(bk-l) = Gik(Gk-'(u)). 
Equating the two we have the recurrence : 

6k((a) = g i k  (8"'(a)) 
= ( G k - ' ( ~ )  - p + i k )  mod N (4) 

with Go(a) = a defined as the boundary condition. 
We can recursively expand equation 4 to yield: 

= (U * pk + R k ( p ) )  mod N ,  ( 5 )  

where, R k ( p ) ,  (0 <_ &@) < p k ) ,  termed the route 
polynomial, is defined as : 

k 

~k (p) = i j  . pk+ (6) 
j=l 

Letting Z =< i l , i 2 , . .  . ,ik--l,ik >, we see that Z de- 
fines a k-hop route from node a to node b. i ~ ,  i ~ ,  . . . , ik 
denote the indices of the links followed en-route to 
the destination, in the 1st,2nd,. . . ,kth hops respectively. 
Our goal is to find the smallest k for which equation 5 
is satisfied, i.e., to find the shortest path from a given 
source to  a given destination. 

Let s and d be the source and destination addresses 
respectively (s # d). Presented below is a shortest 
path routing algorithm for the generalized De-Bruijn 
network. Algorithm SHORTEST-PATH returns three 
values, denoted by variables j , c  and k. j denotes the 
value of the route polynomial for a shortest path route 
from s to d, c represents the number of shortest path 
routes between s and d and k denotes the number of 
hops in the minimum length pathls from s to d. We 
define a gap function as follows : 

the min. j ,  ( j  2 0 ) ,  such that (7) 
d = ( s - p k + j ) m o d N  

gap(s, d, k) = 

= j = (s - p k  - d) mod N (8) 

0 SHORTEST-PATH(s, d) 
1 begin 

3 repeat 
2 k = l ;  

4 
5 
6 begin 
7 

8 return(j, c,  k); 
9 end 
10 k = k + l ;  
11 forever 
12 end. 

j = gap(% d, k); 
if ( j  < p k )  then 

find max. c,  (c 2 l), such that 
j + (c  - 1 )  . N < pk;  

We will see shortly, under what conditions there will 
be multiple shortest p,ath routes for a given source 
and destination pair. Note in line 7 of algorithm 
SHORTEST-PATH, c can be simply computed as, 
c = 1 9 1  + 1 .  When c = 1, there is a unique path 
of minimum length from node s to  node d. If we de- 
note the rth (1 < T < c) ,  minimum length route by 
Zr =< ii,iG ,..., irk >, then Z' =< i;,iG ,..., irk >= 
j + (T - 1)  N ,  expressed as a base p number, k digits 
wide. We denote the vallue j + (T - 1) . N  by j ,  and shall 
refer to them as alternate route polynomial values. 
Example 1: Referring to Fig. 4a), if s = 4 and d = 3, 
then the following is a trace of algorithm SHORTEST- 
PATH on this source-destination pair. 

Iteration 1 : k = 1 * ~ a p ( 4 . 3 ~ 1 )  = 5 * ( 5  C 2) = W e  
Iteration 2 : k I 2 + gsp(4.3.2) = 7 * (7 C 4) = fahe 
Iteration 3 : k = 3 * gap(4,3,3) = 1 * (1 C 8 )  = tmc 

Thus, ( j  = 1,c = l,k = 3) will be returned at the 
end of the third iteration. Then, we have Z1 =< 
i i , i?j , i i  >=< 0,0,1 >. From Fig. 4a), we see that 
starting at node 4, if we take link 0, we arrive at node 
8. Taking link 0 from node 8, we arrive at node 6 and 
finally, taking link 1 from node 6 ,  we reach the desti- 
nation 3. 
Example 2: With N = 8 and p = 4, let's compute 
the route from node 0 to node 4. 

Iteration 1 : k = 1 gap(O.4.1) = 4 * (4 < 4) = false 
Iteration 2 . k I 2 * gap(0.4.2) = 4 (4 < 16) = t m e  

In the above example, the algorithm will return (j = 4, 
c = 2, k = 2)  since there are two minimum length paths 
from node 0 to  node 4. We have Z' =< ii ,i!j >=< 
1,0 > and Z' =< i:,ii >=< 3,O >. The first path 
is 0 + 1 + 4 and the second path is 0 + 3 + 4, 
corresponding to the route polynomial values of 4 and 
8 respectively. 

Next, we prove some properties of the general- 
ized De-Bruijn network with respect to  the algorithm 
SHORTEST-PATH. 

Lemma 1 Algorithm ,SHORTEST-PATH is deternain- 
istic, i.e., it is guaranteed to find a shortest path from 
s to d, (0 5 s , d  < N ) .  
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Proof: We have 0 5 d < N .  Thus, from equation 8, 
we observe 0 5 j < N .  Since k increases after each 
unsuccessful iteration (an unsuccessful iteration is one 
where j 2 p k ) ,  at some point, pk  becomes 2 N .  This 
makes the condition j < pk  true. Thus a path will 
always be found from s to d.  k in equation 6 represents 
the number of hops in a path from s to d.  Since the 
algorithm returns as soon as the first k that satisfies 
equation 6 is found, the path returned is indeed the 
shortest path (in number of hops). 0 

Lemma 2 The diameter of the generalized De-Bruijn 
network (with the above azgorithm), is [log, N I .  

Proof: In the worst case, the algorithm cannot return 
the path until pk  2 N .  Thus the longest path in the 
network will contain [log,N] hops. Since the algorithm 
always returns the shortest path between a given pair 
of nodes, the diameter of the network is [log,N1. 0 

Lemma 3 The minimum length path from a given 
source to a given destination is unique if, k ,  the num- 
ber of hops in the minimum length path, is less than 
the diameter of the network. 

Proof: From Lemma 2,  we know the diameter of the 
generalized De-Bruijn network is [log, N I .  Thus if k 
is less than the diameter we know that pk  < N .  We 
want to find the maximum c, (c 2 l), such that j + 
(c- 1) .N < p k .  With pk  < N and 0 5 j < N ,  the only 
positive value of c that satisfies the above inequality is 
1, meaning that there is a unique path from the given 
source to the given destination. 0 

Lemma 4 If algorithm SHORTEST-PATH returns 
k = D, where D is the diameter of the network, then 

c = {  kkYi f o r O 5 j < S o r S = O  
IC N -1  f o r j k S > O  

with S = pk mod N and j and c are returned by  
SHORTEST- PA TH. 

Proof: In other words, this lemma says that if the 
shortest distance separating two nodes is equal to the 
diameter of the network, then there are rpk/N1 or 
[pk/N1 - 1 different paths from the given source to the 
given destination depending on the value of j returned 

From Lemma 2, we have D = [log, N I .  With k = 
D, two cases are possible : 1). pk  = N and 2)  pk  > N ,  
since D = [log, N I .  When pk  = N ,  the only value of c 
satisfying the equation, j + (c - 1) . N < p k ,  is 1. Thus 
there is a unique path from s to d in this case. 

For the case pk  > N ,  we refer to Fig. 5 .  We define 
two paths to be different as long as at  least one edge or 
one node is distinct between them. In Fig. 5, j denotes 

by SHORTEST-PATH. L3 

Figure 5: Valid values of j when pk  > N 

the route polynomial value returned by the algorithm 
SHORTEST-PATH for a given s and d ,  as before. If 
we divide the interval [O,pk], into intervals of length N 
starting at the value of j returned by the algorithm, 
we get the picture shown in Fig. 5 .  We note, j = j , , 
from our earlier definition of alternate route polynomial 
values. 

With S defined as pk  mod N ,  we observe from the 
figure that, when j < 6 or when S = 0, j a  = j + N ,  
j s  = j + 2N, . . . ,j, = j + (c  - 1) . N ,  are all less than 
p k ,  where c = [ p k / N ] .  Thus [pk /N]  different values 
for the route polynomial are obtained. Note that the 
two conditions j < S and S = 0 are mutually exclusive. 
When j 2 6, we observe that j, = j + (c  - 1) . N 2 pk  
when c = [ p k / N ]  while j ,  = j + (c - 1) . N < p K  when 
c = [pk /N]  - 1. Thus the algorithm will return c = 
[pk/N1 - 1. The c values of j returned by SHORTEST- 
PATH are mutually distinct in at least one position 
in their k-digit representation with base-p digits thus 
giving c different paths between the given node pairs. 

To summarize, the number of paths when k = D, is 
given by either [pk /N]  or rpk/N] - 1, depending upon 
the value of j relative to pk  mod N .  

Lemma 5 If the minimum length path from a given 
source to a given destination has exactly k = D hops, 
where D is the diameter of the network, then there are 
at most p alternate paths of minimum length between 
the same pair of nodes. 

Proof: From Lemma 4, we know that the number of 
alternate minimum length paths (when k = D) is at 
most rpk/N].  

With k = D, we have, pk  2 N .  Thus p"-l < N .  
Multiplying both sides of the latter inequality by p ,  we 
have pk  < N -p .  Which gives rpk/N1 5 p. The number 
of alternate minimum length paths is thus bounded 
above by p. 0 

Lemma 6 If there are multiple minimum length paths 
between a given pair of nodes, then these paths are all 
edge disjoint. 

roof: We show, by contradiction, that alternate 
paths (of length D), have no edge in common. 

Let there be two paths P1 and P2 between nodes s 
and d and let one edge e be common to the two paths. 
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This is shown in Fig. 6. Let the common edge e be 
between nodes x and y. If we denote path i from node 
a to node b by P$, then we have Pid = Ptx.e.PJd where 
. denotes concatenation. Similarly Pjd = Psx.e.Pyd. 0 

Figure 6: Multiple paths of minimum length are all 
edge disjoint 

Let L(P) denote the length of a path P. Then we 
have L(P1) = L(P2) = D, from Lemma 4. Note from 
Fig. 6 that L(P,z) < 0) and J ~ ( P , ~ )  < D. This results 
in a contradiction of Lemma 3, which shows there is 
a unique path between two nodes when the length of 
the path is less than the diameter. Likewise, we have 
L(Pid) < D and L(P$) < D which is again a contra- 
diction. 

Thus we conclude that paths of length k = D, will 
be distinct in all their edges. 

Lemma 7 If there are multiple minimum length paths 
between a given pair of nodes, then these paths are 
all node disjoint, except at the source and destination 
nodes. 

Proof: A proof similar to the one for Lemma 5, can 
be constructed. 0 

One of the observations in the De-Bruijn graph is 
that some of the links are self links (i.e., connects a 
node to  itself). This means in the virtual topology 
the self links will be absent since assignment of the 
same wavelength to a node's transmitter and receiver 
will result in a redundant virtual link. In the ( p , k )  
De-Bruijn graph, there are exactly p self links. For 
example, in Fig. 3, the (3,2) and (2,3) De-Bruijn graphs 
depicted have, exactly, 3 and 2 self links respectively. 

In the generalized De-Bruijn graph, however, it is 
not trivial to formulate a closed form expression for 
the number of self links in the graph. We state this as 
a lemma below. 

Lemma 8 The number of self links in the (p, N )  Gen- 
eralized De-Bruijn graph is 

P + gcd(N,p - 1) - 1, (9) 
where, gcd = the greatest common divisor. 

Proof: Denoting the address of a node by a,  the 
number of self links can be determined by computing 
the number of distinct solutions to the equation a G 

(a.p+i) mod N ,  where0 5 a 5 N - l &  0 5 i 5p-1 .  
Note that a E (a-p+i)  mod N e a . ( p - l ) + i  = k.N 
for some k. 

We first determine the range of all such k. Since 
0 5 a 5 N - 1  and 0 S i 5 p - 1 , O  L a . @ -  
1) + i 5 ( p  - 1) . N .  Therefore 0 < k < p - 1. The 
solution is of the form (a = kN-i p-1 We note that when 
k = 0 or k = p - 1, there is a unique solution. For 
1 5 k 5 p - 2 there are two cases to consider: i) when 
k * N # 0 (mod p - l ) ,  then again, there is a unique 
solution, and, ii) when k N E 0 (mod p - l), then 
there are two solutions,, namely, a = 3 and 1E.N - 1. 
The number of such cases (i.e., when there are two 
solutions) is gcd(N,p -- 1) - 1. The total number of 
solutions therefore, is pi + gcd(N,p - 1) - 1. U 

4 TWDM Media Access Protocol for 

P-1 

the Generalized De-Bruijn Network 

4.1 Basic Properties 

As mentioned in section 1, Time and Wavelength Di- 
vision Multiplexing, (or TWDM) is a preferable method 
of providing media access for stations connected in 
a lightwave network, either through a shared optical 
transmission medium like a bus or a shared optical de- 
vice like the passive star. We first establish some basic 
properties and the underlying assumptions for deploy- 
ing a TWDM media access scheme on a lightwave net- 
work. 

A TWDM system contains stations or user nodes 
which have their transmitters tuned for transmission 
at a fixed wavelength and receivers tuned for recep- 
tion at another wavelength. The time domain is di- 
vided into time slots of equal duration with the slots 
long enough to contain a fixed sized packet. The time 
slots are logically arranged into repeating cycles, with 
each station transmitting once or several times within 
a cycle at predetermined time slots and wavelengths. 
This can be described by means of a table such as 
the one shown in Fig. 7. We call this table a trans- 
mission schedule. In Fig. 7, we show a transmission 
schedule with 3 wavelengths, for a (3,2) De-Bruijn net- 
work shown previously, in Fig. 3a). In a transmission 
schedule, the columns denote time slots and the rows 
represent wavelengths. An entry k + l,m,n in row i 
and column j of the transmission schedule means that 
station k has the right to transmit at wavelength i in 
time slot j and this transmission can be simultaneously 
received by stations 1: m and n directly (i.e., stations 
l , m  and n have their respective receivers all tuned to  
wavelength i ) .  We call the number of time slots in a 
transmission schedule the cycle length. 

In Fig. 8 we show (a 9 node, (3,2) De-Bruijn graph 
embedded as a virtual topology on an optical passive 
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0 
1 
2 

Figure 7: Transmission Schedule for a (3,2)-De-Bruijn 
Network with 3 wavelengths 

1 2 3 
0 -+ 0,1,2 3 -+ 0,1,2 6 -+ 0,1,2 
1 -+ 3,4,5 4 -+ 3,4,5 7 -+ 3,4,5 
2 -+ 6,7,8 5 -+ 6,7,8 8 -+ 6,7,8 

star. The transmission schedule depicted in Fig. 8 cor- 
responds to this embedding. Fig. 8 shows a split view of 
the system, with all the transmitters on the left and all 
the corresponding receivers on the right. The numbers 
on the lines connecting a node's transmitter or receiver 
to the passive star denotes the wavelength used. Such a 
virtual topology embedding presents three constraints 

"\" 

Figure 8: A (3,2) De-Bruijn network embedded as a 
virtual topology on an optical star 

1. If a node transmits on a particular wavelength, 
then all nodes to which there is directed edge 
from this node must receive on the same wave- 
length. e.g. there are three directed edges from 
node 3, 3 -+ 0, 3 + 1 and 3 -+ 2. Thus nodes 0,l 
and 2 must all receive on the wavelength node 3 
transmits on. 

2. If a node receives on a particular wavelength, 
then all nodes which have a directed edge to 
it must transmit on the same wavelength. e.g. 
there are three directed edges to node 1, 0 -+ 1, 
3 -+ 1 and 6 -+ 1. Thus nodes 0,3 and 6 must all 
transmit on the wavelength node 1 receives on. 

3. If multiple nodes transmit on the same wave- 
length, then they must transmit in different slots 
to avoid collisions. e.g. nodes 0, 3 and 6 must all 
transmit in different time slots. 

Employing a TWDM transmission schedule such as 
the one shown in Fig. 7 entails a uniform and symmet- 
ric embedding of the virtual topology on the optical 
passive star. For a regular graph this means that all 
wavelengths are shared by the same number of trans- 
mitters and the same number of receivers receive on all 
wavelengths. For example, in Fig. 7, all wavelengths 
are shared by 3 transmitters and also by 3 receivers. In 
general, sets of x transmitters and sets of y receivers 
share each wavelength where x and y may be different 
depending on the topology and the number of trans- 
mitters and receivers at each node. 

For ease of discussion we treat the generalized De- 
Bruijn network as a regular bipartite graph g ( N  x N )  
with the transmitters on the left hand side and the re- 
ceivers on the right hand side (Fig. 4). A set of trans- 
mitters and receivers form a component if there is a 
path between any two of them assuming the edges in 
this bipartite graph are bidirectional. In other words, 
forgetting the unidirectional nature of the virtual link 
between a transmitter and a receiver, a component is 
a connected component in graph theoretic terminology. 
For example, Fig. 9 shows two components of the (2,lO) 
generalized De-Bruijn network in Fig. 4a. One of the 
components is constituted by the transmitters of nodes 
1 and 6 and the receivers of nodes 2 and 3, while the 
other one by the transmitters of nodes 3 and 8 and 
the receivers of nodes 6 and 7. The two components 
are shown with solid and dashed lines respectively in 
Fig. 9. There are a total of five components in the 
graph. Henceforth we will employ this bipartite rep- 
resentation of the generalized De-Bruijn graph to es- 
tablish its properties with respect to the support of a 
TWDM protocol. 

The notion of a component is central to assign- 
ment of wavelengths and supporting a TWDM access 
scheme. In each component, a wavelength can be as- 
signed starting at any transmitter (receiver). Then all 
receivers (transmitters) connected to this transmitter 
(receiver) are forced to receive (transmit) at this wave- 
length. Continuing in this manner, we end up with all 
transmitters and receivers within a component assigned 
to the same wavelength. 

Figure 9: Two components of a (2,lO) generalized De- 
Bruijn graph (there are a total of five components in 
this graph) 
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Observation 1 All transmitters and receivers consti- 
tuting a component are assigned to the same wave- 
length. In other words, within a component only one 
wavelength can be employed. 

Observation 1 implies that the maximum number of 
wavelengths that can be employed, W,,,,,, is equal to 
the number of components in the graph, C. Assuming 
all components contain the same number of transmit- 
ters (i.e., *), since transmitters in the same com- 
ponent have% share one wavelength, the transmission 
cycle length will be at least E. We denote this by 
omin. All the other components can proceed parallely 
in the TWDM transmission cycle. With this scheme, 
each row in the TWDM transmission schedule repre- 
sents a component. Clearly, the more the number of 
components, the greater the number of wavelengths ex- 
ploited by the TWDM scheme. 

If less than W,,,,, wavelengths are available, then 
S components can share a wavelength. In that case 
the transmission cycle length and the number of wave- 
lengths required are : 

4.2 
Here we consider a generalized De-Bruijn graph with 

T = R = 1, i.e., each node is equipped with a sin- 
gle fixed wavelength transmitter and a single fixed 
wavelength. There are two cases to consider : i) 
N mod p = 0,  and, ii) N mod p # 0. 
N mod p = 0 : In this case, the number of nodes, 
N = p . C where C is the number of components, each 
component having p transmitters and receivers. Thus, 
upto W,,,,, = C distinct wavelengths can be exploited. 
Fig. 10a shows a (2,lO) generalized De-Bruijn graph 
with five components and five assigned wavelengths. 

TWDM with T = R = 1 

b 

Figure 10: Wavelength assignment examples for: a) a 
(2,lO) generalized De-Bruijn graph, and, b) a (3,lO) 
generalized De-Bruijn graph 

N mod p # 0 : This situation results in the generalized 
De-Bruijn graph having a single component and thus 
only one wavelength can be exploited. Thus this case is 
somewhat restrictive in that the TWDM media access 
scheme reduces to a pure TDM scheme. Fig. 10b shows 

a (3,lO) generalized De-Bruijn graph with one assigned 
wavelength. 

This is summarized im the lemma below: 

Lemma 9 The maximum number of wavelengths that 
can be used with T = R = 1 is $, when N mod p = 0, 
and 1,  when N mod p +: 0. 

Proof: We first prove the N modp = 0 case. Let 
S = {0,1,. . . , N - 1) denote the set of all node indices 
in the graph. We prove this lemma by construction. 
We divide the receivers on the right hand side of the 
bipartite graph into sets Ri = {i - p + k I 0 5 k 5 
p - l}, for 0 5 i 5 f - 1. The set of receivers on the 
right hand side of the bipartite graph, connected to a 
transmitter t ,  0 5 t < N ,  on the left side, is exactly 
Rtmod f .  Therefore we divide all transmitters on the 
left hand into sets Li == {k - f + i I 0 5 k L p - l}, 

for 0 5 i 5 $ - 1. We have S = U&, Li = U[=, Ri. 
Also Li n L j  = 4, and I t i  n Rj = 4, for i # j .  

It is easy to see that V i ,  0 5 i 5 f - 1, 3% E Li, 
and 3y E Ri, such that 2 -+ y is an edge in B(N x N ) .  
Furthermore it can be seen that V i ,  if 2 E .Ci then 
there is no y E Ri, i # . j ,  such that i + j is an edge in 
B(N x N ) .  The converse is also true. This means that 
the transmitters in Li and the receivers in Rt form 
a connected component. Thus we have a total of 
components in the graph. The number of wavelengths 
that can therefore be employed is observation 1. 

Next we prove the N mod p # 0 case. For each 
transmitter t on the left side, the set of receivers can- 
nected to it on the right hand side is 2( t )  = {T  I r = 
( t - p + i ) m o d N ,  0 5 i < p } ,  for 0 5 t < N .  We 
note that if 2 ( i )  n 2 ( j )  # 4, i # j, then transmitters 
i and j belong to the same component since they are 
connected to at least one common receiver. Also note 
that if 2(i) n2(j) # 4 and 2 ( i )  n2(lc) # q5, i # j # I C ,  
then transmitters i, j and IC all belong to the same com- 
ponent. Let m = 151 and n = N mod p. m denotes 
the number of transmitters on the left connected to re- 
ceivers on the right in a non-overlapping manner, i.e., 
the number of transmitters that each connect to a dis- 
tinct set of receivers. There are two cases to comider: 
Case 1. m = 1: In this case we observe S = Z(O)UZ(l) 
and 2 ( 0 )  n 2(1) # 4. This implies that the bipartite 
graph is connected and that there is only one compo- 
nent. 
Case 2. m > 1: We note that ( ( t  + m) p + i) mod 
N = ( t a p +  N - T + i)i mod N = ( t  - p +  i - r )  mod N 

and ( ( t + l + m ) - p - t - i ) m o d N  = ( t . p + p - t - N -  
T + i) mod N = ( t  - p + i + p - r )  mod N .  We have 
2 ( t )  n 2 ( t  + m) = { r  I r = (t . p + i) mod N ,  for 

p+i) mod N ,  fori = p--r ,  . . . ,p-l}. Thus transmitters 
t ,  t + m and t + 1 + m are in the same component. In 

E-1 X - 1  

2 = r , .  . . ,p-l-~} and t ( t ) f l t ( t+l+m) = {T I T = (t' 
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other words, two neighboring transmitters are in the 
same component. Continuing in this manner it can 
be shown that all the transmitters belong to the same 
component. Thus there is only one component in the 
graph and only wavelength can be employed by the 
TWDM transmission scheme. 0 

We use the construction in lemma 9 to derive an- 
other result below which will be useful in the T ,  R 2 1 
case. 

%= 

R,= 

Figure 11: Two (4 x 4) complete bipartite graphs are 
the components of a (4,8) generalized De-Bruijn graph 

Lemma 10 Each  component  of t h e  generalized De- 
B r u i j n  graph G(N x N )  is a fully connected bipartite 
graph G(p x p ) ,  provided N mod p = 0. 

Proof: In lemma 9 we showed that there are 4 com- 
ponents in G(N x N ) .  Component i, constituted by Li 
and Ri is a bipartite graph G%(p x p ) .  Examining the 
sets Li and Ri, 0 5 i 5 5 - 1, from Lemma 9, we can 
easily see that V i ,  Vx E L, and Vy E Ri, x -+ y is an 
edge in Gi ( p  x p ) .  Thus (& (p x p )  is a complete bipartite 
graph Vi .  0 

Figure 11 illustrates the result of the above lemmas. 
Shown in this figure is a (4,8) generalized De-Bruijn 
graph which has two (4 X 4) bipartite graphs as com- 
ponents. 

NI with T , R  2 1 

This is a more general case of the one discussed 
above. Since the degree of each transmitter and re- 
ceiver is p ,  we have T, R < p .  We assume both T and 
R are factors of p for simplicity (i.e., p mod T = 0 and 
p mod R = 0). We characterize the generalized De- 
Bruijn graph with multiple transmitters and receivers 
below and discuss the Consecut ive  Par t i t i on  Alloca- 
t i o n  (CPA) strategy for wavelength and time slot as- 
signment for nodes in the generalized De-Bruijn graph. 
We'll call G(p, N ,  T ,  R) t ransmis s ion  graph for the gen- 
eralized De-Bruijn graph. 

At each node we partition the outgoing links into T 
groups, called t-groups, with one transmitter assigned 
to each group. The outgoing links from each node 
are numbered 0,1,. . . , p  - 1. With this partitioning, 
the first transmitter is assigned to links 0, 1, . . . , $ - 1, 

the second transmitter to links $, .. . , $ - 1, and so 
on. We then label a transmitter by the two tuple (t-  
node-id,t-group-id), where t-node-id is the index of the 
node the transmitter is located in and t-group-id is the 
group index of the transmitter. Similarly we parti- 
tion the p incoming links at each node into R groups, 
called r-groups with one receiver designated to each 
r-group. Thus the first receiver at each node is as- 
signed links 0,1, . . . , s - 1, the second gets assigned 
links 5,  . . . , 2 - 1 and so on. A receiver is also labeled 
by the tuple (r-node-id,r-group-id), where r-node-id is 
the index of the node the receiver is in and r-group-id 
is the group index of the receiver. The vertex set of 
G(p,  N ,  T ,  R)  is the union of the transmitter set 

{ ( a , t )  I O  5 a < N,O < t < T }  

and the receiver set 

{ ( b , r )  I O  5 b < N,O 5 T < T}. 
For any edge a -+ b in the De-Bruijn graph, if this is 

the i-th outgoing link of node a and the j-th incoming 
link of node b, then the corresponding link in the graph 
G(P,  N ,  T, R) is 

Next we examine the maximum number of wave- 
lengths, W,,,, usable in G(p, N ,  T ,  R). The result 
for the N mod p = 0 case is proved below. The 
N mod p # 0 case is non-trivial to prove. For detailed 
proof of that case, see [ll].  

Lemma 11 For N mod p = 0, G(p, N ,  T ,  R) can  e m -  
Ploy p N'T'R wavelengths. 

roof: We know through lemma 9 and lemma 10 that 
there are f components in the graph when N mod 
p = 0 and that each component is a complete bipartite 
digraph. We now examine one (p x p )  component of 
the De-Bruijn graph in isolation. Let the nodes in the 
component be labeled 0,1,. . . , p  - 1. Then, for any 
node a in the graph, its i-th outgoing link is a -+ i. 
Similarly the j-th incoming link for a node b would be 
j -+ b. 

We prove this lemma by construction too. We ob- 
serve that the set of receivers a transmitter (a, t )  in the 
component connects to is 

and the set of transmitters a receiver (b ,  r )  connects 
from is 
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For any 0 5 t < T and 0 5 T < R, let 

It’s easy to  verify that 

the set of receivers that each transmitter in At,, 
connects to in the transmission graph is exactly 
Bt,T;  

e the set of transmitters that each receiver in Bt,r 

Therefore, the transmitters in the set At,, and the re- 
ceivers in the set &,,. constitute a subcomponent. No- 
tice that each of these subcomponents is also a com- 
plete bipartite graph (6 x $). Thus each complete 
bipartite component 0, x p )  of the original generalized 
De-Bruijn graph G(N x N )  has T . R subcomponents. 
Since there are 5 components in the original graph, it 
means that the maximum number of wavelengths that 
can be employed is y. 0 

In a related paper, we have extended this result to 
a fully connected graph (or equivalently, a single hop 
network) [15]. Both the case of a single hop network 
with self-loops and without, are considered in [15]. 

5 Conclusions 

connects from is exactly At,,. 

In this paper we have shown that the generalized 
De-Bruijn graph can be a suitable virtual topology 
for designing lightwave networks using optical passive 
stars. We have developed several topological proper- 
ties of the generalized De-Bruijn graph in this paper 
and shown how TWDM protocols can be employed on 
it. A key contribution of this paper is to present the 
Consecutive Partition Allocation strategy for identify- 
ing components in the graph which leads to  an easy 
wavelength and time slot assignment strategy on this 
virtual topology. We have extended the CPA results 
to several other topologies. Work is in progress to de- 
velop methods for scaling multihop lightwave networks 
on different topologies as well as supporting them on 
multiple passive stars. 
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