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Abstract 
The single-star optical network is  limited in size b y  

the available power budget. When the network size 
exceeds the number of connections a star coupler can 
support, it becomes necessary to  use multiple passive 
star couplers to  implement the network. The cost of a 
multi-star optical network is  determined by the num- 
ber of fiber connections per station and the number of 
star couplers in the network. To reduce the cost of 
the network, it’s desirable to  use as less fiber connec- 
t ions per station and star couplers as possible. I n  this 
paper, we consider two multi-star implementations of 
of single-hop networks, and discuss how t o  implement 
them with least cost. 

Emerging lightwave networks are expected to  pro- 
vide end users with the integrated services at  ultra- 
high speed. However, the maximum data rate a t  
which a user can access the network is limited by the 
electronic interfaces. The key to improve the aggre- 
gate network bandwidth is to introduce concurrence 
among the users. Wavelength Division Multiplexing 
is a scheme in which light is modulated into different 
wavelengths each running at  a speed compatible with 
electronic devices. This scheme has been recognized 
as one of the most promising and effective ways to  
remedy the performance bottleneck of the relatively 
slow electronic interface devices. A bundle of wave- 
lengths, with enough spacing in between wavelength 
channels to avoid interference, are able to be used for 
transmission in the same fiber simultaneously. 

Fig. 1 shows a typical WDM network in which 
N stations connect to a common optical passive star 
eoupler[9, 131, each via a pair of unidirectional fibers. 
Each station has a set of transmitters and receivers. 
Each transmitter (receiver) is tuned to a specific wave- 
length from which it transmits (receives) light signals 
into (from) an optical fiber. A passive star coupler of 
dimension N can be viewed as an N x N switch where 

any incoming light signals is evenly split into N weaker 
signals, one for each output port. A transmission from 
one station to  another station is accomplished by tun- 
ing a transmitter of the sending station and a receiver 
of the receiving station to the same wavelength. Note 
that several transmissions can be carried out simulta- 
neously as long as those transmitters are using differ- 
ent wavelengths. 

Passive Star 
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Figure 1: An N-node single-star optical network 

A WDM passive star architecture exhibits the fol- 
lowing favorable features (i) broadcast/multicast can 
be straightforwardly implemented, (ii) there is no in- 
ner switch blocking, (iii) the signal attenuation for 
passive star couplers is logarithmically increased with 
N ,  (iv) requiring no external power source for the pas- 
sive star coupler guarantees reliability and eliminates 
interference, and (v) the switching fabric is much sim- 
pler compared with the electronic crossbar switch. In 
this paper, we focus on WDM networks based on this 
architecture. 

A single-star network, however, is limited in size 
by the available power budget [3]. The budget is de- 
termined by three factors: the power available at the 
transmitting ends, the sensitivity achievable at  the re- 
ceiver ends and the overall maximum loss incurred 
over the optical transmission graph. Usually a pas- 
sive star is composed of sets of 2 x 2 couplers which 
are organized into log d cascading columns, where d is 
the degree of the passive star. The signal emitted by 
a transmitter is broadcast to all receivers. The sig- 
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nal power appearing at the receiver is reduced to l / d  
due to splitting loss and log d due to coupler loss. Re- 
ceivers must receive a certain rate of photons to prop- 
erly detect the signal. Therefore, the power budget 
imposed by the finite available transmitter power and 
the minimum detectable receiver power are important 
factors which limit the size of the network. The opti- 
cal passive star is currently capable of supporting only 
about 128 end-user stations using existing technology. 
In order t o  be used in an environment containing thou- 
sands of stations, the proposed network architecture 
must be scalable over a wide range of potential net- 
work sizes. In this paper, we consider a construction 
of a large scale system by simply using smaller passive 
stars as building blocks. 

In a multi-star network, each station can physically 
connect to several star-couplers and each star coupler 
interconnects a subset of the nodes [lo]. When mul- 
tiple couplers are used, the size and hence the power 
splitting of each coupler are reduced, resulting in a 
more relaxed power budget constraint. This allows 
more network nodes to  be attached. For a fixed num- 
ber of channels, we can space them far apart. This 
can reduce the network cost as less expensive optical 
filters can be used. 

In a single-hop optical network, any message from 
a source station gets to its destination station directly 
without any electronic/optical conversions and pro- 
cessing at intermediate hops. The single-hop optical 
networks are “all-optical” networks, where electronic 
technology is only present at the beginning and the 
end of the communication pathway. Therefore, they 
can achieve enormous potential throughput with very 
low latencies. In this paper, we consider multi-star 
implementations of the single-hop optical networks. 

There are two different multi-star implementations 
of single-hop networks. The first is inspired the 
RACE-2001 project [12], in which transmission and 
reception are coupled. The connection between a sta- 
tion and a star coupler is a pair of unidirectional 
fibers, one for transmission and the other for recep- 
tion. This approach takes advantage of the multi- 
fiber cable. The second implementation decouples the 
transmission and reception. A station can transmit 
message to  a star coupler without any reception from 
the same star coupler, or vice versa. This approach 
provides more freedom on the interconnection design. 
These two approaches have different requirements on 
the number of fiber connections per station and on the 
number of star couplers, which determine the cost of 
the implementation. In this paper, we will first find 
tight lower bounds on the number of fiber connections 

per station and on thle number of star (couplers re- 
quired by each approach in terms of the network size 
and the star coupler degree. Then for each approach 
we will present a (near-)optimal interconnection con- 
struction algorithm with least fiber connections per 
station and least star couplers. 

The rest of this paper proceeds as follows. Sec- 
tion 2 considers the implementation that transmission 
and reception fiber conmections are coupled. Section 
3 considers the implementation that transmission and 
reception fiber connections are decoupled. Both sec- 
tion 2 and section 3 first identify the constraints on 
the interconnections, tlhen give lower bounds on the 
number of fiber connections per station and on the 
number of star couplers in terms of the network size 
and the star coupler degree, and at  last present inter- 
connection constructioni algorithms. Finally, section 4 
concludes the paper. 

2 Coupled Transmission and Recep- 
t ion 

In this section, we will consider the multi-star im- 
plementation of single-hop networks, in which the con- 
nection between a staticin and the star coupler is a pair 
of unidirectional fibers, one for transmission and the 
other for reception. We assume that all receivers at- 
tached to a star coupler can receive message from any 
transmitter attached to  the star coupler. This can be 
by WDM and/or TDM with tunable transceivers or 
multiple fix-tuned transceivers. We first identify the 
constraints on the interconnection of the stations and 
the star couplers. 

Lemma 1 Suppose that the size of the network is n,  
and the degree of each star coupler is  d .  To achieve the 
single-hop communication between any two stations, 
the following two conditions mus t  be met: 

(1). Any star coupler can connect t o  at most d sta- 
tions. 

(2). Any two stations mus t  share at least one common 
star coupler. 

The first condition in Lemma 1 reflects the connec- 
tion limit of each star coupler. The second condition 
reflects the single-hop distance between each pair of 
stations. Figure 2 shows two examples of such con- 
nections. The stations are represented by the circled 
numbers. For clarity, the diagram has been simplified 
so that each star is represented by a concentric circle 
and the pair of unidirectional links between a station 
and a star coupler is represented by one link. The 
number of stations is 10. In Fig. 2(a), the degree of 
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each star coupler is 5 and the network uses 6 star cou- 
plers. In Fig. 2(b), he degree of each star coupler is 6 
and the network uses 5 star couplers. 

Figure 2: Two examples of multi-star optical net- 
works. 

The two constraints in Lemma 1 impose the follow- 
ing lower bounds on the number of fiber connections 
per station and the number of star couplers. 

Lemma 2 Suppose that the size of the network is n 
and the degree of the star couplers is d. Then the num- 
ber of transmission (reception) jiber connections of any 
station is at least at least [cl, and the number of 

star couplers is at least r-1. 
Proof. As each star coupler can be attached with 

at most d pairs of transmission-reception fiber connec- 
tions, each pair of transmission-reception fiber con- 
nections from any station can ensure that at most 
d - 1 other stations can communicate with this sta- 
tion in single hop. Since all other n - 1 stations in the 
network should communicate with this station in sin- 
gle hop, the number of pairs of transmission-reception 
fiber connection is at least ( 2 1 .  

Since each station has at least [ e l  pairs of 
transmission-reception fiber connections, the total 
number of pairs of transmission-reception fiber con- 
nections is at least n r z l .  As each star coupler can 
support d pairs of transmission-reception fiber connec- 

tion, the number of star couplers is at least [ T I .  
This proves the lemma. 0 

n 1 G l  

The lower bounds given in the above lemma are 
tight. We prove this by showing existence of a single- 
hop network of size n implemented by multiple star 
couplers of degree d in which 

0 the number of pairs of transmission-reception 
fiber connections at each station is exactly [SI; 

n r H 1  
0 the number of star coupler is exactly 1 7 1 .  

In fact, consider n = 10 and d = 5. On one hand, 
by Lemma 2 the number of pairs of transmission- 
reception fiber connections at each station is at least 

n - 1  9 
4 r,,i = 1-1 = 3, 

and the number of star couplers is at least 

On the other hand, consider the network shown in 
Figure 2 (a). The number of pairs of transmission- 
reception fiber connections at each station is exactly 
3, and the number of star couplers is exactly 6. 
Therefore, it  achieves both the lower bound on the 
row weights and the lower bound on the number of 
columns. 

In the above, we have given two tight lower bounds 
on the number of pairs of transmission-reception fiber 
connections at each station and on the number of star 
couplers. However, we still do not know how far the 
lower bounds are from the corresponding optimal val- 
ues. In the next, we will give an algorithm to construct 
multi-star single-hop networks. The algorithm also 
gives upper bounds on the minimal number of pairs of 
transmission-reception fiber connections at each sta- 
tion and on the minimal number of star couplers. As 
we will see in the next, the upper bounds are very 
close to  the corresponding lower bounds. 

Our algorithm to construct the interconnections is 
very simple yet efficient. The idea can be described 
as follows. Given n and d ,  we first split the n sta- 
tions into r+] groups, each containing at most 151 
rows. Then for each pair of two groups, we use a 
star coupler to  interconnect these two groups. We 

star couplers as C2,3, for 
0 5 i < ($1 - 1 and i < j 5 [-+I - 1. The formal 
description of the algorithm is as follows. 

r 3 i  ( r  Ai -1) 
denote these 2 

151 

Algorithm d 
Input: n and d. 
Output: a network consisting of n stations and 

r$j lU*l- l)  
3 star couplers. 

begin algorithm 
for (x = 0;  x < n; x + +) 

i = [+I; 
15J 

for ( j  = i + l ; j  < [+1;j + +) 151 
establish a pair of transmission-reception 

fiber connections between station x and 
star coupler Ct,J .  

end algorithm 
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The following lemma proves the correctness of Al- 
gorithm A. 

Lemma 3 I n  the network generated by Algorithm 
A7 

(1). Any star coupler connects to  at most  2L;J pairs 
of transmission-reception fiber connections. 

(2). Any two stations share at least one common star 
coupler. 

Proof. ( 1 )  is obvious as each star coupler intercon- 
nects two groups of stations, each of which contains at 
most 141 stations. For (2), we consider any two sta- 
tions x and y with 2 5 y. If [+J = L-J-1, then the 
stations a and y share lceil+] - 13-1 star couplers 

131 141 
151 is1 

If 1 ] < L+j, then the stations a and y share the 
star coupler Cl+j,l&j. Therefore, (2) is also true. 
EJ 151 

L 2 J  
This proves the lemma. a 

In the network generated by Algorithm d, the 
number of pairs of transmission-reception fiber con- 
nections at each station is exactly 

and the number of star couplers is 

yJl(yJ1 - 1) 
2 

This also gives the upper bounds on the number of 
pairs of transmission-reception fiber connections a t  
each station and the number of star couplers. Now 
we examine how close the lower bounds and the upper 
bounds are. We first study the bounds on the number 
of pairs of transmission-reception fiber connections at 
each station. Notice that 

2 n  n - 1  2 
- - - = 2 - + -  

d - 1  d - 1  d - 1  

As 1 - 1 is an integer, if d > 3 we have m 

It's easy to verify that the above equation is true for 
d 5 3. Therefore, equation (1) holds for any integer d.  
This means that the upper bound on the row weights is 
within twice of the lower bound. Now we consider the 
bounds on the number of star couplers. By equation 
( l ) ,  we have 

2n n - 1  
L (d-l+l)rd--I] 

- ( 2 1 1  + e(-))- n d r-1 d - 1  
d d n n - 1  - 

Therefore, the upper bound on the number of star cou- 
plers is asymptotically within 2& times of the lower 
bound. This implies that the performance of Algo- 
rithm A is very close to the optimal interconnection. 

3 Decoupled Transmission and Recep- 

In this section, we will consider the multi-star im- 
plementation of single-hop networks, in which the 
transmission and reception are decoupled. Comparing 
to the coupled transmission and reception, we have 
more freedom to interconnect the star couplers and 
the stations. A staticin can transmit message to a 
star coupler without any reception from the same star 
coupler, or vice versa. As in the previous section, we 
assume that all receivers attached to  a star coupler 
can receive message from any transmitter attached to 
the star coupler. 

We first identify the constraints on the interconnec- 
tion of the stations and the star couplers. 

tion 

Lemma 4 Suppose that the size of the network is n, 
and the degree of each star coupler is d .  To achieve 
the single-hop distance between any two stations, the 
following two conditions mus t  be met: 

(l), Any star coupler can connect t o  at most d sta- 
tions. 

(2). For any two stations x and y, there is at least one 
star coupler which connects one of x's transmis- 
sion fiber and one of y 's reception fiber. 

The constraints given in Lemma 4 impose lower 
bounds on the number of fiber connections per sta- 
tion and the number of star couplers. 

Lemma 5 Suppose that the size of the network is n7 
and the degree of each star coupler is d. Then the 
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number of transmission (reception) fiber connections 
of each station is at least [$I, and the number of star 
couplers is  at least r q 1 .  

Proof. Since each star coupler can be attached with 
at most d reception (transmission) fiber connections, 
each transmission (reception) fiber connection from a 
station can ensure that at most d stations are within 
single-hop distance from this station. As each station 
can have at most one transmission (reception) fiber 
connection with a star coupler, each station require at 
least rgl transmission (reception) fiber connections. 

transmis- 
sion (reception) fiber connections, the total number of 
transmission (reception) fiber connections is at least 
n[$l .  As each star coupler can support a t  most d 
transmission (reception) fiber connections, the num- 
ber of star couplers is at least rY1. This proves the 
lemma. Cl 

Since each station requires at least 

In the next, we give an interconnection construc- 
tion algorithm. The idea is to split the n stations 
into [$I source groups, each containing at  most d sta- 
tions. Similarly, we split the n stations into 131 des- 
tination groups, each containing at most d stations. 
Then for each pair of source group and destination 
group, we use a star coupler to  interconnect these two 
groups. This algorithm uses [$12 star couplers and 

transmission (reception) fiber connections per sta- 
tion. We denote these [;I2 star couplers as Ct,J for 
0 5 i, j 5 - 1. Then the algorithm can be formally 
described as follows. 

Algorithm f? 
Input: n , d .  
Output: network consisting of n stations and 

begin algorithm 
[$I2 star couplers. 

for(x = 0;x < n;i  + +) 
i = L"; 

d 
for ( j  = 0 ; j  < [:l;j + +) 

establish the transmission fiber connec- 
t ion between station x and star coupler 

establish the reception fiber connectzon 
G , j  7. 

between station x and star coupler C3,z; 
end algorithm 

The following lemma proves the correctness of Al- 
gorithm B. 

Lemma 6 In the interconnection among star star 
couplers and stations generated by Algorithm B,  

For any star coupler, the number of transmission 
(reception) fiber connections attached t o  it is  at 
mos t  d ;  

For any two stations x and y, there is  a star cou- 
pler which connects one of the transmission fiber 
connection of station x and one of the reception 
fiber connection of station y .  

Proof. n o m  Algorithm B, the star couplers that 
the transmission fiber connections of station x connect 
to are 

C L ~ J  ,o, cl? J , I ,  . . * , cis J -I ( 2 )  
and the star couplers that the reception fiber connec- 
tions of station x connect to  are 

CO,,,,, Cl,[$], ... 3 C[Z-ll,LfJ. (3) 

Therefore, for any star coupler Ci,j, the stations that 
have transmission fiber connections to  Ci,j is 

i d , i d +  l , . . . , m i n ( ( i  + 1)d - 1 , n  - 1) (4) 

and the stations that have reception fiber connections 
to  Ci,j is 

j d , j d +  l , . - - , m i n ( ( j  t- 1)d-  1 ,n -  1). ( 5 )  

This implies that (1) is true. 
For any two station x and y ,  the star coupler 

C ~ ~ j . , i t ; ~  connects one of the transmission fiber con- 
nection of station x and one of the reception fiber con- 
nection of station y. So ( 2 )  is also true. This proves 
the lemma. 0 

Algorithm f? always uses minimal number of 
transmission (reception). If n is a multiple of d, 
then Algorithm f? is optimal as it also uses mini- 
mal number of star couplers. This implies that the 
lower bounds given in Lemma 5 are tight. When n is 
not a multiple of d, one can show that 

which implies that the number of star couplers is a t  
most 131 more than the minimal number of star cou- 
plers. Therefore, Algorithm L? is near-optimal. 

4 Conclusion 
In this paper, we have investigate the multi-star 

implementations of single-hop optical networks. Two 
kinds of implementations have been considered. In 
the first implementation the transmission are coupled, 
while in the second implementation the transmission 
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are decoupied. For both implementations, we have 
given tight lower bounds on the minimal number of 
fiber connections per station and the minimal number 
of star couplers. We then present one interconnection 
construction aigorithm for each implementation. The 
number of fiber connections per station and the num- 
ber of star couplers used by these algorithms are very 
close to  the optimal values respectfully. 

Finally, the authors thank Professor D.-Z. Du for 
his insightful discussions and kind help. 
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