
Message-Optimal Connected Dominating Sets in Mobile
Ad Hoc Networks

Khaled M. Alzoubi
Department of Computer

Science
Illinois Institute of Technology

Chicago, IL 60616

alzoubi@cs.iit.edu

Peng-Jun Wan
Department of Computer

Science
Illinois Institute of Technology

Chicago, IL 60616

wan@cs.iit.edu

Ophir Frieder
Department of Computer

Science
Illinois Institute of Technology

Chicago, IL 60616

ophir@cs.iit.edu

ABSTRACT
A connected dominating set (CDS) for a graph G(V, E) is a
subset V ′ of V , such that each node in V − V ′ is adjacent
to some node in V ′, and V ′ induces a connected subgraph.
A CDS has been proposed as a virtual backbone for rout-
ing in wireless ad hoc networks. However, it is NP-hard
to find a minimum connected dominating set (MCDS). Ap-
proximation algorithms for MCDS have been proposed in
the literature. Most of these algorithms suffer from a very
poor approximation ratio, and from high time complexity
and message complexity. Recently, new distributed heuris-
tics for constructing a CDS were developed, with constant
approximation ratio of 8. These new heuristics are based
on a construction of a spanning tree, which makes it very
costly in terms of communication overhead to maintain the
CDS in the case of mobility and topology changes.
In this paper, we propose the first distributed approxima-

tion algorithm to construct a MCDS for the unit-disk-graph
with a constant approximation ratio, and linear time and
linear message complexity. This algorithm is fully local-
ized, and does not depend on the spanning tree. Thus, the
maintenance of the CDS after changes of topology guaran-
tees the maintenance of the same approximation ratio. In
this algorithm each node requires knowledge of its single-
hop neighbors, and only a constant number of two-hop and
three-hop neighbors. The message length is O(log n) bits.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless
communication; F.2.2 [Nonnumerical Algorithms and
Problems]: Geometrical problems and computations

General Terms
Algorithms, Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro£t or commercial advantage and that copies
bear this notice and the full citation on the £rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior speci£c
permission and/or a fee.
MOBIHOC’02, June 9-11, 2002, EPFL Lausanne, Switzerland.
Copyright 2002 ACM 1-58113-501-7/02/0006 ...$5.00.

Keywords
ad hoc networks, connected dominating set, maximal inde-
pendent set, mobility.

1. INTRODUCTION
Wireless ad hoc networks can be flexibly and quickly de-

ployed for many applications such as automated battlefield
operations, search and rescue, and disaster relief. Unlike
wired networks or cellular networks, no physical backbone
infrastructure is installed in wireless ad hoc networks. A
communication session is achieved either through a single-
hop radio transmission if the communication parties are
close enough (neighbors), or through relaying by interme-
diate nodes otherwise. In this paper, we assume that each
node has a unique ID, and each node knows the IDs of all its
neighbors. Scheduling of transmission is the responsibility
of the MAC layer. We further assume that all nodes V in a
wireless ad hoc network are distributed in a two-dimensional
plane and have an equal maximum transmission range of one
unit. The topology of a wireless ad hoc network can be mod-
eled as a unit-disk graph [3] G = (V, E), a geometric graph
in which there is an edge between two nodes if and only if
their distance is at most one (see Figure 1).

Figure 1: Modeling the topology of wireless ad hoc
networks by unit-disk graphs.

Although a wireless ad hoc network has no physical back-
bone infrastructure, a virtual backbone can be formed by

157

nodes in a connected dominating set (CDS) of the corre-
sponding unit-disk graph [2] [4][5]. In general, a dominating
set (DS) of a graph G = (V, E) is a subset V ′ ⊂ V such that
each node in V − V ′ is adjacent to some node in V ′, and a
CDS is a dominating set that also induces a connected sub-
graph. A (connected) dominating set of a wireless ad hoc
network is a (connected) dominating set of the correspond-
ing unit-disk graph. A virtual backbone, also referred to as
a spine, plays a very important role in routing, where the
number of nodes responsible for routing can be reduced to
the number of nodes in the CDS. The virtual backbone also
plays an important role for broadcasting and connectivity
management in wireless ad hoc networks [2]. Broadcast-
ing responsibility can be reduced to the nodes in the CDS
instead of all the nodes in the graph. To reduce the commu-
nication overhead, to increase the convergence speed, and
to simplify the connectivity management, it is desirable to
find a CDS of a small number of nodes.

The quality of a virtual backbone in wireless ad hoc net-
works is conventionally measured by its approximation fac-
tor, which is the ratio of its size to that of the MCDS; and
the construction cost of a virtual backbone is measured by
the message complexity and the time complexity. Table 1 [7]
summarizes the quality and construction costs of the virtual
backbones proposed in [5], [8], [6] and [7]. In mobile wireless
ad hoc networks where nodes may move continuously, the
virtual backbone should not only preserve good quality all
the time instead of at a particular moment, but also allow ef-
ficient maintenance due to topology changes. Unfortunately,
none of the virtual backbones proposed in the literature can
be efficiently maintained to preserve good quality. The vir-
tual backbone proposed in [5][4][2] not only has poor quality,
but is also very expensive to be maintained as it requires the
maintenance of a spanning tree. The virtual backbones pro-
posed in [8] and [6] are relatively easier to be maintained,
but suffer from poor quality. On the other hand, the virtual
backbone proposed in [1][7] is of good quality, but is very
hard to be maintained as its good quality relies on a ranking
of nodes depending on a rooted spanning tree.

Backbone [5][4][2] [8] [6] [1][7]
Quality Θ (log n) n n

2
, n ≤ 8

Messages O
(
n2

)
Θ(m) O

(
n2

)
O (n logn)

Time O
(
n2

)
O

(
∆3

)
Ω (n) O (n)

Table 1: Summary of performance of various virtual
backbones: n is the number of nodes, m is the num-
ber of edges, and ∆ is the maximum nodal degree.

The heuristics proposed by Alzoubi et al in [1][7] take
advantage of the property of the maximal independent set
(MIS), where the approximation ratio for any heuristic for
constructing a MIS in a unit-disk graph is at most 5. An
MIS S is an independent DS, i.e. all pairwise nodes in S
are non-adjacent. Thus the construction of a MIS is a con-
struction of an DS with approximation ratio of 5. Also the
maintenance of the DS, as topology changes can be described
as the maintenance of a MIS for the unit-disk graph.
In this paper we take advantage of the MIS properties

to construct a CDS for wireless ad hoc networks, that is

easy to maintain under the environment of mobility and
topology changes. The construction of the CDS consists of
two localized phases: the first phase is the construction of the
MIS. MIS nodes are referred to as dominators. In the second
phase each dominator is connected to all dominators within
three-hop distance. The connecting nodes between any pair
of dominators that are at most three-hop away from each
other are referred to as connectors. Both of the dominator
and connector nodes form the CDS. The key technique in
our maintenance approach is to maintain the MIS in the
unit-disk graph, and to maintain connectivity between all
MIS nodes. Every time a new dominator appears in a new
vicinity, it must have a connection through connector nodes
to all dominators within three-hop distance. A connector
node maintains its state as a connector as long as it connects
at least two dominators. Otherwise it changes its state to
dominatee if it has at least one dominator. In this paper,
we show that the number of dominators within three-hop
distance from a dominator is constant.
Our algorithm makes the following two main contributions

to the virtual backbone in mobile ad hoc networks:

1. The virtual backbone proposed in this paper not only
has a constant approximation factor, but also can be
constructed in both linear messages and linear time.
Thus, it is the first virtual backbone with all those
properties.

2. The virtual backbone can be maintained efficiently
such that its good quality can be preserved all the
time. The updating of the virtual backbone occurs
only at a topology change. In addition, each updating
is confined locally to a small neighborhood.

The remainder of this paper is organized as follows. In sec-
tion 2, we introduce the structure of the virtual backbone
and study its quality. In Section 3, we present a distributed
construction of this virtual backbone with linear communi-
cation cost and computation cost. In Section 4, we describe
a local maintenance of this virtual backbone in the mobile
environment. Finally, we conclude this paper in section 5.

2. VIRTUAL BACKBONE
Our virtual backbone U is a union of two subsets of nodes

S and C. The nodes in S form a maximal independent set
(MIS), i.e., an independent dominating set. Note that any
pair of nodes in S are separated by at least two hops, and
any subset of nodes in S is at most three hops away from
the rest nodes in S. The nodes in C are then selected as
follows: for each pair of nodes in S at most three hops away
from each other, choose a path of at most three hops (not
necessarily the shortest one) between them, and add the
internal nodes in the chosen path to C. Obviously, U is a
CDS. In the rest of this section, we show that U is within
constant factor of the MCDS.

We begin with some general geometric properties of a MIS
S in a unit-disk graph. The following lemma bounds the size
of any MIS. It is well-known that each node is adjacent to at
most five nodes in S. The following lemma gives constant
bounds on the number of nodes in S that are nearby any
node in S.

158

0.5

0.5

u
1.0

0.5

0.5

3.5

2.5

Figure 2: The disks of radius 0.5 centered at the
nodes in S that are within three hops away from u
all lie within the annulus centered at u of radii 0.5
and 2.5 and are disjoint.

Lemma 1. Let S be any MIS of the unit-disk graph G and
u be an arbitrary node in S.

1. The number of nodes in S that are exactly two hops
away from u is at most 23.

2. The number of nodes in S that are at most three hops
away from u is at most 47.

Proof. The proof following from the standard area ar-
gument. The disks of radius 0.5 centered at the nodes in
S that are exactly two hops away from u all lie within the
annulus centered at u of radii 0.5 and 2.5 and are disjoint.
Thus, the number of nodes in S that are exactly two hops
away from u is less than

π · 2.52 − π · 0.52
π · 0.52 = 24.

Similarly, the disks of radius 0.5 centered at nodes in S that
are at most three hops away from u all lie within the annulus
centered at u of radii 0.5 and 3.5 and are disjoint (see Figure
2). So the number of nodes in S that are exactly three hops
away from u is less than

π · 3.52 − π · 0.52
π · 0.52 = 48.

Let opt denote the size of a minimum CDS in G. The
following lemma bounds the size of any MIS in G and was
proven in [7].

Lemma 2. The size of any independent set in G is at
most 4 · opt+ 1.

Based on the above two lemmas, we can prove the constant-
approximation of U to the MCDS.

Theorem 3. The size of CDS U is within a constant fac-
tor of opt.

Proof. From Lemma 1, the total number of pairs of
nodes in S that are within three hops away from each other

is at most 47|S|
2
. Since each of such pairs introduces at most

two nodes to C, the total number of nodes in C is at most
47 |S|. Thus, the total number of nodes in U is at most
48 |S|. From Lemma 2, the total number of nodes in the
CDS U is at most

|U | ≤ 48 |S| ≤ 192opt+ 48.

Therefore, the size of CDS U is within a constant factor of
opt.

3. DISTRIBUTED CONSTRUCTION
By definition, any pair of nodes in a MIS are separated by

at least two hops. However, a subset of nodes in a MIS U
may be three hops away from its complementary subset in U .
This case may appear when an ID-Based approach is used
for rank assignment [1]. Our distributed construction of the
CDS can be briefly described as two phases. The first phase,
a MIS S is constructed. The nodes in S are referred to as
dominators, and the nodes not in S are referred to as dom-
inatees. In the second phase each dominatee node identifies
the dominators that are at most two hops away from itself
and broadcasts this information. Using such information
from all neighbors, each dominator node identifies a path
of at most three hops (not necessarily the shortest one) to
each dominator that is at most three hops away from itself
and has larger ID than its own ID, and informs all nodes in
this path about this selection. The set C then consists of
all dominatee nodes in these paths, which are referred to as
connectors. However, the description of our CDS construc-
tion combines the two phases. In the next, we describe a
distributed algorithm with linear message complexity and
linear time complexity to implement this distributed con-
struction.

3.1 Local Variables and Structures
Each node is in one of the four states: candidate, domina-

tee, dominator and connector. Each node is initially in the
candidate state and subsequently enters either the domina-
tee state or the dominator state. The connector state can
only be entered from the dominatee state.

Each node also maintains several local variables and data
structures. The local variable x1 stores the number of cur-
rent candidate neighbors, and is initially equal to the total
number of neighbors. The local variable x2 stores the num-
ber of current candidate neighbors with lower IDs, and is
initially equal to the total number of neighbors with lower
IDs. Note that both x1 and x2 can be initialized in linear
time.

159

Each dominatee or connector node maintains a local vari-
able y which counts the number of neighboring dominatees
that have reported their list of adjacent dominators. y ini-
tially equals to 0.

Each dominator node maintains a local variable z which
counts the number of reports yet to be received from its
neighbors on their lists of single-hop dominators and lists of
two-hop dominators. z initially equals to twice the number
of neighbors.

Each dominatee node maintains two lists, list1 and list2.
list1 stores the IDs of the neighboring dominators. Each
entry in list1 is simply the ID of neighboring dominator.
list2 stores the IDs of the dominators two hops away and
the IDs of the neighboring dominatee to reach these domi-
nators. Each entry in list2 is an ordered pair of the ID of a
dominator two hops away and a neighboring dominatee that
is adjacent to both. All entries in both lists are sorted in
the increasing order of the IDs of the dominators, and both
lists initially are empty.

Each dominator node maintains two lists, list2 and list3.
list2 (respectively, list3) stores the ID of the dominators
with larger IDs that are two (respectively, three) hops away
and the IDs of its neighbors to reach these dominators. An
entry in list2 (respectively, list3) is an ordered pair of the
IDs of a dominator with larger ID that is two (respectively,
three) hops away and a neighbor to reach this dominator.
All entries in both lists are sorted in the increasing order of
the IDs of the dominators, and all lists initially are empty.

Each connector node maintains a list Rlist which is ini-
tially empty. Each entry in Rlist contains two parameters.
The first parameter is a pair of IDs of two dominators to
which it maintains connectivity. The second parameter con-
tains the ID of the associated connector that connects the
two dominators in the first parameter, if the two dominators
are three hop distance. If the two dominators are two hop
distance, the value of the second parameter is assigned to
Null.

Each node further maintains a list Clist which is initially
empty and stores the IDs of neighboring connectors.

3.2 Messages and Actions
A candidate node with x2 = 0 changes its own state to

dominator, initializes z to twice the number of neighbors,
and then broadcasts a DOMINATOR message. Note that
such node does exist at the beginning.

Upon receiving a DOMINATOR message, a node (which
cannot be a dominator node) decrements x1 by one and in-
serts the ID of the sender into list1. A candidate node fur-
ther proceeds as follows. It changes its own state to dom-
inatee, and then broadcasts a DOMINATEE message. If
x1 = 0 after the updating, it broadcasts a LIST1 message
which contains all entries in list1; if the number of neighbor-
ing dominators is also equal to the number of neighbors (i.e.,
all neighbors are dominators), it also broadcasts a LIST2
message which contains all entries in list2 (which is empty
in this case).

Upon receiving a DOMINATEEmessage, a candidate node
decrements x1 by one. If the sender has lower ID, it decre-
ments x2 by one. If x2 = 0 after the updating, it first
changes its own state to dominator, then initializes z to twice
the number of neighbors, and finally broadcasts a DOMINA-
TOR message.

Upon receiving a DOMINATEE message, a dominatee
node decrements x1 by one. If x1 = 0 after the updating,
it broadcasts a LIST1 message which contains all entries in
list1.

Upon receiving a LIST1 message, a dominatee or con-
nector node increments y by one. (When a node receives
a LIST1 message, the node cannot be in candidate state.
However, some of its neighbors may be still in the candi-
date state and thus it can not determine the final number of
neighboring dominatees. This is why we increment y.) For
each dominator ID contained in the LIST1 message which
does not appear in the current list1 and list2, it inserts
into list2 an entry consisting of this dominator ID and the
sender’s ID. Finally, if x1 = 0 and y is also equal to the
number of neighbors minus the number of neighboring dom-
inators (the length of list1) after the updating, it broadcasts
a LIST2 message which contains all entries in list2.

Upon receiving a LIST1 message, a dominator node decre-
ments z by one. For each dominator ID contained in the
LIST1 message which is larger than its own ID and does
not appear in the current list2, it inserts into list2 an entry
consisting of this dominator ID and the sender’s ID, and
removes from list3 the entry containing this dominator ID
if there is any. If z = 0 after the updating, it broadcasts a
LIST3 message which contains all entries in list2 and list3.

Upon receiving a LIST2 message, a dominator node decre-
ments z by one. For each dominator ID contained in the
LIST2 message which is larger than its own ID and does
not appear in the current list2 and list3, it inserts into list3
an entry consisting of this dominator ID and the sender’s ID.
If z = 0 after the updating, it broadcasts a LIST3 message
which contains all entries in list2 and list3.

Upon receiving a LIST3 message, a node (which must
be either in dominatee state or in connector state) checks
whether its ID appears in any of the entries in this message,
and if so it proceeds as follows. First, it sets its state to
connector if its current state is dominatee. Then, for each
entry in LIST3 message that has its ID, it inserts into the
first parameter of its Rlist the ID of the sender, and the ID
of the dominator it is responsible to connect (target domi-
nator). If the target dominator is adjacent to itself, it sets
the second parameter to null. Otherwise, it sets the second
parameter to the ID of neighboring node associated with
the target dominator in its own list2. Finally, it broadcasts
a CONNECTOR1 message which includes two parameters,
the first parameter has its own ID, and the second parameter
contains a list of all entries that were added to its Rlist.

Upon receiving a CONNECTOR1 message, a node inserts
into its Clist the ID of the sender. A node which is not a
dominator further checks whether its ID appears in any of
the entries of the second parameter of the message, and if

160

so it proceeds as follows. First, it sets its state to connector
if its current state is dominatee. Then, it inserts into the
first parameter of its Rlist the first parameter of the entry
that has its ID in the received CONNECTOR1 message,
and adds the ID of the sender to the second parameter in
its Rlist. Finally, it broadcasts a CONNECTOR2 message.

Upon receiving a CONNECTOR2 message, a node inserts
into its Clist the ID of the sender.

Figure 3 illustrates the construction process of the CDS.
In the graph, the IDs of the nodes are labelled beside the
nodes. White nodes represent the candidate nodes, black
nodes represent the dominators, gray nodes represent the
dominatees, and the white node with an inner black node
represents a connector node. A possible execution scenario
is shown in Figure 3(a)–(d), which is explained below.

1. Initially all nodes are candidates (see Figure 3(a)).

2. Each of the nodes 1, 2, 3 and 4 declares itself as
a dominator, and broadcasts a DOMINATOR mes-
sage. Notice this process may occur simultaneously,
since each one of these nodes has the lowest ID among
all its neighbors. Whenever a neighboring node re-
ceives the DOMINATOR message, it declares itself as
a dominatee and broadcasts a DOMINATEE message.
Thus each of the nodes 5, 6 and 7 declares itself as a
DOMINATEE and broadcasts a DOMINATEE mes-
sage. (see Figure 3(b)).

3. Upon receiving DOMINATOR and DOMINATEEmes-
sages from all its neighbors; node 5 sends a LIST1 mes-
sage, which includes the IDs of nodes 1 and 2; node
6 sends a LIST1 message, which includes the IDs of
nodes 3 and 4; and node 7 sends a LIST1 message,
which includes the IDs of nodes 3 and 4.

4. Upon receiving the LIST1 message from node 5, node
6 sends a LIST2 message, which includes the IDs of
nodes 1 and 2. Upon receiving the LIST1 message from
node 6, node 5 sends a LIST2 message, which includes
the IDs of nodes 3 and 4. Since all neighbors of node
7 are dominators, node 7 sends a LIST2 message with
the empty list list2.

5. Upon receiving LIST1 and LIST2 messages from node
5, node 1 selects node 5 as a connector to reach nodes
2, 3 and 4 by sending a LIST3 message. Upon receiving
LIST1 and LIST2 messages from node 5, node 2 selects
node 5 as a connector to reach nodes 3 and 4 by sending
a LIST3 message. Upon receiving LIST1 and LIST2
messages from nodes 6 and 7, node 3 selects node 7
as a connector to reach node 4 by sending a LIST3
message. Notice, node 4 does not make any selection
since it has the largest ID among all dominators within
three-hop distance.

6. Upon receiving LIST3 message from nodes 1 and 2,
node 5 declares itself as a connector for each of the
pairs (1,2), (1,3), (1,4), (2,3) and (2,4), then it sends a
CONNECTOR1 message selecting node 6 as a second
connector to connect each of the nodes 1 and 2 to each
of the nodes 3 and 4. Upon receiving LIST3 message
from node 3, node 7 declares itself as a connector for

 1

2

1 3

4

5 6 7

1

2

3

4

5 6 7

 1

2

3

4

5 6 7

(a) (b)

(c) (d)

2

3

4

5 6 7

Figure 3: Example: CDS Construction

the pair (3,4), then it sends a CONNECTOR1 mes-
sage. (see Figure 3(c)).

7. Upon receiving the CONNECTOR1 message from node
5, nodes 6 declares itself as a connector for each of
the pairs (1,3), (1,4), (2,3) and (2,4) and it broadcasts
CONNECTOR2 message.(see Figure 3(d)).

3.3 Message and Time Complexity

Theorem 4. Our distributed algorithm for constructing
a CDS has an O (n) time complexity, and O (n) message
complexity.

Proof. The worst case time complexity for the MIS oc-
curs when all nodes are arranged in either ascending or de-
scending order and the maximum nodal degree is 2. In this
case each node has to wait for all other nodes with lower ids.
Assume we have the graph with the n nodes (v1, v2,, vn),
then each node vi must wait for its neighbor node vi−1 to
declare its state. Each node must wait one time unit more
than the waiting time of the previous node. Node vn has to
wait the longest (n − 1 units). Also each node sends only
one message either a dominator or dominatee message. In
connecting the MIS, each dominatee node waits O(∆) time
to build its list1 and list2. A dominator node waits O(∆)
time for LIST1 and LIST2 messages from all its neighbors
before it selects a connector. The rest of procedures have
a constant time. Since each node sends a constant number
of messages, the total number of messages is O(n). Thus,
both the time and message complexity of our algorithm is
O (n).

4. MOBILE MAINTENANCE
We need to maintain a connected dominating set in the

unit-disk graph as the topology of the network may change.
In the mean time we need to maintain the same performance
ratio for the CDS. The key technique in our approach is to
maintain the MIS in the unit disk graph first, and to main-
tain the connection between all MIS nodes within three-hop

161

distance through connector nodes. In our discussion for the
maintenance of the CDS, we need to distinguish between
dominators and connectors. After any topology changes,
the MIS should be maintained, but there may be an addi-
tional affect on the connectors. When a dominator node is
turned off, or leaves its vicinity, this changes should affect
the connectors, which are used only to connect this domina-
tor to other dominators. After the MIS is maintained and
the connectors are changed back to dominatees whenever is
needed, the next step is to make sure that any dominator
appears in a new vicinity must have a two-hop and three-
hop path of connector nodes to all two-hop and three-hop
dominators respectively. In the next, we provide a brief de-
scription of the maintenance process. The implementation
details of this process will appear in Alzoubi’s Dissertation.

4.1 Dominator Node Movement
When a dominatee or connector node v learns that a dom-

inator node u has left its vicinity and u is the only dominator
of v, v changes its own state to candidate and then it sends
a WARNING1 message reporting the loss of u. The WARN-
ING1 message contains v’s ID and state, and the ID of u.
If v has other dominators and v is a dominatee, it simply
remains as a dominatee. If v is a connector connecting two
or more dominators other than u, it remains as a connector.
Otherwise, it changes its state to dominatee, and sends an
SDOMINATEE message.

Whenever a dominatee node w receives a WARNING1
message from v reporting the loss of u, it sends a RE-
SPONSE, which contains w’s ID and state, and the ID of
u.

Whenever a connector node w receives a WARNING1
message from a dominatee node v, or from a connector node
v which is not in w’s Rlist, w maintains its state as a connec-
tor, and sends a RESPONSE message. Whenever a connec-
tor node w receives a WARNING1 message from a connec-
tor node v, and w is only responsible to connect u to other
dominators, w changes its state to dominatee and sends a
RESPONSE message. Otherwise, w maintains its state as a
connector, and sends a RESPONSE message. Whenever a
connector node w receives an SDOMINATEE message from
a connector node v, and w is only responsible to connect u
to other dominators, w changes its state to dominatee and
sends an SDOMINATEE message. Otherwise, w maintains
its state as a connector.

Whenever candidate node receives a WARNING1, or RE-
SPONSE message from each neighbor, it applies the CDS
algorithm locally. Thus, a candidate node v with the lowest
ID declares itself as a dominator. Then v must be connected
through connector nodes to all dominators within three-hop
distance by applying the CDS algorithm locally.

When a dominator node u joins a neighborhood with at
least one dominator, the dominator with the lowest ID be-
comes a winner, and maintains its state as a dominator. All
other dominators switch their state to a dominatee. Oth-
erwise, u (winner) maintains its state as a dominator, and
sends a DOMINATOR message. However, the winner must
be connected through connector nodes to all dominators

within three-hop distance by applying the CDS algorithm
locally.

4.2 Dominatee or Candidate Node Movement
When a dominatee node v joins a new neighborhood, if

any of its new neighbors is a dominator, it maintains its
state as a dominatee, it also sends a LIST1 message. When
receiving a LIST1 message from v, a dominatee or connector
node w sends a LIST1 and LIST2 messages. Whenever v re-
ceives a LIST1 message from each dominatee and connector
neighbor, it sends a LIST2 message. Then the dominators
receiving the LIST1 and LIST2 messages react based on the
CDS algorithm.

When a dominatee node u joins a new neighborhood, if
non of its new neighbors is a dominator, it declares itself
as a dominator and sends a DOMINATOR message. If a
DOMINATOR message is received from y, a dominatee or
connector node v sends a LIST1 message, followed by LIST2
message. When receiving a LIST1 message from a domina-
tee or connector neighbor v, a dominatee or connector node
w sends an LIST2 message. Then the dominators receiv-
ing the LIST1 and LIST2 messages react based on the CDS
algorithm.

Whenever a new node y joins the network, initially it is a
candidate, if any of its neighbors is a dominator, it becomes
a dominatee, and the same action is taken as if a dominatee
node joins a new neighborhood.

Whenever a new node y joins the network, initially it is a
candidate, if non of its neighbors is a dominator, it declares
itself as a dominator, and sends a DOMINATOR message.
Then the same action is taken as if a dominatee node joins
a new neighborhood and becomes a dominator.

4.3 Connector Node Movement
Whenever a connector node w learns that a connector

node v has left its vicinity, if w is only responsible to con-
nect v to other dominators, it changes its own state to a
dominatee. Otherwise, it maintains its own state as a con-
nector. However, w sends a LOST message reporting the
lose of connection to the dominators (lost dominators) asso-
ciated with it through the connector node v.

Whenever a dominator node x receives a LOST message
from w, if any of the lost dominators has a larger ID than
its own, it sends a REQUEST message, which contains its
own ID, and the IDs of all lost dominators with larger IDs.
Whenever a dominatee or a connector node x receives the
REQUEST message, it sends a REPLY message, which con-
tains its own ID and for each dominator appeared in the
REQUEST message the ordered pair (ID, distance), where
distance is, equal to 1 if the dominator is one-hop from x,
equal to 2 if the dominator is two-hop from x, or equal to
∞ otherwise.

Whenever a dominator x receives a REPLY message from
a neighbor, it selects new connectors for all two-hop and
three-hop dominators, then the CDS continues to be applied
locally.

162

1

2

3

4

6 7

(a)

5

 1 3

45 76

(b)

2

Figure 4: Example of one node movement

Whenever a dominator node u learns that a connector
node v has left its vicinity, if any of the dominators (lost
dominators) connected to u through v has a larger ID than
its own, it sends a REQUEST message, which contains its
own ID, and the IDs of all lost dominators with larger IDs.
Whenever a dominatee or a connector node x receives the
REQUEST message, it sends a REPLY message, which con-
tains its own ID and for each dominator appeared in the
REQUEST message the ordered pair (ID, distance), where
distance is, equal to 1 if the dominator is one-hop from x,
equal to 2 if the dominator is two-hop from x, or equal to
∞ otherwise.

Whenever a dominator x receives a REPLY message from
a neighbor, it selects new connectors for all two-hop and
three-hop dominators, then the CDS continues to be applied
locally.

4.4 Examples
Figure 4(a,b) illustrates the action taking by neighboring

nodes in response to a dominator node movement. Figure
4(a) represents the network topology before the node move-
ment. When node 4 moves and becomes within the vicinity
of the dominator node 3, and since it has a higher ID than
node 4, it changes its state to a dominatee and sends an
SDOMINATEE message. When node 7 receives the SDOM-
INATEE message from node 4, it removes each pair in its
Rlist associated with the node 4. Since node 7 has only
one entry in its Rlist, and this entry corresponds to node 4,
node 7 switches to dominatee and sends an SDOMINATEE
message.

Figure 5(a-e) illustrates the action taking by neighboring
nodes in response to a dominator node movement and two
broken links simultaneously. Figure 5(a) represents the net-
work topology before the node movement. The execution
procedures are explained below:

1. When the dominator node 1 moves upward, both of the
dominatee nodes 4 and 5 become candidate nodes (see
5(b)), and both of them send a WARNING message.

5

(b)

1

4 5

2 3

(c)

1

2 3

4 5

(e)

54

1

2 3

(d)

1

2 3

4 5

321

(a)

4

Figure 5: Dominator node movement with two bro-
ken links simultaneously.

2. Whenever node 2 receives theWARNINGmessage from
node 5, it sends back a RESPONSE message. When-
ever node 4 receives theWARNINGmessage from node
5, it declares itself as a dominator (since it has the low-
est degree among all its candidate neighbors) (see 5(c))
and sends a DOMINATOR message.

3. Whenever node 5 receives the DOMINATOR message,
it declares itself as a dominatee (see 5(d)) and sends a
DOMINATEE message, followed by LIST1 and LIST2
messages.

4. Whenever node 2 receives the LIST1 message it sends
a LIST2 message.

5. Whenever the dominator node 3 receives the LIST2
message from node 2, it sends a LIST3 message select-
ing node 2 as a connector to reach the dominator node
4 (since it has a lower ID than the dominator node 4).

6. Whenever node 2 receives the LIST3 message, it se-
lects node 5 as a second connector to reach node 4, by
sending a CONNECTOR1 message.

7. Whenever node 5 receives the CONNECTOR1 mes-
sage addressed to itself, it declares itself as a connector
(see 5(e))and sends a CONNECTOR2 message.

5. CONCLUSIONS
In this paper, we proposed the first message-optimal dis-

tributed approximation algorithm for constructing and main-
taining a CDS with a constant approximation ratio in lin-
ear time and linear messages. The algorithm is fully local-
ized, and it does not rely on the spanning tree construction,
which makes it practical for situations, where the topology
changes are frequent and unpredictable. We also provided

163

the procedures to be followed in case of mobility and topol-
ogy changes. This algorithm outperforms all existing algo-
rithms for mobile ad hoc networks, in terms of the CDS size,
the message complexity, the time complexity, the message
size, and the memory required to maintain neighborhood
knowledge. In addition, each node only requires knowledge
of its single-hop neighbors, and only a constant number of
two-hop and three-hop neighbors, and the message length is
O(log n) bits. We also showed the importance of the MIS on
maintaining a low approximation ratio for the construction
and maintenance of the CDS.

6. REFERENCES
[1] K. M. Alzoubi, P.-J. Wan, O. Frieder, ”Distributed

Heuristics for Connected Dominating Set in Wireless
Ad Hoc Networks”, to appear in Journal on
Communication Networks, 2002.

[2] V. Bharghavan and B. Das, “Routing in Ad Hoc
Networks Using Minimum Connected Dominating
Sets”, International Conference on Communications’97,
Montreal, Canada. June 1997.

[3] B. N. Clark, C. J. Colbourn, and D. S. Johnson, “Unit
Disk Graphs”, Discrete Mathematics, 86:165–177, 1990.

[4] B. Das, R. Sivakumar, and V. Bhargavan, “Routing in
Ad-Hoc Networks Using a Spine”, International
Conference on Computers and Communications
Networks ’97, Las Vegas, NV. September 1997.

[5] R. Sivakumar, B. Das, and V. Bharghavan, “An
Improved Spine-based Infrastructure for Routing in Ad
Hoc Networks”, IEEE Symposium on Computers and
Communications ’98, Athens, Greece. June 1998.

[6] I. Stojmenovic, M. Seddigh, J. Zunic, “Dominating sets
and neighbor elimination based broadcasting
algorithms in wireless networks”, Proc. IEEE Hawaii
Int. Conf. on System Sciences, January 2001.

[7] P.-J. Wan, K. M. Alzoubi, O. Frieder, “Distributed
Construction of Connected Dominating Set in Wireless
Ad Hoc Networks”, to appear in IEEE INFOCOM
2002.

[8] J. Wu and H. L. Li, “On calculating connected
dominating set for efficient routing in ad hoc wireless
networks”, Proceedings of the 3rd ACM international
workshop on discrete algorithms and methods for mobile
computing and communications, 1999, Pages 7–14.

164

